
Advanced Cryptography
CS 655

Week 4:
• Generic Group Model/Ideal Permutation
• Pre-Computation Attacks
• Bit-Fixing Model/Auxiliary Input
• Compression Arguments

1Spring 2023

Idealized Models of Computation

• Random Oracle Model
• All parties have oracle access to a truly random function 𝐻𝐻(�)

• Ideal Permutation Model
• All parties have access to a truly random permutation 𝑓𝑓(�) and its inverse
𝑓𝑓−1(�)

• Ideal Cipher Model
• All parties have oracle access to 𝐸𝐸(�, �) and 𝐸𝐸−1(� , �)
• For any fixed key K the function 𝐸𝐸𝐾𝐾 𝑥𝑥 ≔ 𝐸𝐸(𝐾𝐾, 𝑥𝑥) is a truly random

permutation and 𝐸𝐸𝐾𝐾−1 𝑥𝑥 ≔ 𝐸𝐸−1(𝐾𝐾, 𝑥𝑥) is the inverse

• Generic Group Model [Shoup 97]

2

Warm-Up

• In the random oracle model we are given y = 𝐻𝐻(𝑥𝑥) for a random
value 𝑥𝑥. The attacker can make q queries to the random oracle. What
is the probability that the attacker can find a pre-image of y ∈ 0,1 𝜆𝜆?

• In the ideal-permutation model we are given y = 𝑓𝑓(𝑥𝑥) for a random
value 𝑥𝑥. What is the probability that the attacker can find a pre-image
of y ∈ 0,1 𝜆𝜆 after at most q oracle queries?

3

Warm-Up

• In the random oracle model we are given y = 𝐻𝐻(𝑥𝑥) for a random value 𝑥𝑥.
The attacker can make q queries to the random oracle. What is the
probability that the attacker can find a pre-image of y ∈ 0,1 𝜆𝜆?

• Answer: At most 2q × 2−𝜆𝜆. Let 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 denote the queries the attacker makes. The
probability one of the q queries is x is Pr x ∈ 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 ≤ q × 2−𝜆𝜆. Given that x ∉
𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 we can view each 𝐻𝐻 𝑥𝑥1 as a uniformly random string. Thus, we have

Pr y ∈ 𝐻𝐻 𝑥𝑥1 , … ,𝐻𝐻 𝑥𝑥𝑞𝑞 | ≤ q × 2−𝜆𝜆

• In the ideal-permutation model we are given y = 𝑓𝑓(𝑥𝑥) for a random value
𝑥𝑥. What is the probability that the attacker can find a pre-image of y ∈
0,1 𝜆𝜆 after at most q oracle queries?
• Answer: There is a trivial attack using q=1 queries!

x = 𝑓𝑓−1(𝑦𝑦)

4

Warm-Up: Part 2

• In the Ideal-Cipher Model we are given 𝑚𝑚,𝐸𝐸𝐾𝐾 𝑚𝑚 where K ∈ 0,1 𝜆𝜆

is random. The attacker may make q queries to the ideal cipher. What
is the probability that the attacker can find K?

5

Warm-Up: Part 2

• In the Ideal-Cipher Model we are given 𝑚𝑚,𝐸𝐸𝐾𝐾 𝑚𝑚 where K ∈ 0,1 𝜆𝜆

is random. The attacker may make q queries to the ideal cipher. What
is the probability that the attacker can find K?

• Answer: At most q × 2−𝜆𝜆 + 1
2𝜆𝜆−𝑞𝑞

(the probability of making a query of the
form 𝐸𝐸(𝐾𝐾, .) plus the probability of guessing the correct key out of the
remaining 2𝜆𝜆 − 𝑞𝑞 options if this query does not happen).

• Challenge: In the ideal-permutation model we are given 𝑦𝑦1 where
y = (𝑦𝑦1,𝑦𝑦2) = 𝑓𝑓(𝑥𝑥) for a random value 𝑥𝑥. What is the probability
that the attacker can finds x (or 𝑦𝑦2) after at most q oracle queries?

6

What Can We Do with Ideal Permutation?

• Answer 1: Build a Block-Cipher
• Evan-Mansor Block Cipher

• Key: 𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2
• 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾 𝑥𝑥 ≔ 𝑓𝑓(𝐾𝐾1⨁𝑥𝑥)⨁𝐾𝐾2
• 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾

−1
𝑦𝑦 ≔ 𝑓𝑓−1(𝐾𝐾2⨁𝑦𝑦)⨁𝐾𝐾1

• Dunkelman et al. observed that one can safely use a single key 𝐾𝐾1 = 𝐾𝐾2 (see
https://eprint.iacr.org/2011/541.pdf)

• Security Game for Block-Cipher:
• B=0 (real world): Attacker is given oracle access to 𝑓𝑓(.), 𝑓𝑓−1(𝑦𝑦) and 𝐸𝐸𝐸𝐸𝐾𝐾

𝑓𝑓 ⋅ and 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾
−1

⋅ but
not the secret key 𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2

• B=0 (ideal world) Attacker is given oracle access to 𝑓𝑓(.), 𝑓𝑓−1(𝑦𝑦) and 𝜋𝜋(.) 𝜋𝜋−1(.) where 𝜋𝜋(.) is
truly random permutation (independent of 𝑓𝑓(.))

