Advanced Cryptography CS 655

Week 4:

- Generic Group Model/Ideal Permutation
- Pre-Computation Attacks
- Bit-Fixing Model/Auxiliary Input
- Compression Arguments

Idealized Models of Computation

- Random Oracle Model
 - All parties have oracle access to a truly random function $H(\cdot)$
- Ideal Permutation Model
 - All parties have access to a truly random permutation $f(\cdot)$ and its inverse $f^{-1}(\cdot)$
- Ideal Cipher Model
 - All parties have oracle access to $E(\cdot, \cdot)$ and $E^{-1}(\cdot, \cdot)$
 - For any fixed key K the function $E_K(x) \coloneqq E(K, x)$ is a truly random permutation and $E_K^{-1}(x) \coloneqq E^{-1}(K, x)$ is the inverse
- Generic Group Model [Shoup 97]

Warm-Up

- In the random oracle model we are given y = H(x) for a random value x. The attacker can make q queries to the random oracle. What is the probability that the attacker can find a pre-image of $y \in \{0,1\}^{\lambda}$?
- In the ideal-permutation model we are given y = f(x) for a random value x. What is the probability that the attacker can find a pre-image of $y \in \{0,1\}^{\lambda}$ after at most q oracle queries?

Warm-Up

- In the random oracle model we are given y = H(x) for a random value x. The attacker can make q queries to the random oracle. What is the probability that the attacker can find a pre-image of $y \in \{0,1\}^{\lambda}$?
 - **Answer:** At most $2q \times 2^{-\lambda}$. Let $x_1, ..., x_q$ denote the queries the attacker makes. The probability one of the q queries is x is $\Pr[x \in \{x_1, ..., x_q\}] \le q \times 2^{-\lambda}$. Given that $x \notin \{x_1, ..., x_q\}$ we can view each $H(x_1)$ as a uniformly random string. Thus, we have $\Pr[y \in \{H(x_1), ..., H(x_q)\}|] \le q \times 2^{-\lambda}$.
- In the ideal-permutation model we are given y = f(x) for a random value x. What is the probability that the attacker can find a pre-image of y ∈ {0,1}^λ after at most q oracle queries?
 - **Answer:** There is a trivial attack using q=1 queries!

$$\mathbf{x} = f^{-1}(y)$$

Warm-Up: Part 2

• In the Ideal-Cipher Model we are given $(m, E_K(m))$ where $K \in \{0,1\}^{\lambda}$ is random. The attacker may make q queries to the ideal cipher. What is the probability that the attacker can find K?

Warm-Up: Part 2

- In the Ideal-Cipher Model we are given $(m, E_K(m))$ where $K \in \{0,1\}^{\lambda}$ is random. The attacker may make q queries to the ideal cipher. What is the probability that the attacker can find K?
 - Answer: At most $q \times 2^{-\lambda} + \frac{1}{2^{\lambda}-q}$ (the probability of making a query of the form E(K, .) plus the probability of guessing the correct key out of the remaining $2^{\lambda} q$ options if this query does not happen).
- **Challenge:** In the ideal-permutation model we are given y_1 where $y = (y_1, y_2) = f(x)$ for a random value x. What is the probability that the attacker can finds x (or y_2) after at most q oracle queries?

What Can We Do with Ideal Permutation?

- Answer 1: Build a Block-Cipher
- Evan-Mansor Block Cipher
 - Key: $K = (K_1, K_2)$
 - $EM_{f,K}(x) \coloneqq f(K_1 \oplus x) \oplus K_2$
 - $EM_{f,K}^{-1}(y) \coloneqq f^{-1}(K_2 \oplus y) \oplus K_1$
 - Dunkelman et al. observed that one can safely use a single key $K_1 = K_2$ (see <u>https://eprint.iacr.org/2011/541.pdf</u>)
 - Security Game for Block-Cipher:
 - B=0 (real world): Attacker is given oracle access to f(.), $f^{-1}(y)$ and $EM_K^f(\cdot)$ and $EM_{f,K}^{-1}(\cdot)$ but not the secret key $K = (K_1, K_2)$
 - B=0 (ideal world) Attacker is given oracle access to f(.), $f^{-1}(y)$ and $\pi(.) \pi^{-1}(.)$ where $\pi(.)$ is truly random permutation (independent of f(.))

What Can We Do with Ideal Permutation?

- Evan-Mansor Block Cipher
 - Key: $K = (K_1, K_2)$
 - $EM_{f,K}(x) \coloneqq f(K_1 \oplus x) \oplus K_2$
 - $EM_{f,K}^{-1}$ $(y) \coloneqq f^{-1}(K_2 \oplus y) \oplus K_1$
 - Dunkelman et al. observed that one can safely use a single key $K_1 = K_2$
 - Security Game for Block-Cipher:
 - B=0 (real world): Attacker is given oracle access to f(.), $f^{-1}(y)$ and $EM_{f,K}(\cdot)$ and $EM_{f,K}^{-1}(\cdot)$ but not the secret key $K = (K_1, K_2)$
 - B=0 (ideal world) Attacker is given oracle access to f(.), $f^{-1}(y)$ and $\pi(.) \pi^{-1}(.)$ where $\pi(.)$ is truly random permutation (independent of f(.))
 - Attacker's advantage is at most $O(\frac{q_f q_E}{2^{\lambda}})$ where q_f (resp.) denotes the number of queries to f or f^{-1} (resp. $EM_{f,K}$ or $EM_{f,K}^{-1}$) 8

What Can We Do with Ideal Permutation?

• Answer 2: Build a Collision-Resistant Hash Function

- Sponge Construction: SHA3
- Input: $P = (P_0, P_1, \dots, P_{n-1})$ viewed as r-bit blocks e.g.,
- Input "absorbed" in multiple rounds
- Output squeezed out in subsequent rounds

Keccak (SHA3): |r|+|c|=1600-bit state $c \in \{256,512, ...\}$

Pre-Processing Attacks

- Often times the same cipher/permutation/group/hash function is used across multiple applications
- Adversary with nation-state level resources might spend a lot of time pre-computing hints to help break protocols using these building blocks
- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Offline attacker A_1 is unbounded and outputs an S-bit hint for online attacker A_2
- A_2 will try to win security games using this hint

Pre-Processing Attacks: Trivial Example

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Offline attacker A₁ is unbounded, and can find collisions for our random oracle H by brute-force.
- **Output Hint:** x_1 and x_2 such that $H(x_1)$ and $H(x_2)$
- A_2 can trivially find a collision using this hint.
- However, we may still hope that A₂(s, hint) cannot find x and x' such that H(s, x₁) and H(s, x₂) given a random salt s (picked after preprocessing)

Pre-Processing Lower Bounds

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Offline attacker A_1 is unbounded and outputs an S-bit hint for online attacker A_2
- A_2 will try to win security games using this hint
- Can be difficult! We can no longer assume that H(x) looks uniformly random to online attacker (due to hint)
- Compression Technique: If online attacker is too successful then we may be able to ``compress" H. (Compressing a random string is impossible). These arguments are very tricky!

Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Random Oracle Version:
- Offline attacker A_1 is unbounded and outputs an S-bit hint for online attacker A_2 after viewing entire truth table H(.)
- A_2 will try to win security games using this hint
- (S,T,p)-attacker
 - A₁ outputs a S-bit hint
 - A₂ makes at most T random oracle queries
 - A_2^- may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- $((S, T, p), \varepsilon)$ -security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Generic Group Model (GGM)

- Models generic attacks [Shoup 97]
 - don't exploit structure of cyclic Group $G = \langle g \rangle$
 - WLOG assume $G = \mathbb{Z}_p$
- Attacker can only manipulate group elements $\mathbf{x} \in \mathbb{Z}_p$ via the following oracles:

 $mult(\tau(x), \tau(y)) = \tau(x + y)$ Input: handles for group elements $x, y \in \mathbb{Z}_p$

nput: handles for group elements $x, y \in \mathbb{Z}_p$ **Output:** handles for group element $x + y \in \mathbb{Z}_p$

Where $\tau: \mathbb{Z}_p \to \{0,1\}^{2k}$ is a random injective function mapping group elements to binary strings (handles)

Generic Group Model (GGM)

- Models generic attacks [Shoup 97]
 - Generic attacks don't exploit structure of cyclic Group $G = \langle g \rangle$
 - WLOG assume $G = \mathbb{Z}_p$
- Attacker can only manipulate group elements $x \in \mathbb{Z}_p$ via the following oracles: $mult(\tau(x), \tau(y)) = \tau(x + y)$ $inv(\tau(x)) = \tau(-x)$ $pow(\tau(x), n) = \tau(nx)$ • Output: handle for group element $(nx \mod p) \in \mathbb{Z}_p$

Input: handle for group elements $x \in \mathbb{Z}_p$ and integer n

Where $\tau: \mathbb{Z}_p \to \{0,1\}^{2k}$ is a random injective function mapping group elements to binary strings (handles)

Sample GGM Result [Shoup 97] (Discrete Log): any attacker making T GGM queries

solves discrete log problem with probability at most $O\left(\frac{T^2}{2^{2k}}\right)$

Generic Group Model

- Typically we use an Elliptic Curve Group of prime order p for $p \approx 2^{2\lambda}$
 - Provides λ -bit security
- **Discrete Log Problem:** Given generator g and g^x find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
 - Best Generic Attack (Baby-Step Giant Step):
 - 1) Compute $y_k = g^{k2^{\lambda}}$ for each $k \le 2^{\lambda}$ (Time: $\tilde{O}(2^{\lambda})$)
 - 2) For each $x_k = g^{x+k}$ for each $k \le 2^{\lambda}$ (Time: $\tilde{O}(2^{\lambda})$)
 - 3) Find intersection (i,j) such that $x_i = g^{x+i} = y_j = g^{j2^{\lambda}}$ and solve $x = j2^{\lambda} i$
 - Note: $x = j2^{\lambda} i$ for some pair $i, j \leq 2^{\lambda}$
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$O\left(\frac{q^2}{2^{2\lambda}}\right)$$

Generic Group Lower Bound

- **Discrete Log Problem:** Given generator g and g^x find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$O\left(\frac{q^2}{2^{2\lambda}}\right)$$

- **Proof Sketch:** Initialize two sets $K = \{(1, \tau(1))\}$ and $U = \{(x, \tau(x))\}$
 - *K* → Discrete Log Known
 - U → Discrete Log Depends on Unknown x
 - $\operatorname{mult}(\tau(1), \tau(1)) = \tau(2) \rightarrow \operatorname{Add}(2, \tau(2)) \operatorname{to} K$
 - $\operatorname{mult}(\tau(x), \tau(x)) = \tau(2x) \rightarrow \operatorname{Add} (2x, \tau(x+1)) \operatorname{to} U$
 - $\operatorname{mult}(\tau(x), \tau(1)) = \tau(x+1) \rightarrow \operatorname{Add}(x+1, \tau(x+1))$ to U
 - Each new query adds item to *K* or *U*
 - Cannot learn x unless sets intersect e.g., $mult(\tau(x), \tau(x+1)) = \tau(2x+1)$ is found in K
 - Sets remain disjoint with probability $\frac{|U||K|}{2^{2\lambda}} \le \frac{q^2}{2^{2\lambda}}$

Generic Group Model

- Typically we use an Elliptic Curve Group of prime order p for $p \approx 2^{2\lambda}$
 - Provides λ -bit security
- **Discrete Log Problem:** Given generator g and g^x find x
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Computational-Diffie Hellman: Given g, g^x and g^y find g^{xy}
- Generic Group Version: Given $\tau(1)$, $\tau(x)$ and $\tau(y)$ find $\tau(xy)$
- Similar Proof: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$O\left(\frac{q^2}{2^{2\lambda}}\right)$$

Generic Group Model with Preprocessing

• Offline Attacker: $A(\tau) = \sigma$

- Input: the secret/random encoding function au for our group \mathbb{Z}_p
- Output: S-bit hint $\sigma \in \{0,1\}^S$ for online attacker
- No bound on the running time for the offline attacker

• Online Attacker: May use hint σ during attack

- Bounded running time T, q_{GO} queries to generic group oracles etc...
- May use hint σ during attack

• Motivation:

- Handful of groups (NIST P-256, Curve25519 etc...) used by most real-world cryptosystems
- Offline phase of preprocessing attack is only executed once

Sample Result [CK18] (Discrete Log with Preprocessing): any preprocessing

attacker making solves discrete log problem with probability at most $\mathcal{O}\left(\frac{ST^2}{2^{2k}}\right)$

GGM + ROM with Preprocessing

- Offline Attacker: $A^H(\tau) = \sigma$
 - Input: the secret/random encoding function τ for our group \mathbb{Z}_p , oracle access to the random oracle H
 - **Output:** S-bit hint $\sigma \in \{0,1\}^S$ for online attacker
 - The offline attacker may make a very large number of random oracle queries e.g., 2^{3k}
 - Unbounded running time
- Online Attacker: May use hint σ during attack
 - Bounded running time T, q_{GO} (resp. q_{RO}) queries to group oracle (resp. random oracle) etc...
 - May use hint σ during attack

The Discrete Logarithm Problem with Preprocessing

<u>Henry Corrigan-Gibbs</u> and Dmitry Kogan Stanford University

> Eurocrypt – 1 May 2018 Tel Aviv, Israel

The discrete-log problem

Why do we believe this problem is hard?

Generic lower bounds give us confidence

Theorem. [Shoup'97] Every generic discrete-log algorithm that
operates in a group of prime order N and

• succeeds with probability at least $\frac{1}{2}$

must run in time $\Omega(N^{1/2})$.

Generic attack in 256-bit group takes $\approx 2^{128}$ time.

Best attacks on standard EC groups are generic

Generic algorithms can only make "black-box" use of the group operation

Generic-group model:

- Group is defined by an injective "labeling" function $\sigma: \mathbb{Z}_N \to \{0,1\}^*$
- Algorithm has access to a **group-operation oracle**: $\mathcal{O}_{\sigma}(\sigma(i), \sigma(j)) \mapsto \sigma(i+j)$

Generic dlog algorithm takes as input ($\sigma(1)$ make queries to \mathcal{O}_{σ} , outputs x.

