Advanced Cryptography CS 655

Week 4:

- Generic Group Model/Ideal Permutation
- Pre-Computation Attacks
- Bit-Fixing Model/Auxiliary Input
- Compression Arguments

Idealized Models of Computation

- Random Oracle Model
- All parties have oracle access to a truly random function $H(\cdot)$
- Ideal Permutation Model
- All parties have access to a truly random permutation $f(\cdot)$ and its inverse $f^{-1}(\cdot)$
- Ideal Cipher Model
- All parties have oracle access to $E(\cdot, \cdot)$ and $E^{-1}(\cdot, \cdot)$
- For any fixed key K the function $E_{K}(x):=E(K, x)$ is a truly random permutation and $E_{K}^{-1}(x):=E^{-1}(K, x)$ is the inverse
- Generic Group Model [Shoup 97]

Warm-Up

- In the random oracle model we are given $\mathrm{y}=H(x)$ for a random value x. The attacker can make q queries to the random oracle. What is the probability that the attacker can find a pre-image of $\mathrm{y} \in\{0,1\}^{\lambda}$?
- In the ideal-permutation model we are given $\mathrm{y}=f(x)$ for a random value x. What is the probability that the attacker can find a pre-image of $\mathrm{y} \in\{0,1\}^{\lambda}$ after at most q oracle queries?

Warm-Up

- In the random oracle model we are given $y=H(x)$ for a random value x. The attacker can make q queries to the random oracle. What is the probability that the attacker can find a pre-image of $y \in\{0,1\}^{\lambda}$?
- Answer: At most $2 q \times 2^{-\lambda}$. Let x_{1}, \ldots, x_{q} denote the queries the attacker makes. The probability one of the q queries is x is $\operatorname{Pr}\left[\mathrm{x} \in\left\{x_{1}, \ldots, x_{q}\right\}\right] \leq \mathrm{q} \times 2^{-\lambda}$. Given that $\mathrm{x} \notin$ $\left\{x_{1}, \ldots, x_{q}\right\}$ we can view each $H\left(x_{1}\right)$ as a uniformly random string. Thus, we have $\left\{x_{1}, \ldots, x_{q}\right\}$ we can view each $H\left(x_{1}\right)$ as
$\operatorname{Pr}\left[\mathrm{y} \in\left\{H\left(x_{1}\right), \ldots, H\left(x_{q}\right)\right\} \mid\right] \leq \mathrm{q} \times 2^{-\lambda}$
- In the ideal-permutation model we are given $\mathrm{y}=f(x)$ for a random value x. What is the probability that the attacker can find a pre-image of $y \in$ $\{0,1\}^{\lambda}$ after at most q oracle queries?
- Answer: There is a trivial attack using $q=1$ queries!

$$
\mathrm{x}=f^{-1}(y)
$$

Warm-Up: Part 2

- In the Ideal-Cipher Model we are given $\left(m, E_{K}(m)\right)$ where $K \in\{0,1\}^{\lambda}$ is random. The attacker may make q queries to the ideal cipher. What is the probability that the attacker can find K ?

Warm-Up: Part 2

- In the Ideal-Cipher Model we are given $\left(m, E_{K}(m)\right)$ where $K \in\{0,1\}^{\lambda}$ is random. The attacker may make q queries to the ideal cipher. What is the probability that the attacker can find K ?
- Answer: At most $\mathrm{q} \times 2^{-\lambda}+\frac{1}{2^{\lambda}-q}$ (the probability of making a query of the form $E(K,$.$) plus the probability of guessing the correct key out of the$ remaining $2^{\lambda}-q$ options if this query does not happen).
- Challenge: In the ideal-permutation model we are given y_{1} where $\mathrm{y}=\left(y_{1}, y_{2}\right)=f(x)$ for a random value x. What is the probability that the attacker can finds x (or y_{2}) after at most q oracle queries?

What Can We Do with Ideal Permutation?

- Answer 1: Build a Block-Cipher
- Evan-Mansor Block Cipher
- Key: $K=\left(K_{1}, K_{2}\right)$
- $E M_{f, K}(x):=f\left(K_{1} \oplus x\right) \oplus K_{2}$
- $E M_{f, K}^{-1}(y):=f^{-1}\left(K_{2} \oplus y\right) \oplus K_{1}$
- Dunkelman et al. observed that one can safely use a single key $K_{1}=K_{2}$ (see https://eprint.iacr.org/2011/541.pdf)
- Security Game for Block-Cipher:
- $\mathrm{B}=0$ (real world): Attacker is given oracle access to $f(),. f^{-1}(y)$ and $E M_{K}^{f}(\cdot)$ and $E M_{f, K}{ }^{-1}(\cdot)$ but not the secret key $K=\left(K_{1}, K_{2}\right)$
- $\mathrm{B}=0$ (ideal world) Attacker is given oracle access to $f(),. f^{-1}(y)$ and $\pi(.) \pi^{-1}($.$) where \pi($.$) is$ truly random permutation (independent of $f($.$))$

What Can We Do with Ideal Permutation?

- Evan-Mansor Block Cipher
- Key: $K=\left(K_{1}, K_{2}\right)$
- $E M_{f, K}(x):=f\left(K_{1} \oplus x\right) \oplus K_{2}$
- $E M_{f, K}^{-1} \quad(y):=f^{-1}\left(K_{2} \oplus y\right) \oplus K_{1}$
- Dunkelman et al. observed that one can safely use a single key $K_{1}=K_{2}$
- Security Game for Block-Cipher:
- $\mathrm{B}=0$ (real world): Attacker is given oracle access to $f(),. f^{-1}(y)$ and $E M_{f, K}(\cdot)$ and $E M_{f, K}^{-1}$ but not the secret key $K=\left(K_{1}, K_{2}\right)$
- $\mathrm{B}=0$ (ideal world) Attacker is given oracle access to $f(),. f^{-1}(y)$ and $\pi(.) \pi^{-1}($.$) where \pi($. is truly random permutation (independent of $f($.$))$
- Attacker's advantage is at most $O\left(\frac{q_{f} q_{E}}{2^{\lambda}}\right)$ where q_{f} (resp.) denotes the number of queries to f or $f^{-1}\left(\operatorname{resp} . E M_{f, K}\right.$ or $\left.E M_{f, K}^{-1}\right)$

What Can We Do with Ideal Permutation?

- Answer 2: Build a Collision-Resistant Hash Function
- Sponge Construction: SHA3
- Input: $\mathrm{P}=\left(P_{0}, P_{1}, \ldots, P_{n-1}\right)$ viewed as r-bit blocks e.g.,
- Input "absorbed" in multiple rounds

Keccak (SHA3): $|r|+|c|=1600$-bit state

- Output squeezed out in subsequent rounds

$$
c \in\{256,512, \ldots\}
$$

absorbing | squeezing

Pre-Processing Attacks

- Often times the same cipher/permutation/group/hash function is used across multiple applications
- Adversary with nation-state level resources might spend a lot of time pre-computing hints to help break protocols using these building blocks
- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Offline attacker A_{1} is unbounded and outputs an S-bit hint for online attacker A_{2}
- A_{2} will try to win security games using this hint

Pre-Processing Attacks: Trivial Example

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Offline attacker A_{1} is unbounded, and can find collisions for our random oracle H by brute-force.
- Output Hint: x_{1} and x_{2} such that $\mathrm{H}\left(x_{1}\right)$ and $\mathrm{H}\left(x_{2}\right)$
- A_{2} can trivially find a collision using this hint.
- However, we may still hope that $A_{2}(s$, hint $)$ cannot find x and x^{\prime} such that $\mathrm{H}\left(s, x_{1}\right)$ and $\mathrm{H}\left(s, x_{2}\right)$ given a random salt s (picked after preprocessing)

Pre-Processing Lower Bounds

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Offline attacker A_{1} is unbounded and outputs an S-bit hint for online attacker A_{2}
- A_{2} will try to win security games using this hint
- Can be difficult! We can no longer assume that $\mathrm{H}(\mathrm{x})$ looks uniformly random to online attacker (due to hint)
- Compression Technique: If online attacker is too successful then we may be able to "compress" H. (Compressing a random string is impossible). These arguments are very tricky!

Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Random Oracle Version:
- Offline attacker A_{1} is unbounded and outputs an S-bit hint for online attacker A_{2} after viewing entire truth table $H($.
- A_{2} will try to win security games using this hint
- (S,T,p)-attacker
- A_{1} outputs a S-bit hint
- A_{2} makes at most T random oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p .
- $((S, T, p), \varepsilon)$-security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Generic Group Model (GGM)

- Models generic attacks [Shoup 97]
- don't exploit structure of cyclic Group $G=\langle g\rangle$
- WLOG assume $G=\mathbb{Z}_{p}$
- Attacker can only manipulate group elements $\mathrm{x} \in \mathbb{Z}_{p}$ via the following oracles:

$$
\operatorname{mult}(\tau(x), \tau(y))=\tau(x+y)
$$

Input: handles for group elements $\mathrm{x}, \mathrm{y} \in \mathbb{Z}_{p} \quad$ Output: handles for group element $\mathrm{x}+\mathrm{y} \in \mathbb{Z}_{p}$
Where $\tau: \mathbb{Z}_{p} \rightarrow\{0,1\}^{2 k}$ is a random injective function mapping group elements to binary strings (handles)

Generic Group Model (GGM)

- Models generic attacks [Shoup 97]
- Generic attacks don't exploit structure of cyclic Group $G=\langle g\rangle$
- WLOG assume $G=\mathbb{Z}_{p}$
- Attacker can only manipulate group elements $\mathrm{x} \in \mathbb{Z}_{p}$ via the following oracles:

```
\(\operatorname{mult}(\tau(x), \tau(y))=\tau(x+y)\)
\(\operatorname{inv}(\tau(x))=\tau(-x)\)
\(\operatorname{pow}(\tau(x), n)=\tau(n x) \longrightarrow\) Output: handle for group element \((\mathrm{nx} \bmod \mathrm{p}) \in \mathbb{Z}_{p}\)
```

Input: handle for group elements $\mathrm{x} \in \mathbb{Z}_{p}$ and integer n
Where $\tau: \mathbb{Z}_{p} \rightarrow\{0,1\}^{2 k}$ is a random injective function mapping group elements to binary strings (handles)

Sample GGM Result [Shoup 97] (Discrete Log): any attacker making T GGM queries solves discrete log problem with probability at most $\mathcal{O}\left(\frac{T^{2}}{2^{2 k}}\right)$

Generic Group Model

- Typically we use an Elliptic Curve Group of prime order p for $p \approx 2^{2 \lambda}$
- Provides λ-bit security
- Discrete Log Problem: Given generator g and g^{x} find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Best Generic Attack (Baby-Step Giant Step):
- 1) Compute $y_{k}=g^{k 2^{\lambda}}$ for each $k \leq 2^{\lambda} \quad$ (Time: $\tilde{O}\left(2^{\lambda}\right)$)
- 2) For each $x_{k}=g^{x+k}$ for each $k \leq 2^{\lambda} \quad$ (Time: $\tilde{O}\left(2^{\lambda}\right)$)
- 3) Find intersection (i,j) such that $x_{i}=g^{x+i}=y_{j}=g^{j 2^{\lambda}}$ and solve $x=j 2^{\lambda}-i$
- Note: $x=j 2^{\lambda}-i$ for some pair $i, j \leq 2^{\lambda}$
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$
O\left(\frac{q^{2}}{2^{2 \lambda}}\right)
$$

Generic Group Lower Bound

- Discrete Log Problem: Given generator g and g^{x} find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$
O\left(\frac{q^{2}}{2^{2 \lambda}}\right)
$$

- Proof Sketch: Initialize two sets $K=\{(1, \tau(1))\}$ and $U=\{(x, \tau(x))\}$
- $K \rightarrow$ Discrete Log Known
- $\mathrm{U} \rightarrow$ Discrete Log Depends on Unknown x
- $\operatorname{mult}(\tau(1), \tau(1))=\tau(2) \rightarrow$ Add $(2, \tau(2))$ to K
- $\operatorname{mult}(\tau(x), \tau(x))=\tau(2 x) \rightarrow$ Add $(2 x, \tau(x+1))$ to U
- $\operatorname{mult}(\tau(x), \tau(1))=\tau(x+1) \rightarrow$ Add $(x+1, \tau(x+1))$ to U
- Each new query adds item to K or U
- Cannot learn x unless sets intersect e.g., $\operatorname{mult}(\tau(x), \tau(x+1))=\tau(2 x+1)$ is found in K
- Sets remain disjoint with probability $\frac{|U||K|}{2^{2 \lambda}} \leq \frac{q^{2}}{2^{2 \lambda}}$

Generic Group Model

- Typically we use an Elliptic Curve Group of prime order p for $p \approx 2^{2 \lambda}$
- Provides λ-bit security
- Discrete Log Problem: Given generator g and g^{x} find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Computational-Diffie Hellman: Given g, g^{x} and g^{y} find $g^{x y}$
- Generic Group Version: Given $\tau(1), \tau(x)$ and $\tau(y)$ find $\tau(x y)$
- Similar Proof: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$
O\left(\frac{q^{2}}{2^{2 \lambda}}\right)
$$

Generic Group Model with Preprocessing

- Offline Attacker: $\mathrm{A}(\tau)=\sigma$
- Input: the secret/random encoding function τ for our group \mathbb{Z}_{p}
- Output: S-bit hint $\sigma \in\{0,1\}^{S}$ for online attacker
- No bound on the running time for the offline attacker
- Online Attacker: May use hint σ during attack
- Bounded running time $\mathrm{T}, q_{G O}$ queries to generic group oracles etc...
- May use hint σ during attack

- Motivation:

- Handful of groups (NIST P-256, Curve25519 etc...) used by most real-world cryptosystems
- Offline phase of preprocessing attack is only executed once

Sample Result [CK18] (Discrete Log with Preprocessing): any preprocessing attacker making solves discrete log problem with probability at most $\mathcal{O}\left(\frac{S T^{2}}{2^{2 k}}\right)$

GGM + ROM with Preprocessing

- Offline Attacker: $\mathrm{A}^{H}(\tau)=\sigma$
- Input: the secret/random encoding function τ for our group \mathbb{Z}_{p}, oracle access to the random oracle H
- Output: S-bit hint $\sigma \in\{0,1\}^{S}$ for online attacker
- The offline attacker may make a very large number of random oracle queries e.g., $2^{3 k}$
- Unbounded running time
- Online Attacker: May use hint σ during attack
- Bounded running time $\mathrm{T}, q_{G O}$ (resp. $q_{R O}$) queries to group oracle (resp. random oracle) etc...
- May use hint σ during attack

The Discrete Logarithm Problem with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt - 1 May 2018
Tel Aviv, Israel

The discrete-log problem

Group: $\quad \mathbb{G}=\langle g\rangle$
of prime order N

Instance: $\quad g^{x} \in \mathbb{G}$

Solution: $x \in \mathbb{Z}_{N}$

Adversary \mathcal{A}

Why do we believe this
problem is hard?

Generic lower bounds give us confidence

Theorem. [Shoup'97] Every generic discrete-log algorithm that

- operates in a group of prime order N and
- succeeds with probability at least $1 / 2$ must run in time $\Omega\left(N^{1 / 2}\right)$.

Generic attack in 256-bit group takes $\approx 2^{128}$ time.

