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|dealized Models of Computation

 Random Oracle Model
 All parties have oracle access to a truly random function H(-)

e |deal Permutation Model
 All {)arties have access to a truly random permutation f () and its inverse
=)

 |deal Cipher Model

e All parties have oracle access to E(+, -)and E~1(-, )

* For any fixed key K the function Ex(x) := E(K, x) is a truly random
permutation and Ex 1 (x) := E71(K, x) is the inverse

e Generic Group Model [Shoup 97]



Warm-Up

* In the random oracle model we are given y = H(x) for a random
value x. The attacker can make g queries to the random oracle. What
is the probability that the attacker can find a pre-image of y € (0,1}

* In the ideal-permutation model we are giveny = f(x) for a random
value x. What is the probability that the attacker can find a pre-image

of y € {0,1}* after at most q oracle queries?



Warm-Up

* In the random oracle model we are given y = H(x) for a random value x.
The attacker can make g queries to the random oracle. What ii the
probability that the attacker can find a pre-image of y € {0,1}*?

* Answer: At most 2q X 274 Let X1, s Xg denote the queries the attacker makes. The
robability one of the g queries is x is Pr[x € {xl, e, X }] <qX 271 Given that x ¢
Ex][, ,9{c we can view each H(x;) as a uniformly rangom string. Thus, we have
€ {H(

r x1), o, H(xg) ] € qx 274

y

* In the ideal-permutation model we are given y = f(x) for a random value
x. What is the probability that the attacker can find a pre-image of y €
{0,1}* after at most q oracle queries?

 Answer: There is a trivial attack using g=1 queries!

x=f"()



Warm-Up: Part 2

* In the Ideal-Cipher Model we are given (m, EK(m)) where K € {0,1}4
is random. The attacker may make g queries to the ideal cipher. What
is the probability that the attacker can find K?



Warm-Up: Part 2

* In the Ideal-Cipher Model we are given (m, EK(m)) where K € {0,1}4
is random. The attacker may make g queries to the ideal cipher. What
is the probability that the attacker can find K?

* Answer: At most q X 274 4 ﬁ (the probability of making a query of the

form E(K,.) plus the probability of guessing the correct key out of the
remaining 2% — q options if this query does not happen).

e Challenge: In the ideal-permutation model we are given y; where
y = (y1,¥2) = f(x) for arandom value x. What is the probability
that the attacker can finds x (or y,) after at most q oracle queries?



What Can We Do with Ideal Permutation?

 Answer 1: Build a Block-Cipher

e Evan-Mansor Block Cipher
° Key: K = (Klr KZ)

EMf,K(x) = f(K1®x)DK;

~1
EM;  (v) = f 1 (K, @y)DK;

Dunkelman et al. observed that one can safely use a single key K; = K, (see
https://eprint.iacr.org/2011/541.pdf)

Security Game for Block-Cipher: )
 B=0 (real world): Attacker is given oracle access to f(.), f "1(y) and EM,];(-) and EM; . () but
not the secret key K = (K, K5)

 B=0 (ideal world) Attacker is given oracle accessto f(.), f *(y) and m(.) = 1(.) where (.) is
truly random permutation (independent of f(.))


https://eprint.iacr.org/2011/541.pdf

What Can We Do with Ideal Permutation?

* Evan-Mansor Block Cipher
* Key: K = (K, K3)

* EM; x(x) = f(K:©x)DK;

* EMpix () = fTH(K,@y)®K,
* Dunkelman et al. observed that one can safely use a single key K; = K,

e Security Game for Block-Cipher:

* B=0 (real world): Attacker is given oracle access to f(.), f ~1(y) and EMg i () and EMf_,% )
but not the secret key K = (K, K>)

 B=0 (ideal world) Attacker is given oracle access to f(.), f1(y) and w(.) #~1(.) where r(.)
is truly random permutation (independent of f(.))

e Attacker’s advantage is at most O(CI];%) where gr (resp. ) denotes the number of
queries to f or f ™! (resp. EM; ; or EM; ;)



What Can We Do with Ideal Permutation?

 Answer 2: Build a Collision-Resistant Hash Function
e Sponge Construction: SHA3
e Input: P = (Py, Py, ..., P,,_1) viewed as r-bit blocks e.g.,
e |Input “absorbed” in multiple rounds Keccak (SHA3): |r|+]c|=1600-bit state

e Output squeezed out in subsequent rounds ¢ € {256,512, ..}
absorbing | squeezing
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Pre-Processing Attacks

e Often times the same cipher/permutation/group/hash function is
used across multiple applications

* Adversary with nation-state level resources might spend a lot of time

pre-computing hints to help break protocols using these building
blocks

e Auxiliary-Input Attacker Model A = (4, 4,)

e Offline attacker A, is unbounded and outputs an S-bit hint for online
attacker A,

e A, will try to win security games using this hint



Pre-Processing Attacks: Trivial Example

* Auxiliary-Input Attacker Model A = (44, 45,)

e Offline attacker A, is unbounded, and can find collisions for our
random oracle H by brute-force.