7

https://eprint.iacr.org/2011/541.pdf

What Can We Do with Ideal Permutation?

• Evan-Mansor Block Cipher
• Key: 𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2
• 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾 𝑥𝑥 ≔ 𝑓𝑓(𝐾𝐾1⨁𝑥𝑥)⨁𝐾𝐾2
• 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾

−1 𝑦𝑦 ≔ 𝑓𝑓−1(𝐾𝐾2⨁𝑦𝑦)⨁𝐾𝐾1
• Dunkelman et al. observed that one can safely use a single key 𝐾𝐾1 = 𝐾𝐾2

• Security Game for Block-Cipher:
• B=0 (real world): Attacker is given oracle access to 𝑓𝑓(.), 𝑓𝑓−1(𝑦𝑦) and 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾 ⋅ and 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾

−1 ⋅
but not the secret key 𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2

• B=0 (ideal world) Attacker is given oracle access to 𝑓𝑓(.), 𝑓𝑓−1(𝑦𝑦) and 𝜋𝜋(.) 𝜋𝜋−1(.) where 𝜋𝜋(.)
is truly random permutation (independent of 𝑓𝑓(.))

• Attacker’s advantage is at most 𝑂𝑂(𝑞𝑞𝑓𝑓𝑞𝑞𝐸𝐸
2𝜆𝜆

) where 𝑞𝑞𝑓𝑓 (resp.) denotes the number of
queries to 𝑓𝑓 or 𝑓𝑓−1 (resp. 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾 or 𝐸𝐸𝐸𝐸𝑓𝑓,𝐾𝐾

−1) 8

What Can We Do with Ideal Permutation?
• Answer 2: Build a Collision-Resistant Hash Function

• Sponge Construction: SHA3
• Input: P = (𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛−1) viewed as r-bit blocks e.g.,
• Input “absorbed” in multiple rounds
• Output squeezed out in subsequent rounds

9

Keccak (SHA3): |r|+|c|=1600-bit state
𝑐𝑐 ∈ {256,512, … }

Pre-Processing Attacks

• Often times the same cipher/permutation/group/hash function is
used across multiple applications

• Adversary with nation-state level resources might spend a lot of time
pre-computing hints to help break protocols using these building
blocks

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online

attacker 𝐴𝐴2
• 𝐴𝐴2 will try to win security games using this hint

10

Pre-Processing Attacks: Trivial Example

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Offline attacker 𝐴𝐴1 is unbounded, and can find collisions for our

random oracle H by brute-force.
• Output Hint: 𝑥𝑥1 and 𝑥𝑥2 such that H(𝑥𝑥1) and H(𝑥𝑥2)
• 𝐴𝐴2 can trivially find a collision using this hint.

• However, we may still hope that 𝐴𝐴2(𝑠𝑠, ℎ𝑖𝑖𝑖𝑖𝑖𝑖) cannot find 𝑥𝑥 and 𝑥𝑥𝑥 such
that H(𝑠𝑠, 𝑥𝑥1) and H(𝑠𝑠, 𝑥𝑥2) given a random salt s (picked after pre-
processing)

11

Pre-Processing Lower Bounds

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online

attacker 𝐴𝐴2
• 𝐴𝐴2 will try to win security games using this hint

• Can be difficult! We can no longer assume that H(x) looks uniformly
random to online attacker (due to hint)

• Compression Technique: If online attacker is too successful then we
may be able to ``compress” H. (Compressing a random string is
impossible). These arguments are very tricky!

12

Auxiliary-Input Attacker Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version:
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online attacker 𝐴𝐴2

after viewing entire truth table 𝐻𝐻(.)
• 𝐴𝐴2 will try to win security games using this hint

• (S,T,p)-attacker
• 𝐴𝐴1 outputs a S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by

parameters p.
• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀

13

Generic Group Model (GGM)

• Models generic attacks [Shoup 97]
• don’t exploit structure of cyclic Group 𝐺𝐺 = 𝑔𝑔
• WLOG assume 𝐺𝐺 = ℤ𝑝𝑝

• Attacker can only manipulate group elements x ∈ ℤ𝑝𝑝 via the following
oracles:

mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑦𝑦) = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦

Where 𝜏𝜏:ℤ𝑝𝑝 → 0,1 2𝑘𝑘 is a random injective function mapping group elements
to binary strings (handles)

Input: handles for group elements x, y ∈ ℤ𝑝𝑝 Output: handles for group element x + y ∈ ℤ𝑝𝑝

Generic Group Model (GGM)

• Models generic attacks [Shoup 97]
• Generic attacks don’t exploit structure of cyclic Group 𝐺𝐺 = 𝑔𝑔
• WLOG assume 𝐺𝐺 = ℤ𝑝𝑝

• Attacker can only manipulate group elements x ∈ ℤ𝑝𝑝 via the following oracles:
mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑦𝑦) = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦
inv 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 −𝑥𝑥
pow 𝜏𝜏 𝑥𝑥 ,𝑖𝑖 = 𝜏𝜏 𝑖𝑖𝑥𝑥

Where 𝜏𝜏:ℤ𝑝𝑝 → 0,1 2𝑘𝑘 is a random injective function mapping group elements to
binary strings (handles)