[Measure running time by query complex

Very useful way to understand hardness [BB04,B05,M05,D06, B08,Y15,...]

Existing generic lower bounds **do not account for preprocessing**

- Premise of generic-group model: the adversary **knows nothing** about the structure of the group **G** in advance
- In reality: the adversary knows a lot about G!
 - ➤ G is one of a small number of groups: NIST P-256, Curve25519, ...
- A realistic adversary can perform G-specific preprocessing!
- Existing generic-group lower bounds say <u>nothing</u> about preprocessing attacks! [H80, Yao90, FN91, ...]

Initiated by Hellman (1980) in context of OWFs

• Preexisting $S = T = \tilde{O}(N^{1/3})$ generic attack on discrete log

- The $\tilde{O}(N^{1/3})$ generic dlog attack is optimal
- Any such attack must use <u>lots</u> of preprocessing: $\Omega(N^{2/3})$
- New $\tilde{O}(N^{1/5})$ preprocessing attack on DDH-like problem

A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013] There is a generic dlog algorithm with preprocessing that:

 $ST^2 = \tilde{O}(\epsilon N)$

- uses *S* bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ , such that:

Will sketch the algorithm for $S = T = N^{1/3}$, constant ϵ .

.... building on prior work on multiple-discrete-log algorithms [ESST99,KS01,HMCD04,BL12]

Preliminaries

Define a pseudo-random walk on G:

$$g^x \mapsto g^{x+\alpha}$$
 where $\alpha = \text{Hash}(g^x)$ is a random function

If you know the dlog of the endpoint of a walk, you know the dlog of the starting point!

Preprocessing phase

- Build $N^{1/3}$ chains of length $N^{1/3}$
- Store dlogs of chain endpoints

Advice: $\tilde{O}(N^{1/3})$ bits

Online phase

- Walk $O(N^{1/3})$ steps
- When you hit a stored point, output the discrete log

Time: $\tilde{O}(N^{1/3})$ steps

[M10, LCH11, BL13]

Could there exist a generic dlog preprocessing attack with $S = T = N^{1/10}$?

Preprocessing attacks might make us worry about 256-bit EC groups 34

• Preexisting $S = T = \tilde{O}(N^{1/3})$ generic attack on discrete log

- The $\tilde{O}(N^{1/3})$ generic dlog attack is optimal
- Any such attack must use <u>lots</u> of preprocessing: $\Omega(N^{2/3})$
- New $\tilde{O}(N^{1/5})$ preprocessing attack on DDH-like problem
Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

- uses *S* bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ , must satisfy:

$$ST^2 = \widetilde{\Omega}(\epsilon N)$$

This bound is tight for the
Shoup's proof technique (1997) relies on A full integeoin parameties
about the group G when it starts running (up to log factors)

 \rightarrow Need different proof technique

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

- uses *S* bits of group-specific advice,
- uses T online time, and
- succeeds with probability ϵ , must satisfy:

$$ST^2 = \widetilde{\Omega}(\epsilon N)$$

Online time $N^{1/3}$ implies $\Omega(N^{2/3})$ preprocessing

Theorem. [Our paper]

Furthermore, the preprocessing time P must satisfy $PT + T^2 = \Omega(\epsilon N)$

Open questions and recent progress

- Tightness of DDH upper/lower bounds?
 - Is it as hard as dlog or as easy as sqDDH?
- Non-generic preprocessing attacks on ECDL?
 - As we have for \mathbb{Z}_p^*

Coretti, Dodis, and Guo (2018)

- Elegant proofs of generic-group lower bounds using "presampling" (à la Unruh, 2007)
- Prove hardness of "one-more" dlog, KEA assumptions, ...

Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Random Oracle Version:
- Offline attacker A_1 is unbounded and outputs an S-bit hint for online attacker A_2 after viewing entire truth table H(.)
- A_2 will try to win security games using this hint
- (S,T,p)-attacker
 - A₁ outputs a S-bit hint
 - A₂ makes at most T random oracle queries
 - A_2 may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- $((S, T, p), \varepsilon)$ -security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model for Pre-Processing Attacks

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Random Oracle Version:
- Offline attacker A₁ fixes output of random oracle H(.) at P locations and then outputs a S-bit hint.
- A_2 initially knows nothing about remaining unfixed values i.e., H(x) picked randomly for $x \notin P$ after A_1 generates hint
- (P,T,p)-attacker
 - A₁ fixes H on at most P locations and outputs S-bit hint
 - A₂ makes at most T random oracle queries
 - A₂ may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- $((S, T, p), \varepsilon)$ -security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model → Lower bound in Auxilliary-Input Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications 😳
- Other applications require a different approach (e.g., compression)

Oracles. An oracle \mathcal{O} has two interfaces \mathcal{O} .pre and \mathcal{O} .main, where \mathcal{O} .pre is accessible only once before any calls to \mathcal{O} .main are made. Oracles used in this work are:

- Random oracle RO(N, M): Samples a random function table $F \leftarrow \mathcal{F}_{N,M}$, where $\mathcal{F}_{N,M}$ is the set of all functions from [N] to [M]; offers no functionality at $\mathcal{O}.pre$; answers queries $x \in [N]$ at $\mathcal{O}.main$ by the corresponding value $F[x] \in [M]$.
- Auxiliary-input random oracle Al-RO(N, M): Samples a random function table $F \leftarrow \mathcal{F}_{N,M}$; outputs F at $\mathcal{O}.pre$; answers queries $x \in [N]$ at $\mathcal{O}.main$ by the corresponding value $F[x] \in [M]$.
- Bit-Fixing random oracle BF-RO(P, N, M): Samples a random function table $F \leftarrow \mathcal{F}_{N,M}$; takes a list at $\mathcal{O}.pre$ of at most P query/answer pairs that override F in the corresponding positions; answers queries $x \in [N]$ at $\mathcal{O}.main$ by the corresponding value $F[x] \in [M]$.
- Standard model: Neither interface offers any functionality.

Definition 2. An (S,T)-attacker $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ in the \mathcal{O} -model consists of two procedures

- A_1 , which is computationally unbounded, interacts with $\mathcal{O}.pre$, and outputs an S-bit string, and
- A_2 , which takes an S-bit auxiliary input and makes at most T queries to O.main.

Definition 3. For an indistinguishability application G in the O-model, the advantage of an attacker \mathcal{A} is defined as

$$\operatorname{Adv}_{G,\mathcal{O}}(\mathcal{A}) := 2 \left| \operatorname{Succ}_{G,\mathcal{O}}(\mathcal{A}) - \frac{1}{2} \right|.$$

For an unpredictability application G, the advantage is defined as

$$\operatorname{Adv}_{G,\mathcal{O}}(\mathcal{A}) := \operatorname{Succ}_{G,\mathcal{O}}(\mathcal{A}).$$

An application G is said to be $((S,T,p),\varepsilon)$ -secure in the O-model if for every (S,T,p)-attacker \mathcal{A} ,

 $\operatorname{Adv}_{G,\mathcal{O}}(\mathcal{A}) \leq \varepsilon.$

Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma > 0$, if an application G is $((S,T,p),\varepsilon')$ -secure in the BF-RO(P)-model, then it is $((S,T,p),\varepsilon)$ -secure in the AI-RO-model, for

$$\varepsilon \leq \varepsilon' + \frac{2(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}}}{P} + 2\gamma$$
,

where T_G^{comb} is the combined query complexity corresponding to G.