Best attacks on standard EC groups are generic

Generic algorithms can only make "black-box" use of the group operation

Generic-group model:

- Group is defined by an injective "labeling" function

$$
\sigma: \mathbb{Z}_{N} \rightarrow\{0,1\}^{*}
$$

- Algorithm has access to a group-operation oracle:

$$
\mathcal{O}_{\sigma}(\sigma(i), \sigma(j)) \mapsto \quad \sigma(i+j)
$$

Generic dlog algorithm takes as input (σ (1) make queries to \mathcal{O}_{σ}, outputs x.
[Measure running time by query complex
Very useful way to understand hardness [BB04,B05,M05,D06,

Existing generic lower bounds do not account for preprocessing

- Premise of generic-group model: the adversary knows nothing about the structure of the group \mathbb{G} in advance
- In reality: the adversary knows a lot about \mathbb{G} !
$>\mathbb{G}$ is one of a small number of groups: NIST P-256, Curve25519,
- A realistic adversary can perform \mathbb{G}-specific preprocessing!
- Existing generic-group lower bounds say nothing about preprocessing attacks! [H80, Yao90, FN91

Preprocessing phase

Preprocessing phase

Group: $\mathbb{G}=\langle g\rangle \longrightarrow$

Online phase

Instance: $g^{x} \in \mathbb{G}$

Online time T

Solution:
$x \in \mathbb{Z}_{N}$
\mathcal{A}_{1}
Success prob. ϵ

- Preexisting $S=T=\widetilde{O}\left(N^{1 / 3}\right)$ generic attack on discrete log
- The $\tilde{O}\left(N^{1 / 3}\right)$ generic dlog attack is optimal
- Any such attack must use lots of preprocessing: $\Omega\left(N^{2 / 3}\right)$
- New $\tilde{O}\left(N^{1 / 5}\right)$ preprocessing attack on DDH-like problem

A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013] There is a generic dlog algorithm with preprocessing that:

- uses S bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ, such that:

> Will sketch the algorithm for $$
S=T=N^{1 / 3} \text {, constant } \epsilon \text {. }
$$

.... building on prior work on multiple-discrete-log algorithms
[ESST99,KS01,HMCD04,BL12]

Preliminaries

Define a pseudo-random walk on \mathbb{G} :

$$
g^{x} \mapsto g^{x+\alpha} \quad \text { where } \quad \alpha=\operatorname{Hash}\left(g^{x}\right)
$$

is a random function

Preprocessing phase

- Build $N^{1 / 3}$ chains of length $N^{1 / 3}$
- Store dlogs of chain endpoints
Advice: $\widetilde{O}\left(N^{1 / 3}\right)$ bits
Online phase
- Walk $O\left(N^{1 / 3}\right)$ steps
- When you hit a stored point, output the discrete log
Time: $\tilde{O}\left(N^{1 / 3}\right)$ steps

Generic discrete log
\rightarrow Without preprocessing: $\Omega\left(N^{1 / 2}\right)$
\rightarrow With preprocessing:

256-bit ECDL 2^{128} time -86..

Is this dlog attack the best possible?!
Related preprocessing attacks break:

- Multiple discrete log problem
- One-round Even-Mansour cipher
- Merkle-Damgård hash with random IV
[This paper]
[FJM14]
[CDGS17] dlog preprocessing attack with $S=T=N^{1 / 10}$?

Preprocessing attacks might make us worry about 256-bit EC groups

- Preexisting $S=T=\tilde{O}\left(N^{1 / 3}\right)$ generic attack on discrete log
- The $\tilde{O}\left(N^{1 / 3}\right)$ generic dlog attack is optimal
- Any such attack must use lots of preprocessing: $\Omega\left(N^{2 / 3}\right)$
- New $\tilde{O}\left(N^{1 / 5}\right)$ preprocessing attack on DDH-like problem

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

- uses S bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ, must satisfy:

$$
S T^{2}=\widetilde{\Omega}(\epsilon N)
$$

Shoup's proof technique (1997) relies on \mathcal{A} haviaggrojinfaranatiors about the group \mathbb{G} when it starts running (up to log factors)
\rightarrow Need different proof technique

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

- uses S bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ, must satisfy:

$$
S T^{2}=\widetilde{\Omega}(\epsilon N)
$$

Theorem. [Our paper]

Online time $N^{1 / 3}$ implies $\Omega\left(N^{2 / 3}\right)$ preprocessing

Furthermore, the preprocessing time P must satisfy

$$
P T+T^{2}=\Omega(\epsilon N)
$$

Open questions and recent progress

- Tightness of DDH upper/lower bounds?
- Is it as hard as dlog or as easy as sqDDH?
- Non-generic preprocessing attacks on ECDL?
- As we have for \mathbb{Z}_{p}^{*}

Coretti, Dodis, and Guo (2018)

- Elegant proofs of generic-group lower bounds using "presampling"
(à la Unruh, 2007)
- Prove hardness of "one-more" dlog, KEA assumptions, ...

Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Random Oracle Version:
- Offline attacker A_{1} is unbounded and outputs an S-bit hint for online attacker A_{2} after viewing entire truth table $H($.
- A_{2} will try to win security games using this hint
- (S,T,p)-attacker
- A_{1} outputs a S-bit hint
- A_{2} makes at most T random oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p .
- $((S, T, p), \varepsilon)$-security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model for Pre-Processing Attacks

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Random Oracle Version:
- Offline attacker A_{1} fixes output of random oracle $H($.$) at \mathrm{P}$ locations and then outputs a S-bit hint.
- A_{2} initially knows nothing about remaining unfixed values i.e., $H(x)$ picked randomly for $x \notin P$ after A_{1} generates hint
- (P,T,p)-attacker
- A_{1} fixes H on at most P locations and outputs S-bit hint
- A_{2} makes at most T random oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p .
- $((S, T, p), \varepsilon)$-security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model \rightarrow Lower bound in AuxilliaryInput Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications ©
- Other applications require a different approach (e.g., compression)

Oracles. An oracle \mathcal{O} has two interfaces \mathcal{O}.pre and \mathcal{O}.main, where \mathcal{O}.pre is accessible only once before any calls to \mathcal{O} main are made. Oracles used in this work are:

- Random oracle $\operatorname{RO}(N, M)$: Samples a random function table $F \leftarrow \mathcal{F}_{N, M}$, where $\mathcal{F}_{N, M}$ is the set of all functions from $[N]$ to $[M]$; offers no functionality at \mathcal{O}.pre; answers queries $x \in[N]$ at \mathcal{O}. main by the corresponding value $F[x] \in[M]$.
- Auxiliary-input random oracle $\mathrm{Al}-\mathrm{RO}(N, M)$: Samples a random function table $F \leftarrow$ $\mathcal{F}_{N, M}$; outputs F at \mathcal{O}.pre; answers queries $x \in[N]$ at \mathcal{O}.main by the corresponding value $F[x] \in[M]$.
- Bit-Fixing random oracle $\mathrm{BF}-\mathrm{RO}(P, N, M)$: Samples a random function table $F \leftarrow \mathcal{F}_{N, M}$; takes a list at \mathcal{O}.pre of at most P query/answer pairs that override F in the corresponding positions; answers queries $x \in[N]$ at \mathcal{O}.main by the corresponding value $F[x] \in[M]$.
- Standard model: Neither interface offers any functionality.

Definition 2. $A n(S, T)$-attacker $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ in the \mathcal{O}-model consists of two procedures

- \mathcal{A}_{1}, which is computationally unbounded, interacts with O.pre, and outputs an S-bit string, and
- \mathcal{A}_{2}, which takes an S-bit auxiliary input and makes at most T queries to O.main.

Definition 3. For an indistinguishability application G in the \mathcal{O}-model, the advantage of an attacker \mathcal{A} is defined as

$$
\operatorname{Adv}_{G, \mathcal{O}}(\mathcal{A}):=2\left|\operatorname{Succ}_{G}, \mathcal{O}(\mathcal{A})-\frac{1}{2}\right| .
$$

For an unpredictability application G, the advantage is defined as

$$
\operatorname{Adv}_{G ; \mathcal{O}}(\mathcal{A}):=\operatorname{Succ}_{G ; O}(\mathcal{A}) .
$$

An application G is said to be $((S, T, p), \varepsilon)$-secure in the \mathcal{O}-model if for every (S, T, p)-attacker \mathcal{A},

$$
\operatorname{Adv}_{G ; \mathcal{O}}(\mathcal{A}) \leq \varepsilon .
$$

Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma>0$, if an application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the BF-RO (P)-model, then it is $((S, T, p), \varepsilon)$-secure in the AI-RO-model, for

$$
\varepsilon \leq \varepsilon^{\prime}+\frac{2\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{c o m b}}{P}+2 \gamma
$$

where $T_{G}^{c o m b}$ is the combined query complexity corresponding to G.