Input: handle for group elements x ∈ ℤ𝑝𝑝 and integer n

Output: handle for group element (nx mod p) ∈ ℤ𝑝𝑝

Sample GGM Result [Shoup 97] (Discrete Log): any attacker making T GGM queries

solves discrete log problem with probability at most 𝒪𝒪 𝑇𝑇2

22𝑘𝑘

Generic Group Model

• Typically we use an Elliptic Curve Group of prime order p for 𝑝𝑝 ≈ 22𝜆𝜆
• Provides 𝜆𝜆-bit security

• Discrete Log Problem: Given generator 𝑔𝑔 and 𝑔𝑔𝑥𝑥 find 𝑥𝑥
• Generic Group Version: Given 𝜏𝜏 1 and 𝜏𝜏 𝑥𝑥 find x

• Best Generic Attack (Baby-Step Giant Step):
• 1) Compute 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘2𝜆𝜆 for each 𝑘𝑘 ≤ 2𝜆𝜆 (Time: �𝑂𝑂(2𝜆𝜆))
• 2) For each 𝑥𝑥𝑘𝑘 = 𝑔𝑔𝑥𝑥+𝑘𝑘 for each 𝑘𝑘 ≤ 2𝜆𝜆 (Time: �𝑂𝑂(2𝜆𝜆))
• 3) Find intersection (i,j) such that 𝑥𝑥𝑖𝑖 = 𝑔𝑔𝑥𝑥+𝑖𝑖 = 𝑦𝑦𝑗𝑗 = 𝑔𝑔𝑗𝑗2𝜆𝜆 and solve 𝑥𝑥 = 𝑗𝑗2𝜆𝜆 − 𝑖𝑖
• Note: 𝑥𝑥 = 𝑗𝑗2𝜆𝜆 − 𝑖𝑖 for some pair 𝑖𝑖, 𝑗𝑗 ≤ 2𝜆𝜆

• Generic Group Version Lower Bound: Any generic attacker making q queries to GGM
oracles succeeds with probability at most

𝑂𝑂
𝑞𝑞2

22𝜆𝜆

16

Generic Group Lower Bound
• Discrete Log Problem: Given generator 𝑔𝑔 and 𝑔𝑔𝑥𝑥 find 𝑥𝑥
• Generic Group Version: Given 𝜏𝜏 1 and 𝜏𝜏 𝑥𝑥 find x

• Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with
probability at most

𝑂𝑂
𝑞𝑞2

22𝜆𝜆

• Proof Sketch: Initialize two sets 𝐾𝐾 = { 1, 𝜏𝜏 1 } and 𝑈𝑈 = { 𝑥𝑥, 𝜏𝜏 𝑥𝑥 }
• 𝐾𝐾 Discrete Log Known
• U  Discrete Log Depends on Unknown x
• mult 𝜏𝜏 1 , 𝜏𝜏(1) = 𝜏𝜏 2  Add 2, 𝜏𝜏 2 to 𝐾𝐾
• mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑥𝑥) = 𝜏𝜏 2𝑥𝑥  Add 2𝑥𝑥, 𝜏𝜏 𝑥𝑥 + 1 to 𝑈𝑈
• mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(1) = 𝜏𝜏 𝑥𝑥 + 1  Add 𝑥𝑥 + 1, 𝜏𝜏 𝑥𝑥 + 1 to 𝑈𝑈
• Each new query adds item to 𝐾𝐾 or 𝑈𝑈
• Cannot learn x unless sets intersect e.g., mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑥𝑥 + 1) = 𝜏𝜏 2𝑥𝑥 + 1 is found in 𝐾𝐾
• Sets remain disjoint with probability 𝑈𝑈 |𝐾𝐾|

22𝜆𝜆
≤ 𝑞𝑞2

22𝜆𝜆

17

Generic Group Model

• Typically we use an Elliptic Curve Group of prime order p for 𝑝𝑝 ≈ 22𝜆𝜆
• Provides 𝜆𝜆-bit security

• Discrete Log Problem: Given generator 𝑔𝑔 and 𝑔𝑔𝑥𝑥 find 𝑥𝑥
• Generic Group Version: Given 𝜏𝜏 1 and 𝜏𝜏 𝑥𝑥 find x

• Computational-Diffie Hellman: Given g, 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 find 𝑔𝑔𝑥𝑥𝑦𝑦
• Generic Group Version: Given 𝜏𝜏 1 , 𝜏𝜏 𝑥𝑥 and 𝜏𝜏 𝑦𝑦 find 𝜏𝜏 𝑥𝑥𝑦𝑦
• Similar Proof: Any generic attacker making q queries to GGM oracles succeeds

with probability at most

𝑂𝑂
𝑞𝑞2

22𝜆𝜆

18

Generic Group Model with Preprocessing

• Offline Attacker: A 𝜏𝜏 = 𝜎𝜎
• Input: the secret/random encoding function 𝜏𝜏 for our group ℤ𝑝𝑝
• Output: S-bit hint 𝜎𝜎 ∈ 0,1 𝑆𝑆 for online attacker
• No bound on the running time for the offline attacker

• Online Attacker: May use hint 𝜎𝜎 during attack
• Bounded running time T, 𝑞𝑞𝐺𝐺𝐺𝐺 queries to generic group oracles etc…
• May use hint 𝜎𝜎 during attack