e Output Hint: x; and x, such that H(x;) and H(x,)
* A, can trivially find a collision using this hint.

e However, we may still hope that A, (s, hint) cannot find x and x’ such
that H(s, x;) and H(s, x,) given a random salt s (picked after pre-
processing)



Pre-Processing Lower Bounds

* Auxiliary-Input Attacker Model A = (44, 45,)

e Offline attacker A, is unbounded and outputs an S-bit hint for online
attacker A,

e A, will try to win security games using this hint

e Can be difficult! We can no longer assume that H(x) looks uniformly
random to online attacker (due to hint)

 Compression Technique: If online attacker is too successful then we
may be able to compress” H. (Compressing a random string is
impossible). These arguments are very tricky!



Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)
 Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢



Generic Group Model (GGM)

 Models generic attacks [Shoup 97]
» don’t exploit structure of cyclic Group G = (g)
* WLOG assume G = Z,

* Attacker can only manipulate group elements x € Z,, via the following
oracles:

mult(7(x),7(y)) = 17(x + y)

Input: handles for group elements x,y € Z,, Output: handles for group elementx +y € Z,

Where 1: Z,, — {0,1}%" is a random injective function mapping group elements
to binary strings (handles)



Generic Group Model (GGM)

e Models generic attacks [Shoup 97]
* Generic attacks don’t exploit structure of cyclic Group G = (g)
* WLOG assume G = Z,

* Attacker can only manipulate group elements x € Z,, via the following oracles:
mult(z(x), 7(y)) = t(x +y)
inv(t(x) ) = 1(—x)

pOW(T(x), n ) — T(Tlx) Output: handle for group element (nx mod p) € Z,

Input: handle for group elements x € Z,, and integer n

Where t: Z,, = {0,132 is a random injective function mapping group elements to
binary strings (handles)
Sample GGM Result [Shoup 97] (Discrete Log): any attacker making T GGM queries

2

solves discrete log problem with probability at most O (ZT?)




Generic Group Model

Typically we use an Elliptic Curve Group of prime order p forp = 224
e Provides A-bit security

Discrete Log Problem: Given generator g and g* find x

Generic Group Version: Given 7(1) and 7(x) find x

* Best Generic Attack (Baby-Step Giant Step):
1) Compute y;, = gk?” for each k < 2% (Time: G(2%))
2) For each x;, = g**k for each k < 24 (Time: 0(2%))
3) Find intersection (i,j) such that x; = g**' = y; = g/?" and solve x = j2* —

 Note: x = j2* — i for some pairi,j < 2%

Generic Group Version Lower Bound: Any generic attacker making q queries to GGM
oracles succeeds with probability at most

2
(73]
22/’1



Generic Group Lower Bound

 Discrete Log Problem: Given generator g and g”* find x
e Generic Group Version: Given 7(1) and 7(x) find x

* Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with
probability at most ,
224

* Proof Sketch: Initialize two sets K = {(1,7(1))}and U = {(x, t(x))}
e K =» Discrete Log Known
e U = Discrete Log Depends on Unknown x
« mult(z(1),7(1)) = 7(2) D Add (2,7(2)) to K
e mult(t(x),7(x)) = 7(2x)=> Add (Zx,r(x + 1)) toU
e mult(t(x),7(1)) = t(x + 1)=> Add (x +1,7(x + 1)) toU
e Each new query adds item to K or U

e Cannot learn x unless sets intersect e.g., mult(z(x),t(x + 1)) = t(2x + 1) isfound in K

Uikl _ a*
224 — 9224

* Sets remain disjoint with probability



Generic Group Model

» Typically we use an Elliptic Curve Group of prime order p for p = 224
* Provides A-bit security

* Discrete Log Problem: Given generator g and g* find x
e Generic Group Version: Given 7(1) and 7(x) find x

e Computational-Diffie Hellman: Given g, g* and g” find g*Y
* Generic Group Version: Given 7(1), 7(x) and 7(y) find t(xy)

e Similar Proof: Any generic attacker making q queries to GGM oracles succeeds
with probability at most ,
222



Generic Group Model with Preprocessing

e Offline Attacker: A(7) =0

* Input: the secret/random encoding function 7 for our group Z,
e Output: S-bit hint o € {0,1}° for online attacker
 No bound on the running time for the offline attacker

* Online Attacker: May use hint o during attack
* Bounded running time T, g;o queries to generic group oracles etc...
 May use hint o during attack

 Motivation:
e Handful of groups (NIST P-256, Curve25519 etc...) used by most real-world cryptosystems
e Offline phase of preprocessing attack is only executed once

Sample Result [CK18] (Discrete Log with Preprocessing): any preprocessing

2
attacker making solves discrete log problem with probability at most O (szk)




GGM + ROM with Preprocessing

e Offline Attacker: A (1) = ¢

* Input: the secret/random encoding function 7 for our group Z,,, oracle access to the
random oracle H

e Output: S-bit hint ¢ € {0,1}° for online attacker
e The offline attacker may make a very large number of random oracle queries e.g., 23%
 Unbounded running time

e Online Attacker: May use hint o during attack

e Bounded running time T, g (resp. grp) queries to group oracle (resp. random oracle)
etc...