Example: Set $\gamma=2^{-2 \lambda}$ and the advantage is roughly $\varepsilon^{\prime}+\frac{2(S+2 \lambda) T}{P}$

Balancing: ε^{\prime} usually increases with P i.e., as BF -attacker gets to fix more and more points.

Relationship: BF-RO and AI-RO

Theorem 6. For any $P \in \mathbb{N}$ and every $\gamma>0$, if an unpredictability application G is $\left((S, T, p), \varepsilon^{\prime}\right)$ secure in the $\mathrm{BF}-\mathrm{RO}(P, N, M)$-model for

$$
P \geq\left(S+2 \log \gamma^{-1}\right) \cdot T_{G}^{c o m b}
$$

then it is $((S, T, p), \varepsilon)$-secure in the $\operatorname{AI}-\mathrm{RO}(N, M)$-model for

$$
\varepsilon \leq 2 \varepsilon^{\prime}+2 \gamma,
$$

where $T_{G}^{\text {comb }}$ is the combined query complexity corresponding to G.

Application: Function-Inversion

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends $\mathrm{y}=\mathrm{H}(\mathrm{x})$ to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x^{\prime} such that $\mathrm{H}\left(\mathrm{x}^{\prime}\right)=\mathrm{y}$ (online attacker may use hints)
- Bit-Fixing Attacker: $A=\left(A_{1}, A_{2}\right)$
- Let $L=\left\{\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right), \ldots,\left(x_{P}{ }^{\prime}, y_{P}{ }^{\prime}\right)\right\}$ denote set of points fixed by A_{1}
- Let E^{\prime} be the event that $x=x_{i}^{\prime}$ or $x=y_{i}^{\prime}$ for some $i \leq P$
- $\operatorname{Pr}\left[\mathrm{E}^{\prime}\right] \leq \operatorname{Pr}\left[\exists i . x=x_{i}{ }^{\prime}\right]+\operatorname{Pr}\left[\exists i . y=y_{i}^{\prime} \mid \forall i . x \neq x_{i}^{\prime}\right] \leq \frac{P}{2^{\lambda}}+\frac{P}{2^{\lambda}}$
x is random
$y_{i}^{\prime}=\mathrm{H}\left(x_{i}^{\prime}\right)$ is uniformly random if not previously fixed i.e., $x \neq x_{i}^{\prime}$ for all i

Application: Function-Inversion

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends $y=H(x)$ to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x^{\prime} such that $H\left(x^{\prime}\right)=y$ (may use hints)
- Bit-Fixing Attacker: $A=\left(A_{1}, A_{2}\right)$
- Let $L=\left\{\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right), \ldots,\left(x_{P}{ }^{\prime}, y_{P}{ }^{\prime}\right)\right\}$ denote set of points fixed by A_{1}
- Let E^{\prime} be the event that $x=x_{i}{ }^{\prime}$ or $x=y_{i}^{\prime}$ for some $i \leq P$
- Let $Q=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{T}, y_{T}\right)\right\}$ denote queries made by A_{2} with corresponding answers
- Let E_{i} be the event that $x=x_{i}$ or $y=y_{i}$
- $\operatorname{Pr}\left[\mathrm{E}_{i} \mid \overline{\mathrm{E}}^{\prime} \cap \overline{\mathrm{E}_{1}} \cap \ldots \cap \overline{\mathrm{E}_{i-1}}\right] \leq \frac{1}{2^{\lambda}-P-(i-1)}+\frac{1}{2^{\lambda}} \quad \operatorname{Pr}\left[y=y_{i} \mid \ldots\right]$ note that
$\operatorname{Pr}\left[x=x_{i} \mid \ldots\right]$ note that x is random, and there $2^{\lambda}-P-(i-1)$ remaining possible values
$y_{i}=\mathrm{H}\left(x_{i}\right)$ is uniformly random if not previously fixed i.e., if $x_{i} \neq x$, x_{i} not in L and $x_{i} \neq x_{j}$ for all $\mathrm{j}<\mathrm{i},{ }^{48}$

Application: Function-Inversion

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends $\mathrm{y}=\mathrm{H}(\mathrm{x})$ to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x^{\prime} such that $H\left(x^{\prime}\right)=y$ (may use hints)
- Bit-Fixing Attacker: $A=\left(A_{1}, A_{2}\right)$
- Attacker wins with probability at most

$$
\operatorname{Pr}\left[\mathrm{E}^{\prime}\right]+\sum_{i \leq q} \operatorname{Pr}\left[\mathrm{E}_{i} \mid \overline{\mathrm{E}^{\prime}} \cap \overline{\mathrm{E}_{1}} \cap \ldots \cap \overline{\mathrm{E}_{i-1}}\right] \leq \frac{2 P+q}{2^{\lambda}}+\frac{q}{2^{\lambda}-P-q} \leq \frac{2 P+3 q}{2^{\lambda}}
$$

Assume $P+q \leq 2^{\lambda-1}$

Application: Function-Inversion

- Bit-Fixing Attacker: $A=\left(A_{1}, A_{2}\right)$
- Attacker wins with probability at most

$$
\operatorname{Pr}\left[\mathrm{E}^{\prime}\right]+\sum_{i \leq q} \operatorname{Pr}\left[\mathrm{E}_{i}^{\prime} \mid \overline{\mathrm{E}^{\prime}} \cap \overline{\mathrm{E}_{1}} \cap \ldots \cap \overline{\mathrm{E}_{i-1}}\right] \leq \frac{2 P+q}{2^{\lambda}}+\frac{q}{2^{\lambda}-P-q}
$$

Set $P \geq 6(S+2 \lambda) T \rightarrow$ Auxilliary-Input Attacker wins with Probability at most

$$
2\left(\frac{6(S+2 \lambda) T+T}{2^{\lambda}}+\frac{6(S+2 \lambda) T}{2^{\lambda}-6(S+2 \lambda) T-T}\right)+2^{-2 \lambda}=O\left(\frac{S T+\lambda T}{2^{\lambda}}\right)
$$

Review: Bit-Fixing vs Auxiliary Input

- Auxiliary-Input: (S,T,p)-attacker
- A_{1} outputs a S-bit hint based entire description of ideal-object
- A_{2} makes at most T oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- Bit-Fixing: (P,S,T,p)-attacker
- A_{1} fixes at most P input/output pairs and outputs a S -bit hint. The remaining ideal object is picked randomly subject to this restriction.
- A_{2} makes at most T oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model \rightarrow Lower bound in AuxilliaryInput Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications ©
- Other applications require a different approach (e.g., compression)

Relationship Bit-Fixing and Auxilliary Input

Theorem 1. Let $P, K, N, M \in \mathbb{N}, N \geq 16$, and $\gamma>0$. Moreover, let

$$
(\mathrm{Al}, \mathrm{BF}) \in\{(\mathrm{Al}-\mathrm{IC}(K, N), \mathrm{BF}-\mathrm{IC}(P, K, N)),(\mathrm{Al}-\mathrm{GG}(N, M), \mathrm{BF}-\mathrm{GG}(P, N, M))\} .
$$

Then,

1. if an application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the BF -model, it is $((S, T, p), \varepsilon)$-secure in the Al-model, where

$$
\varepsilon \leq \varepsilon^{\prime}+\frac{6\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{\text {comb }}}{P}+\gamma ;
$$

2. if an unpredictability application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the BF -model for

$$
P \geq 6\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{c o m b}
$$

it is $((S, T, p), \varepsilon)$-secure in the Al-model for

$$
\varepsilon \leq 2 \varepsilon^{\prime}+\gamma
$$

where $T_{G}^{\text {comb }}$ is the combined query complexity corresponding to G.