• Motivation:
• Handful of groups (NIST P-256, Curve25519 etc…) used by most real-world cryptosystems
• Offline phase of preprocessing attack is only executed once

Sample Result [CK18] (Discrete Log with Preprocessing): any preprocessing

attacker making solves discrete log problem with probability at most 𝒪𝒪 𝑆𝑆𝑇𝑇2

22𝑘𝑘

GGM + ROM with Preprocessing

• Offline Attacker: A𝐻𝐻(𝜏𝜏) = 𝜎𝜎
• Input: the secret/random encoding function 𝜏𝜏 for our group ℤ𝑝𝑝, oracle access to the

random oracle H
• Output: S-bit hint 𝜎𝜎 ∈ 0,1 𝑆𝑆 for online attacker
• The offline attacker may make a very large number of random oracle queries e.g., 23𝑘𝑘
• Unbounded running time

• Online Attacker: May use hint 𝜎𝜎 during attack
• Bounded running time T, 𝑞𝑞𝐺𝐺𝐺𝐺 (resp. 𝑞𝑞𝑅𝑅𝐺𝐺) queries to group oracle (resp. random oracle)

etc…
• May use hint 𝜎𝜎 during attack

The Discrete Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt – 1 May 2018
Tel Aviv, Israel

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

22

The discrete-log problem

Group: 𝔾𝔾 = 𝑔𝑔
of prime order 𝑁𝑁

Instance: 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾

Solution:
𝑥𝑥 ∈ ℤ𝑁𝑁

Adversary 𝒜𝒜

Why do we believe this
problem is hard? 23

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
• operates in a group of prime order 𝑁𝑁 and
• succeeds with probability at least ½
must run in time Ω(𝑁𝑁1/2). Generic attack in 256-bit

group takes ≈ 2128 time.

24

Best attacks on standard EC
groups are generic

Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:
• Group is defined by an injective “labeling” function

𝜎𝜎: ℤ𝑁𝑁 → 0,1 ∗

• Algorithm has access to a group-operation oracle:
𝒪𝒪𝜎𝜎 𝜎𝜎 𝑖𝑖 ,𝜎𝜎 𝑗𝑗 ↦ 𝜎𝜎 𝑖𝑖 + 𝑗𝑗

Generic dlog algorithm takes as input 𝜎𝜎 1 ,𝜎𝜎 𝑥𝑥 , representing (𝑔𝑔,𝑔𝑔𝑥𝑥),
make queries to 𝒪𝒪𝜎𝜎 , outputs 𝑥𝑥.

[Measure running time by query complexity]
25

[Nechaev’94], [Shoup’97], [Maurer’05]
Very useful way to

understand hardness
[BB04,B05,M05,D06,

B08,Y15,…]

Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows nothing

about the structure of the group 𝔾𝔾 in advance

• In reality: the adversary knows a lot about 𝔾𝔾!

 𝔾𝔾 is one of a small number of groups: NIST P-256, Curve25519, …

• A realistic adversary can perform 𝔾𝔾-specific preprocessing!

• Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, …]

26

𝒜𝒜0

𝒜𝒜1

Preprocessing phase

Group: 𝔾𝔾 = 𝑔𝑔 Advice: 𝑠𝑠𝑖𝑖𝔾𝔾

Solution:
𝑥𝑥 ∈ ℤ𝑁𝑁

Instance: 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾

Online phase

Initiated by Hellman (1980) in context of OWFs

Both algorithms
are generic!

Both algorithms
are generic!

27

𝒜𝒜0

𝒜𝒜1

Preprocessing phase

Group: 𝔾𝔾 = 𝑔𝑔 Advice: 𝑠𝑠𝑖𝑖𝔾𝔾

Solution:
𝑥𝑥 ∈ ℤ𝑁𝑁

Instance: 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾

Online phase

Advice size 𝑆𝑆

Online time 𝑇𝑇

Preprocessing time 𝑃𝑃

Success prob. 𝜖𝜖 28Initiated by Hellman (1980) in context of OWFs

Rest of this talk
Background: Preprocessing attacks are relevant

• Preexisting 𝑆𝑆 = 𝑇𝑇 = �𝑂𝑂(𝑁𝑁1/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The �𝑂𝑂(𝑁𝑁1/3) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω(𝑁𝑁2/3)
• New �𝑂𝑂(𝑁𝑁1/5) preprocessing attack on DDH-like problem

Open questions

29

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
• uses 𝑆𝑆 bits of group-specific advice,
• uses 𝑇𝑇 online time, and
• succeeds with probability 𝜖𝜖,
such that:

𝑆𝑆𝑇𝑇2 = �𝑂𝑂(𝜖𝜖𝑁𝑁)
Will sketch the algorithm for
𝑆𝑆 = 𝑇𝑇 = 𝑁𝑁1/3, constant 𝜖𝜖.