Example: Set
$$\gamma = 2^{-2\lambda}$$
 and the advantage is roughly $\varepsilon' + \frac{2(S+2\lambda)T}{P}$

Balancing: ε' usually increases with *P* i.e., as BF-attacker gets to fix more and more points.

Relationship: BF-RO and AI-RO

Theorem 6. For any $P \in \mathbb{N}$ and every $\gamma > 0$, if an unpredictability application G is $((S,T,p),\varepsilon')$ -secure in the BF-RO(P,N,M)-model for

$$P \geq (S + 2\log\gamma^{-1}) \cdot T_G^{\text{comb}}$$
,

then it is $((S,T,p),\varepsilon)$ -secure in the AI-RO(N,M)-model for

 $\varepsilon \leq 2\varepsilon' + 2\gamma$,

where T_G^{comb} is the combined query complexity corresponding to G.

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends y=H(x) to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x' such that H(x')=y (online attacker may use hints)
- Bit-Fixing Attacker: $A = (A_1, A_2)$
 - Let $L = \{(x_1', y_1'), \dots, (x_P', y_P')\}$ denote set of points fixed by A_1
 - Let E' be the event that $x = x_i'$ or $x = y_i'$ for some $i \le P$
 - $\Pr[E'] \le \Pr[\exists i. x = x_i'] + \Pr[\exists i. y = y_i'| \forall i. x \neq x_i'] \le \frac{P}{2^{\lambda}} + \frac{P}{2^{\lambda}}$

x is random $y'_i = H(x'_i)$ is uniformly random if not previously fixed i.e., $x \neq x'_i$ for all i

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends y=H(x) to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x' such that H(x')=y (may use hints)
- Bit-Fixing Attacker: $A = (A_1, A_2)$
 - Let $L = \{(x_1', y_1'), \dots, (x_P', y_P')\}$ denote set of points fixed by A_1
 - Let E' be the event that $x = x_i'$ or $x = y_i'$ for some $i \le P$
 - Let $Q = \{(x_1, y_1), ..., (x_T, y_T)\}$ denote queries made by A_2 with corresponding answers
 - Let E_i be the event that $x = x_i$ or $y = y_i$
 - $\Pr[E_i \mid \overline{E'} \cap \overline{E_1} \cap ... \cap \overline{E_{i-1}}] \le \frac{1}{2^{\lambda} P (i-1)} + \frac{1}{2^{\lambda}}$

 $\Pr[x = x_i | ...]$ note that x is random, and there $2^{\lambda} - P - (i - 1)$ remaining possible values

- $\Pr[y = y_i | \dots]$ note that
- $y_i = H(x_i)$ is uniformly random if not previously fixed i.e., if $x_i \neq x$, x_i not in L and $x_i \neq x_j$ for all j<i, ⁴⁸

- Challenger: Picks x in $\{0,1\}^{\lambda}$ and sends y=H(x) to online attacker where y in $\{0,1\}^{\lambda}$
- Goal: Find x' such that H(x')=y (may use hints)
- Bit-Fixing Attacker: $A = (A_1, A_2)$
 - Attacker wins with probability at most $\Pr[E'] + \sum_{i \leq q} \Pr[E_i \mid \overline{E'} \cap \overline{E_1} \cap ... \cap \overline{E_{i-1}}] \leq \frac{2P+q}{2^{\lambda}} + \frac{q}{2^{\lambda} - P - q} \leq \frac{2P+3q}{2^{\lambda}}$

Assume $P + q \leq 2^{\lambda - 1}$

- Bit-Fixing Attacker: $A = (A_1, A_2)$
 - Attacker wins with probability at most $\Pr[E'] + \sum_{i \leq q} \Pr[E'_i | \overline{E'} \cap \overline{E_1} \cap ... \cap \overline{E_{i-1}}] \leq \frac{2P+q}{2^{\lambda}} + \frac{q}{2^{\lambda} - P - q}$

Set $P \ge 6(S + 2\lambda)T \rightarrow$ Auxilliary-Input Attacker wins with Probability at most

$$2\left(\frac{6(S+2\lambda)T+T}{2^{\lambda}} + \frac{6(S+2\lambda)T}{2^{\lambda}-6(S+2\lambda)T-T}\right) + 2^{-2\lambda} = O\left(\frac{ST+\lambda T}{2^{\lambda}}\right)$$

Review: Bit-Fixing vs Auxiliary Input

- Auxiliary-Input: (S,T,p)-attacker
 - A₁ outputs a S-bit hint based entire description of ideal-object
 - A₂ makes at most T oracle queries
 - A₂ may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- Bit-Fixing: (P,S,T,p)-attacker
 - A₁ fixes at most P input/output pairs and outputs a S-bit hint. The remaining ideal object is picked randomly subject to this restriction.
 - A₂ makes at most T oracle queries
 - A₂ may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model → Lower bound in Auxilliary-Input Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications 😳
- Other applications require a different approach (e.g., compression)

Relationship Bit-Fixing and Auxilliary Input

Theorem 1. Let $P, K, N, M \in \mathbb{N}$, $N \ge 16$, and $\gamma > 0$. Moreover, let

 $(\mathsf{AI},\mathsf{BF})\in\{(\mathsf{AI-IC}(K,N),\mathsf{BF-IC}(P,K,N)),(\mathsf{AI-GG}(N,M),\mathsf{BF-GG}(P,N,M))\}\ .$

Then,

1. if an application G is $((S,T,p),\varepsilon')$ -secure in the BF-model, it is $((S,T,p),\varepsilon)$ -secure in the AI-model, where

$$\varepsilon \leq \varepsilon' + \frac{6(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}}}{P} + \gamma;$$

2. if an unpredictability application G is $((S,T,p),\varepsilon')$ -secure in the BF-model for

$$P \geq 6(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}},$$

it is $((S,T,p),\varepsilon)$ -secure in the AI-model for

$$|\varepsilon| \leq 2\varepsilon' + \gamma$$
,

where T_G^{comb} is the combined query complexity corresponding to G.