Generic Group Lower Bound

- Discrete Log Problem: Given generator g and g^{x} find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$
O\left(\frac{q^{2}}{2^{2 \lambda}}\right)
$$

- Proof Sketch: Initialize two sets $K=\{(1, \tau(1))\}$ and $U=\{(x, \tau(x))\}$
- $K \rightarrow$ Discrete Log Known
- $\mathrm{U} \rightarrow$ Discrete Log Depends on Unknown x
- mult $(\tau(1), \tau(1))=\tau(2) \rightarrow$ Add $(2, \tau(2))$ to K
- $\operatorname{mult}(\tau(x), \tau(x))=\tau(2 x) \rightarrow$ Add $(2 x, \tau(x+1))$ to U
- $\operatorname{mult}(\tau(x), \tau(1))=\tau(x+1) \rightarrow \operatorname{Add}(x+1, \tau(x+1))$ to U
- Each new query adds item to K or U
- Cannot learn x unless sets intersect e.g., mult $(\tau(x), \tau(x+1))=\tau(2 x+1)$ is found in K
- Sets remain disjoint with probability $\approx \frac{|U||K|}{2^{2 \lambda}} \leq \frac{q^{2}}{2^{2 \lambda}}$
- Technical Note: If attacker queries mult $(\mathcal{\varkappa}$, . $)$ for fresh \varkappa which is not in K or U then can add $\left(\tau^{-1}(\varkappa), \mathcal{}\right)$ to K

Generic Group Lower Bound with Bit-Fixing

- Generic Group Version Lower Bound: Any Bit-Fixing attacker making q queries to GGM oracles (online) and fixing at most P points succeeds with probability at most

$$
O\left(\frac{q^{2}+q P}{2^{2 \lambda}}\right)
$$

Proof Sketch: Let $\boldsymbol{L}=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots,\left(\boldsymbol{x}_{\boldsymbol{P}}, \boldsymbol{y}_{\boldsymbol{P}}\right)\right\}$ denote the fixed points where attacker fixed $\tau\left(x_{i}\right)=\boldsymbol{y}_{\boldsymbol{i}}$ Initialize two sets $K=\{(1, \tau(1))\} \cup L$ and $U=\{(x, \tau(x))\}$
$K \rightarrow$ Discrete Log Known
$\mathrm{U} \rightarrow$ Discrete Log Depends on Unknown x
Each new query adds item to K or U
Cannot learn x unless sets intersect
Sets remain disjoint with probability $\approx \frac{|U||K|}{2^{2 \lambda}} \leq \frac{q^{2}}{2^{2 \lambda}}$

Generic Group Lower Bound with Preprocessing Attacker

- Generic Group Version Lower Bound: Any auxiliary-input attacker making q queries to GGM oracles (online) and with a S bit hint points succeeds with probability at most

$$
O\left(\frac{q^{2}+q^{2}(S+\lambda)}{2^{2 \lambda}}\right)
$$

Proof Sketch: Set $P=O((S+2 \lambda) q)$ for our bit-fixing attacker A bit-fixing attacker succeeds with probability at most

$$
\varepsilon=O\left(\frac{q^{2}+q^{2}(S+\lambda)}{2^{2 \lambda}}\right)
$$

It follows that the AI-attacker succeeds with probability at most $2 \varepsilon+2^{-2 \lambda}=O\left(\frac{q^{2}+q^{2}(S+\lambda)}{2^{2 \lambda}}\right)$

Block-Ciphers with Leakage

- Ideal Cipher Model

- All parties have oracle access to $E(\cdot, \cdot)$ and $E^{-1}(\cdot, \cdot)$
- For any fixed key K the function $E_{K}(x):=E(K, x)$ is a truly random permutation and $E_{K}^{-1}(x):=E^{-1}(K, x)$ is the inverse
- Question: Can we still safely use the block-cipher after S-bit leakage?

Block-Ciphers with Leakage

- Question: Can we still safely use the block-cipher after S-bit leakage?
- Leakage Security Game:
- Offline Attacker A_{1} outputs S-bit hint
- Online Attacker has to predict secret bit b
- Real World ($\mathbf{b}=\mathbf{0}$): Online attacker may query $E(\cdot, \cdot), E^{-1}(\cdot, \cdot), E(K, \cdot)$ and $E^{-1}(K, \cdot)$, where K is a random key picked by the challenger
- Ideal World ($\mathbf{b}=\mathbf{1}$): Online attacker may query $E(\cdot, \cdot), E^{-1}(\cdot, \cdot), f(\cdot)$ and $f^{-1}(\cdot)$ where f is a truly random permutation (independent of block-cipher + hint).
- Online Attacker may make T queries to $E(\cdot, \cdot)$ or $E^{-1}(\cdot, \cdot)$ and q queries to $E(K, \cdot)$ or $E^{-1}(K, \cdot)$ when $\mathrm{b}=0\left(\right.$ resp. $f(\cdot)$ or $f^{-1}(\cdot)$ when $\left.\mathrm{b}=1\right)$

Block-Ciphers with Leakage

- Leakage Security Game:
- Offline Attacker A_{1} outputs S-bit hint
- Online Attacker has to predict secret bit b
- Real World ($\mathbf{b}=\mathbf{0}$): Online attacker may query $E(\cdot, \cdot), E^{-1}(\cdot, \cdot), E(K, \cdot)$ and $E^{-1}(K, \cdot)$, where K is a random key picked by the challenger
- Ideal World (b=1): Online attacker may query $E(\cdot, \cdot), E^{-1}(\cdot, \cdot), f(\cdot)$ and $f^{-1}(\cdot)$ where f is a truly random permutation (independent of block-cipher + hint).
- Analysis (Bit Fixing Attacker): Let

$$
L=\left\{K^{\prime}: \exists x \text { s.t. } E(K, x) \text { was fixed by } A_{1}\right\}
$$

and observe that $\operatorname{Pr}[K \in L] \leq|L| 2^{-\lambda}$.

Block-Ciphers with Leakage

- Analysis (Bit Fixing Attacker): Let

$$
\begin{aligned}
L= & \left\{K^{\prime}: \exists x \text { s.t. } E(K, x) \text { was fixed by } A_{1}\right\} \\
& \operatorname{Pr}[K \in L] \leq|L| 2^{-\lambda} \leq P 2^{-\lambda}
\end{aligned}
$$

Let B_{i} denote event that $\mathrm{K}=K_{i}$ where K_{i} is the key used in the ith query to $E(.,$.$) or E^{-1}(\cdot, \cdot)$

$$
\begin{aligned}
& \operatorname{Pr}\left[B_{i} \mid \bar{L} \cap \overline{B_{1}} \cap \ldots \cap \overline{B_{i-1}}\right] \leq \frac{1}{2^{\lambda}-|P|-i} \leq \frac{2}{2^{\lambda}} \\
& 2^{\lambda}-|P|-i \text { possible keys remain } \begin{array}{l}
\text { WLOG assume }|P|+T \leq 2^{\lambda-1} \\
\text { (otherwise upper bound on success rate of } \\
\text { bit-fixing attacker becomes } 1 \text { holds trivially) }
\end{array}
\end{aligned}
$$

Block-Ciphers with Leakage

- Analysis (Bit Fixing Attacker): Let

$$
\begin{gathered}
L=\left\{K^{\prime}: \exists x \text { s.t. } E(K, x) \text { was fixed by } A_{1}\right\} \\
\operatorname{Pr}[K \in L] \leq|L| 2^{-\lambda} \leq P 2^{-\lambda}
\end{gathered}
$$

Let B_{i} denote event that $\mathrm{K}=K_{i}$ where K_{i} is the key used in the ith query to $E(.,$.$) or$ $E^{-1}(\cdot, \cdot)$

If the attacker does not query K or fix an input for K then the attacker cannot distinguish between $\mathrm{b}=0$ or $\mathrm{b}=1$ since $E(K, \cdot)$ is a random permutation. Advantage is upper bounded by

$$
\operatorname{Pr}[L]+\sum_{i \leq T} \operatorname{Pr}\left[\mathrm{E}_{i} \mid \bar{L} \cap \overline{B_{1}} \cap \ldots \cap \overline{B_{i-1}}\right] \leq \frac{P}{2^{\lambda}}+\frac{2 T}{2^{\lambda}}=\frac{P+2 T}{2^{\lambda}}
$$