30

A preexisting result…

…. building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCD04,BL12]

Preliminaries

Define a pseudo-random walk on 𝔾𝔾:
𝑔𝑔𝑥𝑥 ↦ 𝑔𝑔𝑥𝑥+𝛼𝛼 where 𝛼𝛼 = Hash 𝑔𝑔𝑥𝑥

is a random function

𝑔𝑔𝑥𝑥 𝑔𝑔𝑥𝑥+𝛼𝛼1 𝑔𝑔𝑥𝑥+∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑔𝑔𝑥𝑥+𝛼𝛼1+𝛼𝛼2 … = 𝒈𝒈𝒚𝒚

31

𝑦𝑦…𝑥𝑥

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

Advice string

𝑁𝑁
1/3

chains
Length: 𝑁𝑁1/3

…

Preprocessing phase
• Build 𝑁𝑁1/3 chains of

length 𝑁𝑁1/3

• Store dlogs of chain
endpoints

Online phase
• Walk 𝑂𝑂(𝑁𝑁1/3) steps
• When you hit a

stored point, output
the discrete log

Advice: �𝑂𝑂(𝑁𝑁1/3) bits

Time: �𝑂𝑂(𝑁𝑁1/3) steps

…

𝑔𝑔𝑥𝑥

32
Preprocessing time: �Ω(𝑁𝑁2/3)

[M10, LCH11, BL13]

Generic discrete log
Without preprocessing: Ω 𝑁𝑁1/2 𝟐𝟐𝟏𝟏𝟐𝟐𝟏𝟏 time

With preprocessing: �𝑂𝑂(𝑁𝑁1/3) 𝟐𝟐𝟏𝟏𝟖𝟖 time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

“

Is this dlog attack
the best possible?!

256-bit ECDL

33

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

Could there exist a generic
dlog preprocessing attack

with 𝑆𝑆 = 𝑇𝑇 = 𝑁𝑁1/10?
Preprocessing attacks
might make us worry

about 256-bit EC groups 34

35

This talk
Background: Preprocessing attacks are relevant

• Preexisting 𝑆𝑆 = 𝑇𝑇 = �𝑂𝑂(𝑁𝑁1/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The �𝑂𝑂(𝑁𝑁1/3) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω(𝑁𝑁2/3)
• New �𝑂𝑂(𝑁𝑁1/5) preprocessing attack on DDH-like problem

Open questions

36

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses 𝑆𝑆 bits of group-specific advice,
• uses 𝑇𝑇 online time, and
• succeeds with probability 𝜖𝜖,
must satisfy:

𝑆𝑆𝑇𝑇2 = �Ω(𝜖𝜖𝑁𝑁)
This bound is tight for the
full range of parameters

(up to log factors)

37

Shoup’s proof technique (1997) relies on 𝒜𝒜 having no information
about the group 𝔾𝔾 when it starts running

 Need different proof technique

Theorem. [Our paper]
Furthermore, the preprocessing time 𝑃𝑃 must satisfy

𝑃𝑃𝑇𝑇 + 𝑇𝑇2 = Ω(𝜖𝜖𝑁𝑁)

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses 𝑆𝑆 bits of group-specific advice,
• uses 𝑇𝑇 online time, and
• succeeds with probability 𝜖𝜖,
must satisfy:

𝑆𝑆𝑇𝑇2 = �Ω(𝜖𝜖𝑁𝑁)

38

Online time 𝑁𝑁1/3 implies
Ω(𝑁𝑁2/3) preprocessing

Open questions and recent progress
• Tightness of DDH upper/lower bounds?

• Is it as hard as dlog or as easy as sqDDH?
• Non-generic preprocessing attacks on ECDL?

• As we have for ℤ𝑝𝑝∗

Coretti, Dodis, and Guo (2018)
• Elegant proofs of generic-group lower bounds using “presampling”

(à la Unruh, 2007)
• Prove hardness of “one-more” dlog, KEA assumptions, …

39

Auxiliary-Input Attacker Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version:
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online attacker 𝐴𝐴2

after viewing entire truth table 𝐻𝐻(.)
• 𝐴𝐴2 will try to win security games using this hint

• (S,T,p)-attacker
• 𝐴𝐴1 outputs a S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by

parameters p.
• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀

40

Bit-Fixing Model for Pre-Processing Attacks

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version:
• Offline attacker 𝐴𝐴1 fixes output of random oracle 𝐻𝐻(.) at P locations and then

outputs a S-bit hint.
• 𝐴𝐴2 initially knows nothing about remaining unfixed values i.e., 𝐻𝐻(𝑥𝑥) picked

randomly for 𝑥𝑥 ∉ 𝑃𝑃 after 𝐴𝐴1 generates hint
• (P,T,p)-attacker

• 𝐴𝐴1 fixes H on at most P locations and outputs S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by

parameters p.

• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀

41

Bit-Fixing Model (Unruh)

• Pro: Much easier to prove lower bounds in Bit-Fixing Model
• Con: Bit-Fixing model is not a compelling model for pre-processing

attacks

• Usage: Lower bound in bit-fixing model  Lower bound in Auxilliary-
Input Model

• This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications 

• Other applications require a different approach (e.g., compression)

42

43

44

Relationship: BF-RO and AI-RO

Example: Set 𝛾𝛾 = 2−2𝜆𝜆 and the advantage is roughly 𝜀𝜀′ + 2 𝑆𝑆+2𝜆𝜆 𝑇𝑇
𝑃𝑃

Balancing: 𝜀𝜀′ usually increases with 𝑃𝑃 i.e., as BF-attacker gets to fix
more and more points.