Generic Group Lower Bound

- **Discrete Log Problem:** Given generator *g* and *g*^{*x*} find *x*
- Generic Group Version: Given $\tau(1)$ and $\tau(x)$ find x
- Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with probability at most

$$O\left(\frac{q^2}{2^{2\lambda}}\right)$$

- **Proof Sketch:** Initialize two sets $K = \{(1, \tau(1))\}$ and $U = \{(x, \tau(x))\}$
 - *K* → Discrete Log Known
 - U → Discrete Log Depends on Unknown x
 - $\operatorname{mult}(\tau(1), \tau(1)) = \tau(2) \rightarrow \operatorname{Add}(2, \tau(2))$ to *K*
 - $\operatorname{mult}(\tau(x), \tau(x)) = \tau(2x) \rightarrow \operatorname{Add}(2x, \tau(x+1)) \operatorname{to} U$
 - $\operatorname{mult}(\tau(x), \tau(1)) = \tau(x+1) \rightarrow \operatorname{Add}(x+1, \tau(x+1)) \operatorname{to} U$
 - Each new query adds item to *K* or *U*
 - Cannot learn x unless sets intersect e.g., $mult(\tau(x), \tau(x+1)) = \tau(2x+1)$ is found in K
 - Sets remain disjoint with probability $\approx \frac{|U||K|}{2^{2\lambda}} \leq \frac{q^2}{2^{2\lambda}}$
 - Technical Note: If attacker queries $\operatorname{mult}(\varkappa, .)$ for fresh \varkappa which is not in K or U then can add $(\tau^{-1}(\varkappa), \varkappa)$ to K

Generic Group Lower Bound with Bit-Fixing

 Generic Group Version Lower Bound: Any Bit-Fixing attacker making q queries to GGM oracles (online) and fixing at most P points succeeds with probability at most

$$O\left(\frac{q^2 + qP}{2^{2\lambda}}\right)$$

Proof Sketch: Let $L = \{(x_1, y_1), ..., (x_P, y_P)\}$ denote the fixed points where attacker fixed $\tau(x_i) = y_i$ Initialize two sets $K = \{(1, \tau(1))\} \cup L$ and $U = \{(x, \tau(x))\}$

 $K \rightarrow$ Discrete Log Known

U → Discrete Log Depends on Unknown x

Each new query adds item to K or U

Cannot learn x unless sets intersect

Sets remain disjoint with probability $\approx \frac{|U||K|}{2^{2\lambda}} \le \frac{q^2}{2^{2\lambda}}$

Generic Group Lower Bound with Preprocessing Attacker

 Generic Group Version Lower Bound: Any auxiliary-input attacker making q queries to GGM oracles (online) and with a S bit hint points succeeds with probability at most

$$O\left(\frac{q^2+q^2(S+\lambda)}{2^{2\lambda}}\right)$$

Proof Sketch: Set $P = O((S + 2\lambda)q)$ for our bit-fixing attacker A bit-fixing attacker succeeds with probability at most

$$\varepsilon = O\left(\frac{q^2 + q^2(S + \lambda)}{2^{2\lambda}}\right)$$

It follows that the AI-attacker succeeds with probability at most $2\varepsilon + 2^{-2\lambda} = O\left(\frac{q^2 + q^2(S+\lambda)}{2^{2\lambda}}\right)$

• Ideal Cipher Model

- All parties have oracle access to $E(\cdot, \cdot)$ and $E^{-1}(\cdot, \cdot)$
- For any fixed key K the function $E_K(x) \coloneqq E(K, x)$ is a truly random permutation and $E_K^{-1}(x) \coloneqq E^{-1}(K, x)$ is the inverse
- Question: Can we still safely use the block-cipher after S-bit leakage?

- Question: Can we still safely use the block-cipher after S-bit leakage?
- Leakage Security Game:
 - Offline Attacker A₁ outputs S-bit hint
 - Online Attacker has to predict secret bit b
 - **Real World (b=0):** Online attacker may query $E(\cdot, \cdot)$, $E^{-1}(\cdot, \cdot)$, $E(K, \cdot)$ and $E^{-1}(K, \cdot)$, where K is a random key picked by the challenger
 - Ideal World (b=1): Online attacker may query E(·, ·), E⁻¹(·, ·), f(·) and f⁻¹(·) where f is a truly random permutation (independent of block-cipher + hint).
 - Online Attacker may make T queries to $E(\cdot, \cdot)$ or $E^{-1}(\cdot, \cdot)$ and q queries to $E(K, \cdot)$ or $E^{-1}(K, \cdot)$ when b=0 (resp. $f(\cdot)$ or $f^{-1}(\cdot)$ when b=1)

- Leakage Security Game:
 - Offline Attacker A₁ outputs S-bit hint
 - Online Attacker has to predict secret bit b
 - **Real World (b=0):** Online attacker may query $E(\cdot, \cdot)$, $E^{-1}(\cdot, \cdot)$, $E(K, \cdot)$ and $E^{-1}(K, \cdot)$, where K is a random key picked by the challenger
 - Ideal World (b=1): Online attacker may query $E(\cdot, \cdot)$, $E^{-1}(\cdot, \cdot)$, $f(\cdot)$ and $f^{-1}(\cdot)$ where f is a truly random permutation (independent of block-cipher + hint).

• Analysis (Bit Fixing Attacker): Let $L = \{K': \exists x \ s. t. E(K, x) \text{ was fixed } by A_1\}$ and observe that $\Pr[K \in L] \leq |L|2^{-\lambda}$.

• Analysis (Bit Fixing Attacker): Let $L = \{K': \exists x \ s. t. E(K, x) \text{ was fixed } by \ A_1\}$ $\Pr[K \in L] \le |L|2^{-\lambda} \le P2^{-\lambda}$

Let B_i denote event that $K = K_i$ where K_i is the key used in the ith query to E(.,.) or $E^{-1}(\cdot, \cdot)$

• Analysis (Bit Fixing Attacker): Let

$$L = \{K': \exists x \ s. t. E(K, x) \text{ was fixed } by \ A_1\}$$
$$\Pr[K \in L] \le |L| 2^{-\lambda} \le P 2^{-\lambda}$$

Let B_i denote event that $K = K_i$ where K_i is the key used in the ith query to E(.,.) or $E^{-1}(\cdot, \cdot)$

If the attacker does not query K or fix an input for K then the attacker cannot distinguish between b=0 or b=1 since $E(K, \cdot)$ is a random permutation. Advantage is upper bounded by

$$\Pr[L] + \sum_{i \le T} \Pr[\mathsf{E}_i \mid \overline{L} \cap \overline{B_1} \cap \dots \cap \overline{B_{i-1}}] \le \frac{P}{2^{\lambda}} + \frac{2T}{2^{\lambda}} = \frac{P + 2T}{2^{\lambda}}$$

• Analysis (Pre-Processing Attacker):

Advantage of pre-processing is upper bounded by

 $T_{comb} = T + 1$ combined # of queries to ideal object

$$O\left(\frac{P+T}{2^{\lambda}} + \frac{(S+\lambda)(T+q)}{P}\right)$$

Set
$$P = \sqrt{(S + \lambda)T2^{\lambda}} \rightarrow O\left(\frac{T}{2^{\lambda}} + \sqrt{\frac{(S + \lambda)(T + q)}{2^{\lambda}}}\right)$$

• Thm (Informal): an ideal cipher is $((S, T, q), \varepsilon)$ -secure against preprocessing attacks in the auxiliary-input model with

$$\boldsymbol{\varepsilon} = O\left(\frac{T}{2^{\lambda}} + \sqrt{\frac{(S+\lambda)(T+q)}{2^{\lambda}}}\right)$$

Best Attack: $\varepsilon = \Omega\left(\frac{T}{2^{\lambda}} + \sqrt{\frac{S}{2^{\lambda}}}\right)$

Open Question: Better attack or tighter lower-bound?