Block-Ciphers with Leakage

- Analysis (Pre-Processing Attacker):
$T_{\text {comb }}=T+1$ combined \# of
queries to ideal object

Advantage of pre-processing is upper bounded by

$$
O\left(\frac{P+T}{2^{\lambda}}+\frac{(S+\lambda)(T+q)}{P}\right)
$$

Set $P=\sqrt{(S+\lambda) T 2^{\lambda}} \rightarrow O\left(\frac{T}{2^{\lambda}}+\sqrt{\frac{(S+\lambda)(T+q)}{2^{\lambda}}}\right)$

Block-Ciphers with Leakage

- Thm (Informal): an ideal cipher is $((\boldsymbol{S}, \boldsymbol{T}, \boldsymbol{q}), \boldsymbol{\varepsilon})$-secure against preprocessing attacks in the auxiliary-input model with

$$
\varepsilon=O\left(\frac{T}{2^{\lambda}}+\sqrt{\frac{(S+\lambda)(T+q)}{2^{\lambda}}}\right)
$$

Best Attack: $\varepsilon=\Omega\left(\frac{T}{2^{\lambda}}+\sqrt{\frac{s}{2^{\lambda}}}\right)$
Open Question: Better attack or tighter lower-bound?
Note: Lower-bound likely requires different techniques (e.g., compression?)

Sponge-Construction

- Input: $m=\left(m_{1}, \ldots, m_{\ell}\right)$ with $m_{i} \in\{0,1\}^{r}$
- $s_{0}=s_{0}^{(1)} \| s_{0}^{(2)} \quad$ where $s_{0}^{(1)}=0^{r}$ and $s_{0}^{(2)}=0^{c}$ and
- For $i=1, \ldots, \ell$; set $s_{i}=s_{i}^{(1)} \| s_{i}^{(2)}=\pi\left(\left(s_{i-1}^{(1)} \oplus m_{i}\right) \| s_{i-1}^{(2)}\right)$
- Output: $s_{\ell}^{(1)}$
- Collision-Game: Attacker A_{1} outputs s-bit hint based on ideal permutation $\pi . A_{2}$ tries to find collision for sponge construction.

Sponge-Construction: Sponge ${ }_{\pi}($.

- Input: $m=\left(m_{1}, \ldots, m_{\ell}\right)$ with $m_{i} \in\{0,1\}^{r}$
- $s_{0}=s_{0}^{(1)} \| s_{0}^{(2)} \quad$ where $s_{0}^{(1)}=0^{r}$ and $s_{0}^{(2)}=0^{c}$ and
- For $i=1, \ldots, \ell$; set $s_{i}=s_{i}^{(1)} \| s_{i}^{(2)}=\pi\left(\left(s_{i-1}^{(1)} \oplus m_{i}\right) \| s_{i-1}^{(2)}\right)$
- Output: Sponge $_{\pi}\left(m_{1}, \ldots, m_{\ell}\right):=s_{\ell}^{(1)}$
- Pre-processing Attack: Find m_{1} and m_{2} such that $\pi\left(\left(m_{1}\right) \| 0^{c}\right)$ and $\pi\left(\left(m_{2}\right) \| 0^{c}\right)$ match on first r-bits. A_{1} outputs hint m_{1} and m_{2}.

Salted Sponge-Construction: Sponge ${ }_{\pi, I V}($.

- Input: $m=\left(m_{1}, \ldots, m_{\ell}\right)$ with $m_{i} \in\{0,1\}^{r}$
- $s_{0}=s_{0}^{(1)} \| s_{0}^{(2)} \quad$ where $s_{0}^{(1)}=0^{r}$ and $s_{0}^{(2)}=I V \in\{0,1\}^{c} \quad$ (random salt) For $i=$ $1, \ldots, \ell$; set $s_{i}=s_{i}^{(1)} \| s_{i}^{(2)}=\pi\left(\left(s_{i-1}^{(1)} \oplus m_{i}\right) \| s_{i-1}^{(2)}\right)$
- Output: $s_{\ell}^{(1)}$
- Question: Is the salted sponge-construction secure against pre-processing attacks?
- Parameters: Attacker gets S-bit hint, q queries to π or π^{-1} and outputs a collision of length at most ℓ.
- First Step: Analyze a bit-fixing attacker who can fix P input/outputs for π

Salted Sponge-Construction

- Input: $m=\left(m_{1}, \ldots, m_{\ell}\right)$ with $m_{i} \in\{0,1\}^{r}$
- $s_{0}=s_{0}^{(1)} \| s_{0}^{(2)} \quad$ where $s_{0}^{(1)}=0^{r}$ and $s_{0}^{(2)}=I V \in\{0,1\}^{c} \quad$ (random salt) For

$$
i=1, \ldots, \ell \text {; set } s_{i}=s_{i}^{(1)} \| s_{i}^{(2)}=\pi\left(\left(s_{i-1}^{(1)} \oplus m_{i}\right) \| s_{i-1}^{(2)}\right)
$$

- Output: $s_{\ell}^{(1)}$
- First Step: Analyze a bit-fixing attacker who can fix P input/outputs for π
- At the cost of 2ℓ additional queries to π we can assume (WLOG) that the attacker who outputs m and m^{\prime} has queried π at all points needed to evaluate Sponge $_{\pi}(m)$ and Sponge ${ }_{\pi}\left(m^{\prime}\right)$ since m and m^{\prime} are at most ℓ-blocks long

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V=\{0,1\}^{c+r}$
- Directed Edges: $(s, t=\pi(s))$
- Each node has indegree 1 and outdegree 1
- Label Edges with first r bits of output $t^{(1)} \| t^{(2)}=\pi(s)$
- Special Start node: $s_{0}=0^{r} \| I V$
- A sponge-input $m=\left(m_{1}, \ldots, m_{\ell}\right)$ with $m_{i} \in\{0,1\}^{r}$ defines a path in the above graph $s_{0}, s_{1}, \ldots, s_{\ell}$ with $s_{i}=\pi\left(\left(s_{i-1}^{(1)} \oplus m_{i}\right) \| s_{i-1}^{(2)}\right)$

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V=\{0,1\}^{c+r}$
- Directed Edges: $(s, t=\pi(s))$
- Each node has indegree 1 and outdegree 1
- Label Edges with first r bits of output $t^{(1)} \| t^{(2)}=\pi(s)$
- Call a node s prefixed if A_{1} fixed the value of $\pi(s)$
- Attacker is only aware of some of the edges e.g., after making q queries to π attacker is only aware at most $\mathrm{P}+\mathrm{q}$ directed edges.
- Let $G_{\pi, 0}$ denote initial known graph (using only edges defined by P prefixed points)
- Let $G_{\pi, i}$ denote known graph after i queries to π or π^{-1}

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V=\{0,1\}^{c+r}$
- Directed Edges: $(s, t=\pi(s))$

- Each node has indegree 1 and outdegree 1
- Label Edges with first r bits of output $t^{(1)} \| t^{(2)}=\pi(s)$
- Let $G_{\pi, 0}$ denote initial known graph (using only edges defined by P prefixed points)
- Let $G_{\pi, i}$ denote known graph after i queries to π or π^{-1}
- Special Start node: $s^{*}=0^{r} \| I V$
- Collision \Leftrightarrow for some label $t^{(1)} \in\{0,1\}^{r}$ are two distinct paths from start node s^{*} both ending an edge labeled $t^{(1)}$ in $G_{\pi, q}$