45

Relationship: BF-RO and AI-RO

46

Application: Function-Inversion

• Challenger: Picks x in 0,1 𝜆𝜆 and sends y=H(x) to online attacker
where y in 0,1 𝜆𝜆

• Goal: Find x’ such that H(x’)=y (online attacker may use hints)

• Bit-Fixing Attacker: 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Let 𝐿𝐿 = { 𝑥𝑥1𝑥,𝑦𝑦1𝑥 , … , 𝑥𝑥𝑃𝑃𝑥,𝑦𝑦𝑃𝑃𝑥 } denote set of points fixed by 𝐴𝐴1
• Let Ε𝑥 be the event that 𝑥𝑥 = 𝑥𝑥𝑖𝑖𝑥 or 𝑥𝑥 = 𝑦𝑦𝑖𝑖𝑥 for some 𝑖𝑖 ≤ 𝑃𝑃
• Pr Ε′ ≤ Pr ∃𝑖𝑖. 𝑥𝑥 = 𝑥𝑥𝑖𝑖𝑥 + Pr ∃𝑖𝑖.𝑦𝑦 = 𝑦𝑦𝑖𝑖′| ∀𝑖𝑖. 𝑥𝑥 ≠ 𝑥𝑥𝑖𝑖′ ≤ 𝑃𝑃

2𝜆𝜆
+ 𝑃𝑃

2𝜆𝜆

47

x is random 𝑦𝑦𝑖𝑖′ = H(𝑥𝑥𝑖𝑖′) is uniformly random if not previously fixed i.e., 𝑥𝑥 ≠ 𝑥𝑥𝑖𝑖′ for all i

Application: Function-Inversion
• Challenger: Picks x in 0,1 𝜆𝜆 and sends y=H(x) to online attacker where y in

0,1 𝜆𝜆

• Goal: Find x’ such that H(x’)=y (may use hints)

• Bit-Fixing Attacker: 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Let 𝐿𝐿 = { 𝑥𝑥1𝑥,𝑦𝑦1𝑥 , … , 𝑥𝑥𝑃𝑃𝑥,𝑦𝑦𝑃𝑃𝑥 } denote set of points fixed by 𝐴𝐴1
• Let Ε𝑥 be the event that 𝑥𝑥 = 𝑥𝑥𝑖𝑖𝑥 or 𝑥𝑥 = 𝑦𝑦𝑖𝑖𝑥 for some 𝑖𝑖 ≤ 𝑃𝑃
• Let 𝑄𝑄 = { 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 } denote queries made by 𝐴𝐴2 with corresponding

answers
• Let Ε𝑖𝑖 be the event that 𝑥𝑥 = 𝑥𝑥𝑖𝑖 or 𝑦𝑦 = 𝑦𝑦𝑖𝑖
• Pr Ε𝑖𝑖 �Ε𝑥 ∩ Ε1 ∩ ... ∩ Ε𝑖𝑖−1] ≤ 1

2𝜆𝜆−𝑃𝑃− 𝑖𝑖−1
+ 1

2𝜆𝜆

48

Pr[𝑥𝑥 = 𝑥𝑥𝑖𝑖| …] note that x is random, and there
2𝜆𝜆 − 𝑃𝑃 − 𝑖𝑖 − 1 remaining possible values

Pr[𝑦𝑦 = 𝑦𝑦𝑖𝑖| …] note that
𝑦𝑦𝑖𝑖 = H(𝑥𝑥𝑖𝑖) is uniformly random if
not previously fixed i.e., if 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥,
𝑥𝑥𝑖𝑖 not in 𝐿𝐿 and 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗 for all j<i,

Application: Function-Inversion

• Challenger: Picks x in 0,1 𝜆𝜆 and sends y=H(x) to online attacker
where y in 0,1 𝜆𝜆

• Goal: Find x’ such that H(x’)=y (may use hints)

• Bit-Fixing Attacker: 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Attacker wins with probability at most

Pr Ε′ + �
𝑖𝑖≤𝑞𝑞

Pr Ε𝑖𝑖 �Ε𝑥 ∩ Ε1 ∩ ... ∩ Ε𝑖𝑖−1] ≤
2𝑃𝑃 + 𝑞𝑞

2𝜆𝜆
+

𝑞𝑞
2𝜆𝜆 − 𝑃𝑃 − 𝑞𝑞

≤
2𝑃𝑃 + 3𝑞𝑞

2𝜆𝜆

49

Assume 𝑃𝑃 + 𝑞𝑞 ≤ 2𝜆𝜆−1

Application: Function-Inversion
• Bit-Fixing Attacker: 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2

• Attacker wins with probability at most

Pr Ε′ + �
𝑖𝑖≤𝑞𝑞

Pr Ε𝑖𝑖′ �Ε𝑥 ∩ Ε1 ∩ ... ∩ Ε𝑖𝑖−1] ≤
2𝑃𝑃 + 𝑞𝑞

2𝜆𝜆
+

𝑞𝑞
2𝜆𝜆 − 𝑃𝑃 − 𝑞𝑞

Set 𝑃𝑃 ≥ 6 𝑆𝑆 + 2𝜆𝜆 𝑇𝑇 Auxilliary-Input Attacker wins with Probability at most

2
6 𝑆𝑆 + 2𝜆𝜆 𝑇𝑇 + 𝑇𝑇

2𝜆𝜆
+

6 𝑆𝑆 + 2𝜆𝜆 𝑇𝑇
2𝜆𝜆 − 6 𝑆𝑆 + 2𝜆𝜆 𝑇𝑇 − 𝑇𝑇

+ 2−2𝜆𝜆 = 𝑂𝑂
𝑆𝑆𝑇𝑇 + 𝜆𝜆𝑇𝑇

2𝜆𝜆

50

Review: Bit-Fixing vs Auxiliary Input

• Auxiliary-Input: (S,T,p)-attacker
• 𝐴𝐴1 outputs a S-bit hint based entire description of ideal-object
• 𝐴𝐴2 makes at most T oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as

specified by parameters p.