Note: Lower-bound likely requires different techniques (e.g., compression?)

Sponge-Construction

• Input: $m = (m_1, ..., m_\ell)$ with $m_i \in \{0, 1\}^r$

•
$$s_0 = s_0^{(1)} \| s_0^{(2)}$$
 where $s_0^{(1)} = 0^r$ and $s_0^{(2)} = 0^c$ and
• For $i = 1, ..., \ell$; set $s_i = s_i^{(1)} \| s_i^{(2)} = \pi \left(\left(s_{i-1}^{(1)} \oplus m_i \right) \| s_{i-1}^{(2)} \right)$
• Output: $s_\ell^{(1)}$

• Collision-Game: Attacker A_1 outputs s-bit hint based on ideal permutation π . A_2 tries to find collision for sponge construction.

Sponge-Construction: Sponge_{π}(.)

• Input: $m = (m_1, ..., m_\ell)$ with $m_i \in \{0, 1\}^r$

•
$$s_0 = s_0^{(1)} \| s_0^{(2)}$$
 where $s_0^{(1)} = 0^r$ and $s_0^{(2)} = 0^c$ and
• For $i = 1, ..., \ell$; set $s_i = s_i^{(1)} \| s_i^{(2)} = \pi \left(\left(s_{i-1}^{(1)} \oplus m_i \right) \| s_{i-1}^{(2)} \right)$
• Output: Sponge $\pi(m_1, ..., m_\ell) := s_\ell^{(1)}$

• **Pre-processing Attack:** Find m_1 and m_2 such that $\pi((m_1)||0^c)$ and $\pi((m_2)||0^c)$ match on first r-bits. A_1 outputs hint m_1 and m_2 .

Salted Sponge-Construction: Sponge_{π,IV}(.)

• Input: $m = (m_1, ..., m_\ell)$ with $m_i \in \{0, 1\}^r$

•
$$s_0 = s_0^{(1)} \| s_0^{(2)}$$
 where $s_0^{(1)} = 0^r$ and $s_0^{(2)} = IV \in \{0,1\}^c$ (random salt) For $i = 1, ..., \ell$; set $s_i = s_i^{(1)} \| s_i^{(2)} = \pi \left(\left(s_{i-1}^{(1)} \oplus m_i \right) \| s_{i-1}^{(2)} \right)$
• **Output:** $s_\ell^{(1)}$

- **Question:** Is the salted sponge-construction secure against pre-processing attacks?
- Parameters: Attacker gets S-bit hint, q queries to π or π⁻¹ and outputs a collision of length at most ℓ.
- First Step: Analyze a bit-fixing attacker who can fix P input/outputs for π

Salted Sponge-Construction

• Input: $m = (m_1, ..., m_\ell)$ with $m_i \in \{0, 1\}^r$

•
$$s_0 = s_0^{(1)} \| s_0^{(2)}$$
 where $s_0^{(1)} = 0^r$ and $s_0^{(2)} = IV \in \{0,1\}^c$ (random salt) For $i = 1, ..., \ell$; set $s_i = s_i^{(1)} \| s_i^{(2)} = \pi \left(\left(s_{i-1}^{(1)} \oplus m_i \right) \| s_{i-1}^{(2)} \right)$
• Output: $s_{\ell}^{(1)}$

- First Step: Analyze a bit-fixing attacker who can fix P input/outputs for π
- At the cost of 2ℓ additional queries to π we can assume (WLOG) that the attacker who outputs m and m' has queried π at all points needed to evaluate Sponge_{π}(m) and Sponge_{π}(m') since m and m' are at most ℓ -blocks long

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V = \{0,1\}^{c+r}$
- Directed Edges: $(s, t = \pi(s))$
 - Each node has indegree 1 and outdegree 1
 - Label Edges with first r bits of output $t^{(1)} || t^{(2)} = \pi(s)$
- Special Start node: $s_0 = 0^r ||IV|$
- A sponge-input $m = (m_1, ..., m_\ell)$ with $m_i \in \{0,1\}^r$ defines a path in the above graph $s_0, s_1, ..., s_\ell$ with $s_i = \pi \left(\left(s_{i-1}^{(1)} \oplus m_i \right) \| s_{i-1}^{(2)} \right)$

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V = \{0,1\}^{c+r}$
- **Directed Edges:** $(s, t = \pi(s))$
 - Each node has indegree 1 and outdegree 1
 - Label Edges with first r bits of output $t^{(1)} || t^{(2)} = \pi(s)$

- Attacker is only aware of some of the edges e.g., after making q queries to π attacker is only aware at most P+q directed edges.
- Let $G_{\pi,0}$ denote initial known graph (using only edges defined by P prefixed points)
- Let $G_{\pi,i}$ denote known graph after i queries to π or π^{-1}

Analysis Tool 1: Permutation Graph

Permutation Graph: G_{π}

- Nodes: $V = \{0,1\}^{c+r}$
- Directed Edges: $(s, t = \pi(s))$
 - Each node has indegree 1 and outdegree 1
 - Label Edges with first r bits of output $t^{(1)} || t^{(2)} = \pi(s)$

- Let $G_{\pi,i}$ denote known graph after i queries to π or π^{-1}
- Special Start node: $s^* = 0^r ||IV|$
- Collision \Leftrightarrow for some label $t^{(1)} \in \{0,1\}^r$ are two distinct paths from start node s^* both ending an edge labeled $t^{(1)}$ in $G_{\pi,q}$

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

• Nodes: $V' = \{0,1\}^c$

- Directed Edges: $(s^{(2)}, t^{(2)}) \in E'$ iff there exists strings $s^{(1)}, t^{(1)} \in \{0,1\}^r$ such that $t^{(1)} || t^{(2)} = \pi \left(s^{(1)} || s^{(2)} \right)$ Label edges with $(s^{(1)}, t^{(1)})$
- Starting Super-node: $IV \in \{0,1\}^c$
- Let G_0 denote the initial super-graph (defined using P fixed points)
- Let G_i denote the super-graph after i queries to π or π^{-1}
- Call a super-node $s^{(2)} \in \{0,1\}^c$ ``pre-fixed" if there exists $s^{(1)} \in \{0,1\}^r$ such that $s = s^{(1)} || s^{(2)}$ was pre-fixed

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

- Starting Super-node: $IV \in \{0,1\}^c$
- Let G₀ denote the initial super-graph (defined using P fixed points)
- Let G_i denote the super-graph after i queries to π or π^{-1}
- Call a super-node $s^{(2)} \in \{0,1\}^c$ ``pre-fixed" if there exists $s^{(1)} \in \{0,1\}^r$ such that $s = s^{(1)} \| s^{(2)}$ was pre-fixed
- Let B_i denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$

$$\Pr[B_0] = \Pr[IV \text{ prefixed}] \le \frac{P}{2^c}$$
Analysis Tool 2: Super-Node Graph

Permutation Super Graph

- Let B_i denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode x ∈ {0,1}^c
- If $B_{T+2\ell}$ does not occur then every supernode has one incoming edge and the value $t^{(1)} \in \{0,1\}^r$ (potential hash output) is uniform.