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

- Nodes: $V^{\prime}=\{0,1\}^{c}$
- Directed Edges: $\left(s^{(2)}, t^{(2)}\right) \in E^{\prime}$ iff there exists strings $s^{(1)}, t^{(1)} \in\{0,1\}^{r}$ such that $t^{(1)} \| t^{(2)}=\pi\left(s^{(1)} \| s^{(2)}\right)$
- Label edges with $\left(s^{(1)}, t^{(1)}\right)$
- Starting Super-node: $I V \in\{0,1\}^{c}$
- Let G_{0} denote the initial super-graph (defined using P fixed points)
- Let G_{i} denote the super-graph after i queries to π or π^{-1}
- Call a super-node $s^{(2)} \in\{0,1\}^{c}$ " p pre-fixed" if there exists $s^{(1)} \in\{0,1\}^{r}$ such that $\mathrm{s}=s^{(1)} \| s^{(2)}$ was pre-fixed

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

- Starting Super-node: $I V \in\{0,1\}^{c}$
- Let G_{0} denote the initial super-graph (defined using P fixed points)
- Let G_{i} denote the super-graph after i queries to π or π^{-1}
- Call a super-node $s^{(2)} \in\{0,1\}^{c}$ "pre-fixed" if there exists $s^{(1)} \in\{0,1\}^{r}$ such that $\mathrm{s}=$ $s^{(1)}| | s^{(2)}$ was pre-fixed
- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in\{0,1\}^{c}$

$$
\operatorname{Pr}\left[B_{0}\right]=\operatorname{Pr}[\text { IV prefixed }] \leq \frac{P}{2^{c}}
$$

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in$ $\{0,1\}^{c}$
- If $B_{T+2 f \text { does not occur then every supernode has one incoming edge and the }}$ value $t^{(1)} \in\{0,1\}^{r}$ (potential hash output) is uniform.

$$
\operatorname{Pr}\left[\text { COLLISION } \mid \overline{B_{T+2 \ell}}\right] \leq\binom{ T+2 \ell}{2} 2^{-r}
$$

Probability of Bad Event (Forward Query)

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in\{0,1\}^{c}$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$
\pi\left(t^{(1)} \| t^{(2)}\right)=y^{(1)} \| y^{(2)}
$$

\rightarrow Adds edge from supernode $t^{(2)}$ to $y^{(2)}$.
\rightarrow Bad if there was already a path to $y^{(2)}$ or if $y^{(2)}$ was fixed.
\rightarrow At most $(i+P) 2^{r}$ bad outputs for $\pi\left(t^{(1)} \| t^{(2)}\right)$ out of $2^{r+c}-(i-1+P)$ possibilities

Probability of Bad Event (Forward Query)

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) $G_{i_{i c}}$ contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in$

Suppose that no bad event has occurred after the first $i-1$ queries to π or π^{-1} and that the ith query is of the form

$$
\pi\left(t^{(1)} \| t^{(2)}\right)=y^{(1)} \| y^{(2)}
$$

\Rightarrow Adds edge from supernode $t^{(2)}$ to $y^{(2)}$. Bad if there was already a path to $y^{(2)}$ or if $y^{(2)}$ was fixed.

$$
\operatorname{Pr}\left[B_{i} \mid \overline{B_{1}} \cap \ldots \cap \overline{B_{i-1}}\right] \leq \frac{(i+P) 2^{r}}{2^{c+r}-(i-1+P)} \leq \frac{i+P}{2^{c-1}}
$$

Probability of Bad Event (Inverse Query)

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in\{0,1\}^{c}$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$
\pi^{-1}\left(y^{(1)} \| y^{(2)}\right)=t^{(1)} \| t^{(2)}
$$

\rightarrow Adds edge from supernode $t^{(2)}$ to $y^{(2)}$.
\rightarrow Potentially bad if there was already a path from IV to $y^{(2)}$.
\rightarrow At most $i 2^{r}$ bad outputs form $\pi^{-1}\left(y^{(1)} \| y^{(2)}\right)$ out of $2^{r+c}-(i-1+P)$ possibilities

Probability of Bad Event (Inverse Query)

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $x \in\{0,1\}^{c}$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$
\pi^{-1}\left(y^{(1)} \| y^{(2)}\right)=t^{(1)} \| t^{(2)}
$$

$\operatorname{Pr}\left[B_{i} \mid \overline{B_{1}} \cap \ldots \cap \overline{B_{i-1}}\right] \leq \frac{i 2^{r}}{2^{c+r}-(i-1+P)} \leq \frac{i}{2^{c-1}} \leq \frac{i+P}{2^{c-1}}$

Probability of Bad Event (Total)

- Let B_{i} denote the event that either
- (1) G_{i} contains a path from starting node IV to some pre-fixed
- (2) G_{i} contains two distinct paths from starting node IV to x for some supernode $\mathrm{x} \in$ $\{0,1\}^{c}$
- After all $T+2 \ell$ queries we have

$$
\begin{gathered}
\operatorname{Pr}\left[B_{T+2 \ell}\right] \leq \operatorname{Pr}\left[B_{0}\right]+\sum_{i=1}^{T+2 \ell} \operatorname{Pr}\left[B_{i} \mid \overline{B_{1}} \cap \ldots \cap \overline{B_{i-1}}\right] \\
\quad \leq \frac{P}{2^{c}}+\sum_{i=1}^{T+2 \ell} \frac{i+P}{2^{c-1}} \leq \frac{(T+\ell)^{2}+T P+2 \ell P+P}{2^{c-1}}
\end{gathered}
$$

Probability of Collision (Bit-Fixing)

$$
\begin{gathered}
\operatorname{Pr}\left[\text { COLLISION } \mid \overline{B_{T+2 \ell}}\right] \leq\binom{ T+2 \ell}{2} 2^{-r} \\
\operatorname{Pr}\left[B_{T+2 \ell}\right] \leq \frac{(T+\ell)^{2}+T P+2 \ell P+P}{2^{c-1}}
\end{gathered}
$$

$$
\operatorname{Pr}[\text { COLLISION }] \leq\binom{ T+2 \ell}{2} 2^{-r}+\frac{(T+\ell)^{2}+T P+2 \ell P+P}{2^{c-1}}
$$

Probability of Collision: Auxilliary-Input

- Bit-Fixing $(\mathrm{P}): \operatorname{Pr}[$ COLLISION $] \leq\binom{ T+2 \ell}{2} 2^{-r}+\frac{(T+\ell)^{2}+T P+2 \ell P+P}{2^{c-1}}$
- Set $P=6(S+c+r)(T+2 \ell)$ to apply main theorem

Thm (Informal): Salted-Sponge is $((S, T, \ell), \varepsilon)$-secure in the auxiliaryinput model with

$$
\varepsilon \leq O\left(\frac{(T+\ell)^{2}}{2^{r-1}}+\frac{(T+\ell)^{2}(S+c+r)}{2^{c-1}}\right)
$$

	AI Security	SM Security	Best Attack
OWP	$\frac{S T}{N}$	$\frac{T}{N}$	$\frac{S T}{N}[33]$
EM	$\left(\frac{S T^{2}}{N}\right)^{1 / 2}+\frac{T^{2}}{N}$	$\frac{T^{2}}{N}$	$\left(\frac{S}{N}\right)^{1 / 2}[17]$
BC-IC	$\left(\frac{S T}{K}\right)^{1 / 2}+\frac{T}{K}$	$\frac{T}{K}$	$\left(\frac{S}{K}\right)^{1 / 2}[17]$
PRF-DM	$\left(\frac{S T}{N}\right)^{1 / 2}+\frac{T}{N}$	$\frac{T}{N}$	$\left(\frac{S}{N}\right)^{1 / 2}[17]$
CRHF-DM	$\frac{(S T)^{2}}{N}$	$\frac{T^{2}}{N}$	not known
CRHF-S	$\frac{S T^{2}}{2^{c}}+\frac{T^{2}}{2^{r}}$	$\frac{T^{2}}{2^{c}}+\frac{T^{2}}{2^{2}}$	$\frac{S T^{2}}{N}[15]$
PRF-S	$\left(\frac{S T^{2}}{2^{c}}\right)^{1 / 2}$	$\frac{T^{2}}{2^{c}}$	$\left(\frac{S}{N}\right)^{1 / 2}[17]$
MAC-S	$\frac{S T^{2}}{2^{c}}+\frac{T}{2^{n}}$	$\frac{T^{2}}{2^{c}}+\frac{T}{2^{r}}$	$\min \left\{\frac{S T}{N},\left(\frac{S^{2} T}{N^{2}}\right)^{1 / 3}\right\}+\frac{T}{N}[33]$
CRHF-MD	$\frac{S T^{2}}{N}$	$\frac{T^{2}}{N}$	$\frac{S T^{2}}{N}[15]$
PRF-MD-N	$\left(\frac{S T^{3}}{N}\right)^{1 / 2}+\frac{T^{3}}{N}$	$\frac{T^{3}}{N}$	$\left(\frac{S}{N}\right)^{1 / 2}[17]$
NMAC/HMAC	$\frac{S T^{3}}{N}$	$\frac{T^{3}}{N}$	$\min \left\{\frac{S T}{N},\left(\frac{S^{2} T}{N^{2}}\right)^{1 / 3}\right\}+\frac{T}{N}[33]$