• Bit-Fixing: (P,S,T,p)-attacker
• 𝐴𝐴1 fixes at most P input/output pairs and outputs a S-bit hint. The remaining

ideal object is picked randomly subject to this restriction.
• 𝐴𝐴2 makes at most T oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as

specified by parameters p.

51

Bit-Fixing Model (Unruh)

• Pro: Much easier to prove lower bounds in Bit-Fixing Model
• Con: Bit-Fixing model is not a compelling model for pre-processing

attacks

• Usage: Lower bound in bit-fixing model  Lower bound in Auxilliary-
Input Model

• This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications 

• Other applications require a different approach (e.g., compression)

52

Relationship Bit-Fixing and Auxilliary Input

53

Generic Group Lower Bound
• Discrete Log Problem: Given generator 𝑔𝑔 and 𝑔𝑔𝑥𝑥 find 𝑥𝑥
• Generic Group Version: Given 𝜏𝜏 1 and 𝜏𝜏 𝑥𝑥 find x

• Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles
succeeds with probability at most

𝑂𝑂
𝑞𝑞2

22𝜆𝜆

• Proof Sketch: Initialize two sets 𝐾𝐾 = { 1, 𝜏𝜏 1 } and 𝑈𝑈 = { 𝑥𝑥, 𝜏𝜏 𝑥𝑥 }
• 𝐾𝐾 Discrete Log Known
• U  Discrete Log Depends on Unknown x
• mult 𝜏𝜏 1 , 𝜏𝜏(1) = 𝜏𝜏 2  Add 2, 𝜏𝜏 2 to 𝐾𝐾
• mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑥𝑥) = 𝜏𝜏 2𝑥𝑥  Add 2𝑥𝑥, 𝜏𝜏 𝑥𝑥 + 1 to 𝑈𝑈
• mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(1) = 𝜏𝜏 𝑥𝑥 + 1  Add 𝑥𝑥 + 1, 𝜏𝜏 𝑥𝑥 + 1 to 𝑈𝑈
• Each new query adds item to 𝐾𝐾 or 𝑈𝑈
• Cannot learn x unless sets intersect e.g., mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏(𝑥𝑥 + 1) = 𝜏𝜏 2𝑥𝑥 + 1 is found in 𝐾𝐾
• Sets remain disjoint with probability ≈ 𝑈𝑈 |𝐾𝐾|

22𝜆𝜆
≤ 𝑞𝑞2

22𝜆𝜆
• Technical Note: If attacker queries mult 𝜘𝜘, . for fresh 𝜘𝜘 which is not in 𝐾𝐾 or 𝑈𝑈 then can add 𝜏𝜏−1 𝜘𝜘 ,𝜘𝜘 to K

Generic Group Lower Bound with Bit-Fixing

• Generic Group Version Lower Bound: Any Bit-Fixing attacker making
q queries to GGM oracles (online) and fixing at most P points
succeeds with probability at most

𝑂𝑂
𝑞𝑞2 + 𝑞𝑞𝑃𝑃

22𝜆𝜆

55

Proof Sketch: Let 𝑳𝑳 = 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 , … , 𝒙𝒙𝑷𝑷,𝒚𝒚𝑷𝑷 denote the fixed points where attacker fixed 𝜏𝜏 𝑥𝑥𝑖𝑖 = 𝒚𝒚𝒊𝒊
Initialize two sets 𝐾𝐾 = 1, 𝜏𝜏 1 ∪ 𝐿𝐿 and 𝑈𝑈 = { 𝑥𝑥, 𝜏𝜏 𝑥𝑥 }

𝐾𝐾 Discrete Log Known
U  Discrete Log Depends on Unknown x
Each new query adds item to 𝐾𝐾 or 𝑈𝑈
Cannot learn x unless sets intersect

Sets remain disjoint with probability ≈ 𝑈𝑈 |𝐾𝐾|
22𝜆𝜆

≤ 𝑞𝑞2

22𝜆𝜆

Generic Group Lower Bound with
Preprocessing Attacker
• Generic Group Version Lower Bound: Any auxiliary-input attacker

making q queries to GGM oracles (online) and with a S bit hint
points succeeds with probability at most

𝑂𝑂
𝑞𝑞2 + 𝑞𝑞2(𝑆𝑆 + 𝜆𝜆)

22𝜆𝜆

56

Proof Sketch: Set 𝑃𝑃 = 𝑂𝑂 𝑆𝑆 + 2𝜆𝜆 𝑞𝑞 for our bit-fixing attacker A bit-fixing attacker succeeds with probability at most

𝜀𝜀 = 𝑂𝑂
𝑞𝑞2 + 𝑞𝑞2(𝑆𝑆 + 𝜆𝜆)