$$\Pr[COLLISION | \overline{B_{T+2\ell}}] \le \binom{T+2\ell}{2} 2^{-r}$$

Probability of Bad Event (Forward Query)

- Let *B_i* denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$\pi\left(t^{(1)} \| t^{(2)}\right) = y^{(1)} \| y^{(2)}$$

- Adds edge from supernode $t^{(2)}$ to $y^{(2)}$.
- → Bad if there was already a path to $y^{(2)}$ or if $y^{(2)}$ was fixed.
- At most $(i + P)2^r$ bad outputs for $\pi(t^{(1)} || t^{(2)})$ out of $2^{r+c} (i 1 + P)$ possibilities

Probability of Bad Event (Forward Query)

- Let B_i denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$\pi\left(t^{(1)} \| t^{(2)}\right) = y^{(1)} \| y^{(2)}$$

Adds edge from supernode $t^{(2)}$ to $y^{(2)}$. Bad if there was already a path to $y^{(2)}$ or if $y^{(2)}$ was fixed.

$$\Pr[B_i \mid \overline{B_1} \cap \dots \cap \overline{B_{i-1}}] \leq \frac{(i+P)2^r}{2^{c+r} - (i-1+P)} \leq \frac{i+P}{2^{c-1}}$$

WLOG assume $P + T + 2\ell \leq 2^{c+r-1}$

75

Probability of Bad Event (Inverse Query)

- Let *B_i* denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$\pi^{-1}\left(y^{(1)} \| y^{(2)}\right) = t^{(1)} \| t^{(2)}$$

- Adds edge from supernode $t^{(2)}$ to $y^{(2)}$.
- → Potentially bad if there was already a path from IV to $y^{(2)}$.
- At most $i2^r$ bad outputs form $\pi^{-1}(y^{(1)} || y^{(2)})$ out of $2^{r+c} (i 1 + P)$ possibilities

Probability of Bad Event (Inverse Query)

- Let *B_i* denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$

Suppose that no bad event has occurred after the first i-1 queries to π or π^{-1} and that the ith query is of the form

$$\pi^{-1}\left(y^{(1)} \| y^{(2)}\right) = t^{(1)} \| t^{(2)}$$

$$i2^{r} \| \overline{B_{1}} \cap \dots \cap \overline{B_{i-1}}\right] \leq \frac{i2^{r}}{2^{c+r} - (i-1+P)} \leq \frac{i}{2^{c-1}} \leq \frac{i+P}{2^{c-1}}$$

$$WLOG \text{ assume } P + T + 2\ell \leq 2^{c+r-1}$$

77

Probability of Bad Event (Total)

- Let B_i denote the event that either
 - (1) G_i contains a path from starting node IV to some pre-fixed
 - (2) G_i contains two distinct paths from starting node IV to x for some supernode $x \in \{0,1\}^c$
- After all $T + 2\ell$ queries we have

$$\Pr[B_{T+2\ell}] \le \Pr[B_0] + \sum_{i=1}^{T+2\ell} \Pr[B_i \mid \overline{B_1} \cap ... \cap \overline{B_{i-1}}]$$
$$\le \frac{P}{2^c} + \sum_{i=1}^{T+2\ell} \frac{i+P}{2^{c-1}} \le \frac{(T+\ell)^2 + TP + 2\ell P + P}{2^{c-1}}$$

Probability of Collision (Bit-Fixing)

$$\Pr[COLLISION | \overline{B_{T+2\ell}}] \le \binom{T+2\ell}{2} 2^{-r}$$

$$\Pr[B_{T+2\ell}] \le \frac{(T+\ell)^2 + TP + 2\ell P + P}{2^{c-1}}$$

$$\Pr[COLLISION] \le \binom{T+2\ell}{2} 2^{-r} + \frac{(T+\ell)^2 + TP + 2\ell P + P}{2^{c-1}}$$

Probability of Collision: Auxilliary-Input

• Bit-Fixing(P):
$$\Pr[COLLISION] \leq {\binom{T+2\ell}{2}}2^{-r} + \frac{(T+\ell)^2 + TP + 2\ell P + P}{2^{\ell-1}}$$

• Set $P = 6(S + c + r)(T + 2\ell)$ to apply main theorem

Thm (Informal): Salted-Sponge is $((S, T, \ell), \varepsilon)$ -secure in the auxiliary-input model with

$$\varepsilon \le O\left(\frac{(T+\ell)^2}{2^{r-1}} + \frac{(T+\ell)^2(S+c+r)}{2^{c-1}}\right)$$

		AI Security	SM Security	Best Attack
(OWP	$\frac{ST}{N}$	$\frac{T}{N}$	$\frac{ST}{N}$ [33]
Ē	EM	$\left(\frac{ST^2}{N}\right)^{1/2} + \frac{T^2}{N}$	$\frac{T^2}{N}$	$\left(\frac{S}{N}\right)^{1/2} [17]$
I	BC-IC	$\left(\frac{ST}{K}\right)^{1/2} + \frac{T}{K}$	$\frac{T}{K}$	$\left(\frac{S}{K}\right)^{1/2}$ [17]
I	PRF-DM	$\left(\frac{ST}{N}\right)^{1/2} + \frac{T}{N}$	$\frac{T}{N}$	$\left(\frac{S}{N}\right)^{1/2} [17]$
(CRHF-DM	$\frac{(ST)^2}{N}$	$\frac{T^2}{N}$	not known
(CRHF-S	$\frac{ST^2}{2^c} + \frac{T^2}{2^r}$	$\frac{T^2}{2^c} + \frac{T^2}{2^r}$	$\frac{ST^2}{N}$ [15]
I	PRF-S	$\left(\frac{ST^2}{2^c}\right)^{1/2}$	$\frac{T^2}{2^c}$	$\left(\frac{S}{N}\right)^{1/2} [17]$
1	MAC-S	$\frac{ST^2}{2^c} + \frac{T}{2^r}$	$\frac{T^2}{2^c} + \frac{T}{2^r}$	$\min\left\{\frac{ST}{N}, \left(\frac{S^2T}{N^2}\right)^{1/3}\right\} + \frac{T}{N} [33]$
(CRHF-MD	$\frac{ST^2}{N}$	$\frac{T^2}{N}$	$\frac{ST^2}{N}$ [15]
I	PRF-MD-N	$\left(\frac{ST^3}{N}\right)^{1/2} + \frac{T^3}{N}$	$\frac{T^3}{N}$	$\left(\frac{S}{N}\right)^{1/2} [17]$
I	NMAC/HMAC	$\frac{ST^3}{N}$	$\frac{T^3}{N}$	$\min\left\{\frac{ST}{N}, \left(\frac{S^2T}{N^2}\right)^{1/3}\right\} + \frac{T}{N} [33]$