 May use hint o during attack



The Discrete Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt — 1 May 2018
Tel Aviv, Israel
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The discrete-log problem

Group: G =(g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A

Why do we believe this
problem is hard? .



Generic lower bounds give us confidence

Theorem. [Shoup'97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probabillity at least 4

o . 1 2
must run in time Q(N / ). Generic attack in 256-bit
group takes ~ 2128 time.

Best attacks on standard EC
groups are generic

24



Generic algorithms can only make
"black-box” use of the group operation

Generic-group model:

» Group is defined by an injective “labeling” function
0. ZN — {0,1}*
 Algorithm has access to a group-operation oracle:

OO-(O'(i),O'(j)) = o(i+])

Very useful way to

understand hardness
[BBO4,B05,M05,D06,
B0O8,Y15,..]

Generic dlog algorithm takes as input (o

make queries to O,, outputs x.
[Measure running time by query comple



Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows nothing
about the structure of the group G in advance



Preprocessing phase

Group: G =(g) Advice: stg

Online phase

Instance: g* € G ad S 3 Solution:
f X € Ly

Initiated by Hellman (1980) in context of OWFs Y




Preprocessing phase ;e/pm/c:essing time P }
LB

Advice: st¢

Advice m

Group: G =(g)

Online phase

ginetime T}
Instance: g* € G Tt Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs success pI‘Ob. € } e




e Preexisting S = T = O(N'/3) generic attack on discrete log

e The O(N1/3) generic dlog attack is optimal
e Any such attack must use lots of preprocessing: Q(N?/3)
« New O(N'/%) preprocessing attack on DDH-like problem

29



A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]
There Is a generic dlog algorithm with preprocessing that:
e uses S bits of group-specific advice,

e uses T online time, and
» succeeds with probability €,
such that: Will sketch the algorithm for

~ S =T = N3 constant ¢.
ST? = 0(eN)

... building on prior work on
multiple-discrete-log algorithms
[ESST99,KS01,HMCDO04,BL12]



Preliminaries

Define a pseudo-random walk on G:
g* - g*¥*® where  a = Hash(g¥)
Is a random function

gx gx+a1 gx+a1+a2 gx+2iczi — gy
‘ >’ )‘ > o0 0 —b‘
X < < < oo oo -— y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

31



Preprocessing phase

 Build N'/3 chains of P
length N*/3 l —

« Store dlogs of chain o—0—@ S o e
endpoints -

Advice: O(N1/3) bits

Online phase —0—0 —>‘ i
« Walk O(N1/3) steps o P

« When you hit a o g~ =
stored point, output -
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

suleyd ¢ /o N

Preprocessing time: Q(N?/3)




Generic discrete log 256-bit ECDL
- Without preprocessing: Q(N1/2) 2128 time
- With preprocessing: O(N1/3)

Is this dlog attack

the best possible?!

33
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e Preexisting S = T = O(N'/3) generic attack on discrete log

e The O(N1/3) generic dlog attack is optimal
e Any such attack must use lots of preprocessing: Q(N?/3)
« New O(N'/%) preprocessing attack on DDH-like problem

36



Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

e uses S bits of group-specific advice,

e uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)
This bound is tight for the

Shoup’s proof technique (1997) relies on BANBNMIEEIEO BRI IOk
about the group G when it starts running (up to log factors)

- Need different proof technique

37



Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
e uses S bits of group-specific advice,

e uses T online time, and

e succeeds with probability e,

must satisfy:

ST2 — ﬁ(EN) Online time N1/3 implies
Q(N?/3) preprocessing

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T?% = Q(eN)

38



Open questions and recent progress

 Tightness of DDH upper/lower bounds?

e Is it as hard as dlog or as easy as sqDDH?

* Non-generic preprocessing attacks on ECDL?
* As we have for Z,,

Coretti, Dodis, and Guo (2018)

* Elegant proofs of generic-group lower bounds using “presampling”
(a la Unruh, 2007)

* Prove hardness of “one-more” dlog, KEA assumptions, ...



Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)
 Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢



Bit-Fixing Model for Pre-Processing Attacks

 Auxiliary-Input Attacker Model A = (44,45,)

e Random Oracle Version:

e Offline attacker A, fixes output of random oracle H(.) at P locations and then
outputs a S-bit hint.

e A, initially knows nothing about remaining unfixed values i.e., H(x) picked
randomly for x & P after A; generates hint

e (PT,p)-attacker
e A, fixes H on at most P locations and outputs S-bit hint

* A, makes at most T random oracle queries
* A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

 ((S,T,p), 8)-security = Any (S, T, p) attacker wins with advantage at most &



Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)



Oracles. An oracle O has two interfaces O.pre and .main, where O.pre iz accessible only once
before any calls to P.main are made. CUracles used in this work are:

e Random oracle RO(N, M): Samples a random function table ¥ +— Fy e, where Fy s
is the set of all functions from [IV] to [M]; offers no functionality at .pre; answers queries
z € [N] at @.main by the corresponding value F|z] € [M].

e Auxiliary-input random oracle AI-RO(N, M): Samples a random function tahble F' +
Fwoag; outputs Foat O.pre; answers queries = € [IV] at @.main by the corresponding value
Flz] € [M].

e Bit-Fixing random oracle BF-RO(FP, ¥, M ): Samples a random function table ¥ +— Fi 1s;
takes a list at O.pre of at most P query/answer pairs that override # in the corresponding
positions; answers queries = € [IV] at (J.main by the corresponding value F|z| € [M].

e Standard model: Neither interface offers any functionality.

Definition 2. 4An (5 T-attacker .4 = (44, .40) in the O-model consists of fwo procedures

o A1, which is computationally unbounded, interacts with O.pre, and outputs an S-bit string,
ard

o Ao, which fokes an S-bit auziliory input and makes at most T gueries fo O.main.



Definition 3. for an indistinguishability application G in the O-model, the advantage of an at-
tacker A is defined as

Succag o(A) —=|.

iﬂld‘-ﬁ'g}@ (A) = 2 5

:
For an unpredictability application (&, the advaniage is defined as

Advg p(A) = Bucceol(A).
An application G is said to be ((5, T, p), £)secure in the O-model if for every (S, T, p)-attacker A,

Hdﬁ-’{_’;}@(ﬂ) £ O



Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

2(S+2A)T

Example: Sety = 2724 and the advantage is roughly &’ +

Balancing: &’ usually increases with P i.e., as BF-attacker gets to fix
more and more points.



Relationship: BF-RO and Al-RO

Theorem 6. For any P € N and every v > 0, if an unpredictability application &G is (S, T, p),£)-
secure in the BFE-RO(P, N, M )-model for

P > (8+42logy 1) T,
then it is ((5,T, p), £)-secure in the AI-RO(N, M )-model for
g < 2¢ 4+ 2v,

where T&me is the combined guery complerity corresponding to 7.




Application: Function-Inversion

e Challenger: Picks x in {0,1}* and sends y=H(x) to online attacker
where y in {0,1}4

e Goal: Find x” such that H(x’)=y (online attacker may use hints)

e Bit-Fixing Attacker: A = (44, 4,)
e LetL = {(x{’,y1), ..., (xp', yp')} denote set of points fixed by A;
e Let E' be the eventthat x = x;' or x = y;’ forsomei <P

e Pr[E’'] < Pr[3i.x = Xi’] +Pr[3i-y — ylll Vi.x # xl’] = 2%+2%

X is random y; = H(x;) is uniformly random if not previously fixed i.e., x # x; for all i



Application: Function-Inversion

. Challt/elnger: Picks x in {0,1}* and sends y=H(x) to online attacker where y in
{0,1}

e Goal: Find x” such that H(x’)=y (may use hints)

e Bit-Fixing Attacker: A = (A4, 4A5)
e LetL = {(x{,y1),...,(xp",yp")} denote set of points fixed by A,
 Let E' be the event that x = x;" orx = y;’ forsomei <P
e Let Q = {(x,¥1), ..., (X7, yr)} denote queries made by A, with corresponding

answers
e Let E; be the eventthatx = x; ory = vy;
— S— 1 1
® PI‘[El | E N El N..N Ei_l] S ZA—P—(i—l) + 2/1 Pr[y = yll ] note that

y; =H(x; )is uniformly random if
Pr[x = x;| ...] note that x is random, and there not previously fixed i.e., if x; # x,

24 — P — (i — 1) remaining possible values x; notinLand x; # x; forall<i,



Application: Function-Inversion

e Challenger: Picks x in {0,1}* and sends y=H(x) to online attacker
where y in {0,1}4

e Goal: Find x” such that H(x’)=y (may use hints)

e Bit-Fixing Attacker: A = (44, 4,)
e Attacker wins with probability at most

Pr(E'] + Z Pr[E; | ENn E{Nn..NE;_{] <

i<q

2P
+q+ q S2P+3q
24 2’1—P—q 24

Assume P + q < 2471



Application: Function-Inversion

e Bit-Fixing Attacker: A = (44, 4,)
e Attacker wins with probability at most
Pr(E'] + Z Pr[E;| ENE N.NnE_{]<

i<q

2P+q+ q
24 ZA—P—q

Set P > 6(S + 2A)T =» Auxilliary-Input Attacker wins with Probability at most

6(S+20)T+T 6(S + 2T 3 ST + AT
2 + +27%4 =0
24 24 —6(S+ 20T —T



Review: Bit-Fixing vs Auxiliary Input

e Auxiliary-Input: (S,T,p)-attacker
e A; outputs a S-bit hint based entire description of ideal-object
* A, makes at most T oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as
specified by parameters p.

e Bit-Fixing: (P,S,T,p)-attacker
o A, fixes at most P input/output pairs and outputs a S-bit hint. The remaining
ideal object is picked randomly subject to this restriction.
* A, makes at most T oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as
specified by parameters p.



Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)



Relationship Bit-Fixing and Auxilliary Input
Theorem 1. Let P, K, N, M &€ N, N > 16, and v > 0. Moreover, let
(Al,BF) € {(AI-IC(K,N),BF-IC(P, K, N)), (AlI-GG(N, M), BF-GG(P, N, M))} .
Then,

1. if an application G is ((S,T,p), <" )-secure in the BF-model, it is ((S,T,p),c)-secure in the

Al-model, where

6(S +logy~1) - T&™
e < 8!_|_ ( g}’; ) & —|—’}",

2. if an unpredictability application G is ((S,T, p),e’)-secure in the BF-model for
P > 6(S+logy 1) - TE™,
it is ((S,T,p),e)-secure in the Al-model for

e < 2"+,

where Té‘)mb is the combined query complexity corresponding to .



Generic Group Lower Bound

Discrete Log Problem: Given generator g and g* find x
Generic Group Version: Given 7(1) and 7(x) find x

Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles
succeeds with probability at most ,
221

Proof Sketch: Initialize two sets K = {(1,7(1))}and U = {(x, t(x))}
* K =>» Discrete Log Known
* U =>» Discrete Log Depends on Unknown x
 mult(z(1),7(1)) = t(2) = Add (Z,T(Z)) to K
 mult(z(x),7(x)) = 7(2x)=> Add (Zx,r(x + 1)) toU
 mult(z(x),7(1)) = 7(x + 1)=> Add (x +1,7(x + 1)) toU
 Each new query addsitemto K or U

e Cannot learn x unless sets intersect e.g., mult(7(x),7(x + 1)) = t(2x + 1) is found in K

* Sets remain disjoint with probability ~ WIK] 4
221 - 22/1

 Technical Note: If attacker queries mult(s,.) for fresh » which is not in K or U then can add (7 71(3), %) to K




Generic Group Lower Bound with Bit-Fixing

* Generic Group Version Lower Bound: Any Bit-Fixing attacker making
q queries to GGM oracles (online) and fixing at most P points
succeeds with probability at most

2 4+ gP
0(61 q)
22/1

Proof Sketch: Let L = {(x1,y1), ..., (xp, yp)} denote the fixed points where attacker fixed 7(x;) = y;
Initialize two sets K = {(1,1(1))} ULand U = {(x,r(x))}

K =>» Discrete Log Known

U = Discrete Log Depends on Unknown x

Each new query adds itemto K or U

Cannot learn x unless sets intersect

Ik q?
221 — 221

Sets remain disjoint with probability =



Generic Group Lower Bound with
Preprocessing Attacker

e Generic Group Version Lower Bound: Any auxiliary-input attacker
making q queries to GGM oracles (online) and with a S bit hint
points succeeds with probability at most

5 (qz +q%(S + ﬂ))

22/1

Proof Sketch: Set P = 0((5 + 2/1)q) for our bit-fixing attacker A bit-fixing attacker succeeds with probability at most

<q2 +q*(S + l))
=20
22/1

q2+q2(5+/1))

It follows that the Al-attacker succeeds with probability at most 2e 4+ 2724 = 0 ( 7




Block-Ciphers with Leakage

* Ideal Cipher Model

e All parties have oracle access to E(+, -)and E~1(-, )

* For any fixed key K the function Ex(x) := E(K, x) is a truly random
permutation and Ex 1 (x) := E~1(K, x) is the inverse

* Question: Can we still safely use the block-cipher after S-bit leakage?



Block-Ciphers with Leakage

e Question: Can we still safely use the block-cipher after S-bit leakage?

e Leakage Security Game:
e Offline Attacker A;outputs S-bit hint

* Online Attacker has to predict secret bit b

e Real World (b=0): Online attacker may query E(-,*), E7X(-, ), E(K,-)and E"}(K, ),
where K is a random key picked by the challenger

e ldeal World (b=1): Online attacker may query E(-, ), E~1(-, -), f(:) and f~1(-) where f
is a truly random permutation (independent of block-cipher + hint).

e Online Attacker may make T queries to E(+, *) or E~1(-, +) and q queries to E(K, ) or
E~Y(K, -) when b=0 (resp. f(+) or f ~1(-) when b=1)



Block-Ciphers with Leakage

* Leakage Security Game:
e Offline Attacker A;outputs S-bit hint
* Online Attacker has to predict secret bit b

* Real World (b=0): Online attacker may query E(-,-), E7*(-, -), E(K, -) and
E~1(K, -), where K is a random key picked by the challenger

e Ideal World (b=1): Online attacker may query E(-,¢), E~1(-, ), f(:)and f~1(")
where f is a truly random permutation (independent of block-cipher + hint).