	AI-GGM Security	GGM Security	Best Attack
DL/CDH	$\frac{S T^{2}}{N}+\frac{T^{2}}{N}$	$\frac{T^{2}}{N}$	$\frac{S T^{2}}{N}[16,38,5]$
t-fold MDL	$\left(\frac{S(T+t)^{2}}{t N}+\frac{(T+t)^{2}}{t N}\right)^{t}$	$\left(\frac{(T+t)^{2}}{t N}\right)^{t}$	see caption $[16]$
DDH	$\left(\frac{S T^{2}}{N}\right)^{1 / 2}+\frac{T^{2}}{N}$	$\frac{T^{2}}{N}$	$\frac{S T^{2}}{N}[16,38,5]$
SqDDH	$\left(\frac{S T^{2}}{N}\right)^{1 / 2}+\frac{T^{2}}{N}$	$\frac{T^{2}}{N}$	$\left(\frac{S T^{2}}{N}\right)^{1 / 2}[16]$
OM-DL	$\left(\frac{S(T+t)^{2}}{N}\right)+\frac{(T+t)^{2}}{N}$	$\frac{T^{2}}{N}$	$\frac{S T^{2}}{N}[16,38,5]$
KEA	$\frac{S T^{2}}{N}$	$\frac{T^{2}}{N}$	not known

Table 2: Asymptotic upper and lower bounds on the security of applications in the generic-group model against (S, T)-attackers in the AI-ROM; new bounds are in a bold-face font. The value t for the one-more $D L$ problem stands for the number of challenges requested by the attacker. The attack against MDL succeeds with constant probability and requires that $S T^{2} / t+T^{2}=\Theta(t N)$.

Course Project Ideas: Analyze different construction vs pre-processing attackers (easier) or tighten existing bounds (likely harder).

Reminder: Link Between BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma>0$, if an application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the BF-RO(P-model, then it is $((S, T, p), \varepsilon)$-secure in the AI-RO-model, for

$$
\varepsilon \leq \varepsilon^{\prime}+\frac{2\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{c o m b}}{P}+2 \gamma
$$

where $T_{G}^{c o m b}$ is the combined query complexity corresponding to G.

So far we have used this result (or similar results for Ideal-Ciphers, Permutations etc...) as a black-box.

How is this result proved?

Leaky vs Dense Sources

Definition 1. An (N, M)-source is a random variable X with range $[M]^{N}$. A source is called

- (1- δ)-dense if for every subset $I \subseteq[N]$,

$$
H_{\infty}\left(X_{I}\right) \geq(1-\delta) \cdot|I| \cdot \log M=(1-\delta) \cdot \log M^{|I|} .
$$

- $(P, 1-\delta)$-dense if it is fixed on at most P coordinates and is $(1-\delta)$-dense on the rest,
- P-bit-fixing if it is fixed on at most P coordinates and uniform on the rest.
- Idea 1: Leaky Source (auxiliary-input) can be replaced by convex combination of $(P, 1-\delta)$-dense sources.
- Idea 2: Hard to distinguish between $(P, 1-\delta)$-dense source and P -bitfixing source after T queries

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\}^{s}}$ of convex combinations Y_{z} of P-bit-fuxing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

Claim 2. For every $\delta>0, X_{z}$ is γ-close to a convex combination of finitely many $\left(P^{\prime}, 1-\delta\right)$-dense sources for

$$
P^{\prime}=\frac{S_{z}^{\prime}+\log 1 / \gamma}{\delta \cdot \log M} .
$$

Claim 3. For any $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} and its corresponding P^{\prime}-bit-fxing source Y^{\prime}, it holds that for any (adaptive) distinguisher \mathcal{D} that queries at most T coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \cdot \log M
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right] \leq M^{T \delta} \cdot \mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]
$$

Proof. Assume without loss of generality that \mathcal{D} is deterministic and does not query any of the fixed positions. Let $T_{X^{\prime}}$ and $T_{Y^{\prime}}$ be the random variables corresponding to the transcripts containing the query/answer pairs resulting from \mathcal{D}^{\prime} s interaction with X^{\prime} and Y^{\prime}, respectively. For a fixed transcript τ, denote by $\mathrm{p}_{X^{\prime}}(\tau)$ and $\mathrm{p}_{Y^{\prime}}(\tau)$ the probabilities that X^{\prime} and Y^{\prime}, respectively, produce the answers in τ if the queries in τ are asked. Observe that these probabilities depend only on X^{\prime} resp. Y^{\prime} and are independent of \mathcal{D}.

Observe that for every transcript τ,

$$
\begin{equation*}
p_{X^{\prime}}(\tau) \leq M^{-(1-\delta) T} \quad \text { and } \quad p_{Y^{\prime}}(\tau)=M^{-T} \tag{1}
\end{equation*}
$$

as X^{\prime} is $(1-\delta)$-dense and Y^{\prime} is uniformly distributed.
Since \mathcal{D} is deterministic, $\mathrm{P}\left[T_{X^{\prime}}=\tau\right] \in\left\{0, \mathrm{p}_{X^{\prime}}(\tau)\right\}$, and similarly, $\mathrm{P}\left[T_{Y^{\prime}}=\tau\right] \in\left\{0, \mathrm{p}_{Y^{\prime}}(\tau)\right\}$. Denote by \mathcal{T}_{X} the set of all transcripts τ for which $\mathrm{P}\left[T_{X^{\prime}}=\tau\right]>0$. For such $\tau, \mathrm{P}\left[T_{X^{\prime}}=\tau\right]=\mathrm{p}_{X^{\prime}}(\tau)$

Claim 3. For any $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} and its corresponding P^{\prime}-bit-fxing source Y^{\prime}, it holds that for any (adaptive) distinguisher \mathcal{D} that queries at most T coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \cdot \log M
$$

and
and also $\mathrm{P}\left[T_{Y^{\prime}}=\tau\right]=\mathrm{p}_{Y^{\prime}}(\tau)$. Towards proving the first part of the lemma, observe that
and a

$$
\begin{aligned}
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| & \leq \mathrm{SD}\left(T_{X^{\prime}}, T_{Y^{\prime}}\right) \\
& =\sum_{\tau} \max \left\{0, \mathrm{P}\left[T_{X^{\prime}}=\tau\right]-\mathrm{P}\left[T_{Y^{\prime}}=\tau\right]\right\} \\
& =\sum_{\tau \in T_{X}} \max \left\{0, \mathrm{p}_{X^{\prime}}(\tau)-\mathrm{p}_{Y^{\prime}}(\tau)\right\} \\
& =\sum_{\tau \in T_{X}} \mathrm{p}_{X^{\prime}}(\tau) \cdot \max \left\{0,1-\frac{\mathrm{p}_{Y^{\prime}}(\tau)}{\mathrm{p}_{X^{\prime}}(\tau)}\right\} \\
& \leq 1-M^{-T \delta} \leq T \delta \cdot \log M
\end{aligned}
$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \geq 1-x$ for $x \geq 0$.

$$
\leq 1-M^{-T \delta} \leq T \delta \cdot \log M
$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \geq 1-x$ for $x \geq 0$.