_			AI-GGM Security	GGM Security	Best Attack	
	DL/CDI	H	$\frac{ST^2}{N} + \frac{T^2}{N}$	$\frac{T^2}{N}$	$\frac{ST^2}{N}$ [16, 38, 5]	
	<i>t</i> -fold M	DL	$\left(rac{S(T+t)^2}{tN}+rac{(T+t)^2}{tN} ight)^t$	$(rac{(T+t)^2}{tN})^t$	see caption [16]	
	DDH		$\left(\frac{ST^2}{N}\right)^{1/2} + \frac{T^2}{N}$	$\frac{T^2}{N}$	$\frac{ST^2}{N}$ [16, 38, 5]	
	sqDDH		$\left(\frac{ST^2}{N}\right)^{1/2} + \frac{T^2}{N}$	$\frac{T^2}{N}$	$\left(\frac{ST^2}{N}\right)^{1/2}$ [16]	
	OM-DI	[]	$\left(\frac{S(T+t)^2}{N}\right) + \frac{(T+t)^2}{N}$	$\frac{T^2}{N}$	$\frac{ST^2}{N}$ [16, 38, 5]	
	KEA		$\frac{ST^2}{N}$	$\frac{T^2}{N}$	not known	

Table 2: Asymptotic upper and lower bounds on the security of applications in the generic-group model against (S, T)-attackers in the AI-ROM; new bounds are in a bold-face font. The value t for the one-more DL problem stands for the number of challenges requested by the attacker. The attack against MDL succeeds with constant probability and requires that $ST^2/t + T^2 = \Theta(tN)$.

Course Project Ideas: Analyze different construction vs pre-processing attackers (easier) or tighten existing bounds (likely harder).

Reminder: Link Between BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma > 0$, if an application G is $((S,T,p),\varepsilon')$ -secure in the BF-RO(P)-model, then it is $((S,T,p),\varepsilon)$ -secure in the AI-RO-model, for

$$\varepsilon \leq \varepsilon' + \frac{2(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}}}{P} + 2\gamma$$
,

where T_G^{comb} is the combined query complexity corresponding to G.

So far we have used this result (or similar results for Ideal-Ciphers, Permutations etc...) as a black-box.

How is this result proved?

Leaky vs Dense Sources

Definition 1. An (N, M)-source is a random variable X with range $[M]^N$. A source is called

• $(1-\delta)$ -dense if for every subset $I \subseteq [N]$,

 $H_{\infty}(X_I) \geq (1-\delta) \cdot |I| \cdot \log M = (1-\delta) \cdot \log M^{|I|}.$

- $(P, 1 \delta)$ -dense if it is fixed on at most P coordinates and is (1δ) -dense on the rest,
- P-bit-fixing if it is fixed on at most P coordinates and uniform on the rest.

- Idea 1: Leaky Source (auxiliary-input) can be replaced by convex combination of $(P, 1 \delta)$ -dense sources.
- Idea 2: Hard to distinguish between $(P, 1 \delta)$ -dense source and P-bit-fixing source after T queries

Lemma 1. Let X be distributed uniformly over $[M]^N$ and Z := f(X), where $f : [M]^N \to \{0,1\}^S$ is an arbitrary function. For any $\gamma > 0$ and $P \in \mathbb{N}$, there exists a family $\{Y_z\}_{z \in \{0,1\}^S}$ of convex combinations Y_z of P-bit-fixing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most T < P coordinates of its oracle,

$$\left|\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] - \mathsf{P}\big[\mathcal{D}^{Y_f(X)}(f(X)) = 1\big]\right| \leq \frac{(S + \log 1/\gamma) \cdot T}{P} + \gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] \le 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma \,.$$

Claim 2. For every $\delta > 0$, X_z is γ -close to a convex combination of finitely many $(P', 1 - \delta)$ -dense sources for

$$P' = \frac{S_z + \log 1/\gamma}{\delta \cdot \log M} \; .$$

Claim 3. For any $(P', 1-\delta)$ -dense source X' and its corresponding P'-bit-fixing source Y', it holds that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

$$\left| \mathsf{P} \left[\mathcal{D}^{X'} = 1 \right] - \mathsf{P} \left[\mathcal{D}^{Y'} = 1 \right] \right| \leq T \delta \cdot \log M,$$

and

$$\mathsf{P}\big[\mathcal{D}^{X'}=1\big] \leq M^{T\delta} \cdot \mathsf{P}\big[\mathcal{D}^{Y'}=1\big].$$

Proof. Assume without loss of generality that \mathcal{D} is deterministic and does not query any of the fixed positions. Let $T_{X'}$ and $T_{Y'}$ be the random variables corresponding to the transcripts containing the query/answer pairs resulting from \mathcal{D} 's interaction with X' and Y', respectively. For a fixed transcript τ , denote by $\mathbf{p}_{X'}(\tau)$ and $\mathbf{p}_{Y'}(\tau)$ the probabilities that X' and Y', respectively, produce the answers in τ if the queries in τ are asked. Observe that these probabilities depend only on X' resp. Y' and are independent of \mathcal{D} .

Observe that for every transcript τ ,

$$\mathbf{p}_{X'}(\tau) \leq M^{-(1-\delta)T}$$
 and $\mathbf{p}_{Y'}(\tau) = M^{-T}$ (1)

as X' is $(1 - \delta)$ -dense and Y' is uniformly distributed.

Since \mathcal{D} is deterministic, $\mathsf{P}[T_{X'} = \tau] \in \{0, \mathsf{p}_{X'}(\tau)\}$, and similarly, $\mathsf{P}[T_{Y'} = \tau] \in \{0, \mathsf{p}_{Y'}(\tau)\}$. Denote by \mathcal{T}_X the set of all transcripts τ for which $\mathsf{P}[T_{X'} = \tau] > 0$. For such τ , $\mathsf{P}[T_{X'} = \tau] = \mathsf{p}_{X'}(\tau)$ Claim 3. For any $(P', 1-\delta)$ -dense source X' and its corresponding P'-bit-fixing source Y', it holds that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

$$\left| \mathsf{P}[\mathcal{D}^{X'} = 1] - \mathsf{P}[\mathcal{D}^{Y'} = 1] \right| \leq T\delta \cdot \log M,$$

and also $P[T_{Y'} = \tau] = p_{Y'}(\tau)$. Towards proving the first part of the lemma, observe that

and a

$$\begin{aligned} \left| \mathsf{P}[\mathcal{D}^{X'} = 1] - \mathsf{P}[\mathcal{D}^{Y'} = 1] \right| &\leq \mathsf{SD}(T_{X'}, T_{Y'}) \\ &= \sum_{\tau} \max\left\{0, \mathsf{P}[T_{X'} = \tau] - \mathsf{P}[T_{Y'} = \tau]\right\} \\ &= \sum_{\tau \in \mathcal{T}_X} \max\left\{0, \mathsf{p}_{X'}(\tau) - \mathsf{p}_{Y'}(\tau)\right\} \\ &= \sum_{\tau \in \mathcal{T}_X} \mathsf{p}_{X'}(\tau) \cdot \max\left\{0, 1 - \frac{\mathsf{p}_{Y'}(\tau)}{\mathsf{p}_{X'}(\tau)}\right\} \\ &\leq 1 - M^{-T\delta} \leq T\delta \cdot \log M, \end{aligned}$$

and

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \ge 1 - x$ for $x \ge 0$.

$$\leq 1 - M^{-T\delta} \leq T\delta \cdot \log M,$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \ge 1 - x$ for $x \ge 0$.