* Analysis (Bit Fixing Attacker): Let
L={K": 3Axs.t.E(K,x) was fixed by A}

and observe that Pr[K € L] < |L|27%.



Block-Ciphers with Leakage

* Analysis (Bit Fixing Attacker): Let
L={K": 3Axs.t.E(K,x) was fixed by A}
Pr[K € L] < |L|27* < P2~

Let B; denote event that K = K; where K; is the key used in the ith query
toE(.,.) orE71(-, 9

_ 1 2
PriB; | LN ByNn..NB;_{] < < =

2% — |P| — i possible keys remain WLOG assume |P| + T < 241
(otherwise upper bound on success rate of
bit-fixing attacker becomes 1 holds trivially)



Block-Ciphers with Leakage

e Analysis (Bit Fixing Attacker): Let
L={K'": 3xs.t.E(K,x) was fixed by A}
Pr[K e L] < |L|27* < P2~

Ii?e‘tl% d)enote event that K = K; where K; is the key used in the ith queryto E(.,.) or

If the attacker does not query K or fix an input for K then the attacker cannot distinguish

between b=0 or b=1 since E (K, *) is a random permutation. Advantage is upper
bounded by

_ P 2T P+2T
Pr[L] + z Prl[E; | Ln B;n..nB;_{] < At51="57
I<T




Block-Ciphers with Leakage

* Analysis (Pre-Processing Attacker):

Teomp =T + 1 combined # of
gueries to ideal object

Advantage of pre-processing is upper bounded by

_|_

0 P+T S+A)(T+q)
S

Set P = \/(5 + A)TZA => 0 (2% + \/(S+A;;T+q))



Block-Ciphers with Leakage

e Thm (Informal): an ideal cipher is (I(S, T, q), 8)—secure against preprocessing
attacks in the auxiliary-input model with

T S+ A)(T + q)
=0 ?‘F 2)‘

\
Best Attack: & = Q <% + /%)
2 2

Open Question: Better attack or tighter lower-bound?
Note: Lower-bound likely requires different techniques (e.g., compression?)




Sponge-Construction

o Input: m = (my, ..., m,) with m; € {0,1}"

* Sy = Sél) Séz) where Sél) = 0" and Séz) = 0°¢ and
eFori=1,..,7; sets; = Si(l) Si(z) = n((si(_l)l@mi) Si(f)1>
e Output: Sél)

* Collision-Game: Attacker A;outputs s-bit hint based on ideal permutation
. A, tries to find collision for sponge construction.



Sponge-Construction: Sponge(.)

o Input: m = (my, ..., m,) with m; € {0,1}"

* Sy = Sél) Séz) where Sél) = 0" and Séz) = 0°¢ and
eFori=1,..,7; sets; = Si(l) Si(z) = n((si(_l)l@mi) Si(f)1>
(1)

* Output: Sponge,(my, ...,mp): = s,

e Pre-processing Attack: Find m; and m, such that & ((ml)HOC) and
T ((mz)”OC) match on first r-bits. A; outputs hint m, and m,.



Salted Sponge-Construction: Spongey v (. )

o Input: m = (my, ..., my) with m; € {0,1}"

* Sg =S, (1) H (2) where S = 0" and S( )= IV € {0,1}¢ (random salt) Fori =
2 1
1,..,%; setsl—s () ( ()EBml z()1
 Output: S( )

e Question: Is the salted sponge-construction secure against pre-processing attacks?

 Parameters: Attacker gets S-bit hint, q queries to w or =1 and outputs a collision of
length at most £.

* First Step: Analyze a bit-fixing attacker who can fix P input/outputs for



Salted Sponge-Construction
o Input: m = (my, ..., m,) with m; € {0,1}"

(1)

* So = S, Séz) where Sél) = 0" and Séz) = [V € {0,1}¢ (random salt) For

=t s =50 s = () )
e Output: S{E”

* First Step: Analyze a bit-fixing attacker who can fix P input/outputs for

e At the cost of 2¢ additional queries to m we can assume (WLOG) that the
attacker who outputs m and m’ has queried 7 at all points needed to evaluate
Sponge(m) and Sponge(m") since m and m’ are at most £-blocks long



Analysis Tool 1: Permutation Graph

Permutation Graph: G,

€y
e Nodes: V = {0,1}¢*T Q ; Q

* Directed Edges: (s,t = m(s))

e Each node has indegree 1 and outdegree 1

e Label Edges with first r bits of output t( Ht(z) = 1t(s)

e Special Start node: s, = 0"||IV
e A sponge-input m = (my, ..., my) with m< € {0,1}" defines a path in

the above graph sg, 51, ..., Sp withs; =1




Analysis Tool 1: Permutation Graph

Permutation Graph: G,

e Nodes: V = {0,1}°*" t(
Directed Edges: (s,t = m(s))

* Each node has indegree 1 and outdegree 1

o Label Edges with first r bits of output ¢ Ht(z) = 1t(s)

 Call a node s prefixed if A; fixed the value of m(s)

e Attacker is only aware of some of the edges e.g., after making q queriesto
attacker is only aware at most P+q directed edges.

Let Gn)o denote initial known graph (using only edges defined by P prefixed
points

Let G ; denote known graph after i queries tow or m™

1



Analysis Tool 1: Permutation Graph

Permutation Graph: G;
e Nodes: V = {0,1}¢*" O e Q
* Directed Edges: (s,t = (s))

e Each node has indegree 1 and outdegree 1

« Label Edges with first r bits of output ¢t Ht(z) = 1t(s)

* Let G, o denote initial known graph (using only edges defined by P prefixed points)

* Let G, ; denote known graph after i queries to  or 1

 Special Start node: s* = 0" ||IV

» Collision < for some label t(1) € {0,1}"are two distinct paths from start node s*
both ending an edge labeled t(1 in Gr g



Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph O Q
e Nodes: V' = {0,1}¢
Directed ﬁdges: (s, t(2) € 3’ iff there exists strings s(1, t() € {0,1}" such

that t(D [[¢(2) = n(S(l) Hs(z)
Label edges with (s, t(1)

Starting Super-node: [V € {0,1}¢
Let Gy denote the initial super-graph (defined using P fixed points)
Let G; denote the super-graph after i queries to w or w1

Call a suger-node s € {0,1}¢ “pre-fixed” if there exists s(1) € {0,1}" such that
s = S(l)jrs(z) was pre-fixed



Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph Q Q

Starting Super-node: [V € {0,1}¢

Let Gy denote the initial super-graph (defined using P fixed points)

Let G; denote the super-graph after i queries to w or w1

e Call a super-node s € {0,1}¢ “pre-fixed” if there exists s(¥) € {0,1}" such thats =
s T s(®) was pre-fixed

Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

P
Pr|B,] = Pr[lIV prefixed] < T




Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph O Q

* Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
. F{Z) G;l- contains two distinct paths from starting node IV to x for some supernode x €
0,1}¢
o |f BT+2€ does not occur then every supernode has one incoming edge and the
value tD € {0,1}" (potential hash output) is uniform.

2

T + 2¢
Pr[COLLISION| Byy,p] < 2T



Probability of Bad Event (Forward Query)

e Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

Suppose that no bad event has occurred after the first i-1 queries tomw or w1
and that the ith query is of the form

- (tm Ht<z>) =y Hy@)
= Adds edge from supernode t(® to y(?),
= Bad if there was already a path to y(? or if y(®) was fixed.

=> At most (i + P)2" bad outputs for (t(l) Ht(z)) out of 27t¢ — (i — 1 + P)
possibilities



Probability of Bad Event (Forward Query)

* Let B; denote the event that either
e (1) G; contains a path from starting node IV to some pre-fixed

. g)) 1G}l-ccontains two distinct paths from starting node IV to x for some supernode x €

Suppose that no bad event has occurred after the firsti-1 queries toT or
Y and that the ith query is of the form

- (tm ”t<z>) =y ”y<z>
-)A(‘d)ds edge from supernode t(? to y(z). Bad if there was already a path to
y(2) or if y(?) was fixed.
__ (i+ P)2" [+ P
Pr[B; | ByN..NBi1] < oo (—13p) > 7

WLOG assume P + T + 2¢ < 2¢*7—1



Probability of Bad Event (Inverse Query)

e Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

Suppose that no bad event has occurred after the first i-1 queries tomw or w1
and that the ith query is of the form

-1 (ym Hy@)) — +( Ht<z>
= Adds edge from supernode t(® to y(?),
=>» Potentially bad if there was already a path from IV to y(z).

=>» At most i2" bad outputs form 71 (y(l) Hy(z)) out of 27t¢ — (i — 1 + P)
possibilities



Probability of Bad Event (Inverse Query)

e Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed

* (2) G; contains two distinct paths from starting node IV to x for some
supernode x € {0,1}¢

S. uppose that no bad event has occurred after the first I-1 queries to
m or t— 1 and that the ith query is of the form

W [y@ ) = @ [P
" ( ”3’ ) LZE” Ht l i+ P
2€tT — (i — 1+ P) _ZC TS 2¢71

Pr[B; | ByN..NB;_{] <

WLOG assume P + T + 2¢ < 2¢*7—1



Probability of Bad Event (Total)

* Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed

e (2) G; contains two distinct paths from starting node IV to x for some supernode x €
{0,1}¢

o After all T + 2¢ queries we have

T+2¢

Pr(Br,ap]| < Pr[By | + 2 Pr[B; | Byn..NnB;_4]
=1

i+ P (T+£)2+TP+2€P+P
+chl— 2c1




Probability of Collision (Bit-Fixing)
T +2¢
Pr[COLLISION| B7,,,] < ( )2-"‘

2

(T + £)?+TP +2¢P + P
2c—1

PF[BT+2£] =

T+2¢\ . (T+£6)*+TP+2¢P+P
Pr[COLLISION] < , 277 + =




Probability of Collision: Auxilliary-Input

(T+£)?+TP+2{P+P
26—1

* Bit-Fixing(P): Pr[COLLISION] < ("*7%)27" +

e SetP =6(S+c+1r)(T + 2¢) to apply main theorem

Thm (Informal): Salted-Sponge is ((S, T, £), €)-secure in the auxiliary-

input model with
(T+6)? (T+OD*S+c+r)
Zr—l 2c—1




ATl Security

SM Security

Best Attack

OWP =L o 5L [33]

EM E S EGREE & Skt

BC-IC () & i (£)"° 07
PRF-DM 7+ 3 57
CRHF-DM (Sig)ﬁ TTf not known
CRHF-S ST 12 L+ T ST [15]

PRF-S (52)/2 L ()" 1171

MAC-S ChL | Tl | am (5D 1§58
CRHF-MD SIZ e ST [15]
PREMD-N | (SI)74 % | % £V
NMAC/HMAC ST i min { 57, (STYY%) 4 T (33




DL/CDH ST 4 & 5T% (16, 38, 5]
t-fold MDL (S(T;;t)g + (T;;)Q )t ((T;;})z )t see caption [16]
DDH T+ R ¥ ¥ (16,38, 5
WDDH | (ST r ST g
OM-DL (ST Tt e STZ (16, 38, 5
KEA S_}I\;? % not known

Tahble 2: Asymptotic upper and lower bounds on the security of applications in the generic-group model
against (5, T )-attackers in the AI-ROM; new bounds are in a bold-face font. The value t for the one-more
DL problem stands for the number of challenges requested by the attacker. The attack against MDL succeeds

with constant probebility and requires that ST/t + T

= O (tN).

Course Project Ideas: Analyze different construction vs pre-processing
attackers (easier) or tighten existing bounds (likely harder).




Reminder: Link Between BF-RO and AlI-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc...) as a black-box.

How is this result proved?



Leaky vs Dense Sources

Definition 1. An (N, M)-source is a random variable X with range [M]Y. A source is called

o (1 —3d)-dense if for every subset I C [IV],
HoolXr) = (1—=8) I loghd = (1 —8) - logMHl

o (P 1—¢d)-dense if it is fized on af most P coordinates and is (1 — d)-dense on the rest,

o P_bit-fixing if it is fived on at most P coordinates and uniform on the rest.

e Idea 1: Leaky Source (auxiliary-input) can be replaced by convex
combination of (P, 1 — 6)-dense sources.

e Idea 2: Hard to distinguish between (P, 1 — §)-dense source and P-bit-
fixing source after T queries



Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +loglfy)-T
P

PIDX(F(X) = 1] - P[DY 0 (£(X)) = 1]| < iy

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim 2. For every & = 0, X, is y-close to a conver combination of finitely many (P, 1—3)-dense
sources for

Sy +1log 1/

P o=
d - log M




Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

‘P[‘D}f‘ —1] - P[DY = 1]‘ < Té-log M,

and

PID* =1] < MTP. P[D¥ =1].

Proof. Assume without loss of generality that 7 is deterministic and does not query any of the fixed
positions. Let T and T3+ be the random wvariables corresponding to the transcripts containing
the query/answer pairs resulting from T’s interaction with X’ and Y7, respectively. For a fixed
transcript 7, denote by piv(7) and py«(7) the probabilities that X’ and Y/, respectively, produce
the answers in 7 if the queries in 7 are asked. Observe that these probabilities depend only on X'
resp. Y/ and are independent of 7.

{tbeerve that for every transcript +,
po(r) < M~U=9T  and pyi(r) = M7 (1)

as X' ls (1 — d)-dense and Y’ is uniformly distributed.
Since T is deterministic, P[Ty: = 7] € {0, px/(7)}, and similarly, P[Tyr =7] € {0, pys(7)}.
Dencte by T the et of all transcriptes 7 for which P[T5% = 7] > 0. For such v, P[Tx = 7| = px(7)



Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

PIDX =1] —P[DY =1]| < T3 loghs,

and also P[Tys = 7] = py/ (7). Towards proving the first part of the lemma, cbserve that

and
‘P[‘Dxi _ 1] . P[DY«’ _ l]‘ < SD(TXHTY“’)
and a = > max {0, P[Tyx = 7] — P[Ty = 7]}
— Z max {0, px:(7) — py(7)}
TETX
- PR ~ prel(7)
= T;a px/(7) {D’l pxx(’r)}

< 1-M"T < Té logM,

where the first sum is over all poasible transcripts and where the last inequality uses 27% > 1 — x
for = = 0.

R =N

< 1— M1 < T§. log M,

where the first sum iz over all possible transcripta and where the last inequality uses 2% > 1 — =
for = = 0.
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