22𝜆𝜆

It follows that the AI-attacker succeeds with probability at most 2𝜀𝜀 + 2−2𝜆𝜆 = 𝑂𝑂 𝑞𝑞2+𝑞𝑞2(𝑆𝑆+𝜆𝜆)
22𝜆𝜆

Block-Ciphers with Leakage

• Ideal Cipher Model
• All parties have oracle access to 𝐸𝐸(�, �) and 𝐸𝐸−1(� , �)
• For any fixed key K the function 𝐸𝐸𝐾𝐾 𝑥𝑥 ≔ 𝐸𝐸(𝐾𝐾, 𝑥𝑥) is a truly random

permutation and 𝐸𝐸𝐾𝐾−1 𝑥𝑥 ≔ 𝐸𝐸−1(𝐾𝐾, 𝑥𝑥) is the inverse

• Question: Can we still safely use the block-cipher after S-bit leakage?

57

Block-Ciphers with Leakage

• Question: Can we still safely use the block-cipher after S-bit leakage?

• Leakage Security Game:
• Offline Attacker 𝐴𝐴1outputs S-bit hint
• Online Attacker has to predict secret bit b
• Real World (b=0): Online attacker may query 𝐸𝐸(�, �) , 𝐸𝐸−1(� , �), 𝐸𝐸(𝐾𝐾, �) and 𝐸𝐸−1(𝐾𝐾, �),

where K is a random key picked by the challenger
• Ideal World (b=1): Online attacker may query 𝐸𝐸(�, �) , 𝐸𝐸−1(� , �), 𝑓𝑓(�) and 𝑓𝑓−1(�) where 𝑓𝑓

is a truly random permutation (independent of block-cipher + hint).

• Online Attacker may make T queries to 𝐸𝐸(�, �) or 𝐸𝐸−1(� , �) and q queries to 𝐸𝐸(𝐾𝐾, �) or
𝐸𝐸−1(𝐾𝐾, �) when b=0 (resp. 𝑓𝑓(�) or 𝑓𝑓−1(�) when b=1)

58

Block-Ciphers with Leakage

• Leakage Security Game:
• Offline Attacker 𝐴𝐴1outputs S-bit hint
• Online Attacker has to predict secret bit b
• Real World (b=0): Online attacker may query 𝐸𝐸(�, �) , 𝐸𝐸−1(� , �), 𝐸𝐸(𝐾𝐾, �) and
𝐸𝐸−1(𝐾𝐾, �), where K is a random key picked by the challenger

• Ideal World (b=1): Online attacker may query 𝐸𝐸(�, �) , 𝐸𝐸−1(� , �), 𝑓𝑓(�) and 𝑓𝑓−1(�)
where 𝑓𝑓 is a truly random permutation (independent of block-cipher + hint).

• Analysis (Bit Fixing Attacker): Let
𝐿𝐿 = 𝐾𝐾′: ∃𝑥𝑥 𝑠𝑠. 𝑖𝑖.𝐸𝐸 𝐾𝐾, 𝑥𝑥 was fixed 𝑏𝑏𝑦𝑦 𝐴𝐴1

and observe that Pr 𝐾𝐾 ∈ 𝐿𝐿 ≤ |𝐿𝐿|2−𝜆𝜆.

59

Block-Ciphers with Leakage

• Analysis (Bit Fixing Attacker): Let
𝐿𝐿 = 𝐾𝐾′: ∃𝑥𝑥 𝑠𝑠. 𝑖𝑖.𝐸𝐸 𝐾𝐾, 𝑥𝑥 was fixed 𝑏𝑏𝑦𝑦 𝐴𝐴1

Pr 𝐾𝐾 ∈ 𝐿𝐿 ≤ 𝐿𝐿 2−𝜆𝜆 ≤ 𝑃𝑃2−𝜆𝜆

Let 𝐵𝐵𝑖𝑖 denote event that K = 𝐾𝐾𝑖𝑖 where 𝐾𝐾𝑖𝑖 is the key used in the ith query
to 𝐸𝐸 . , . or 𝐸𝐸−1(� , �)

Pr 𝐵𝐵𝑖𝑖 �𝐿𝐿 ∩ 𝐵𝐵1 ∩ ... ∩ 𝐵𝐵𝑖𝑖−1] ≤
1

2𝜆𝜆 − 𝑃𝑃 − 𝑖𝑖
≤

2
2𝜆𝜆

60

WLOG assume 𝑃𝑃 + 𝑇𝑇 ≤ 2𝜆𝜆−1
(otherwise upper bound on success rate of
bit-fixing attacker becomes 1 holds trivially)

2𝜆𝜆 − 𝑃𝑃 − 𝑖𝑖 possible keys remain

Block-Ciphers with Leakage

• Analysis (Bit Fixing Attacker): Let
𝐿𝐿 = 𝐾𝐾′: ∃𝑥𝑥 𝑠𝑠. 𝑖𝑖.𝐸𝐸 𝐾𝐾, 𝑥𝑥 was fixed 𝑏𝑏𝑦𝑦 𝐴𝐴1

Pr 𝐾𝐾 ∈ 𝐿𝐿 ≤ 𝐿𝐿 2−𝜆𝜆 ≤ 𝑃𝑃2−𝜆𝜆

Let 𝐵𝐵𝑖𝑖 denote event that K = 𝐾𝐾𝑖𝑖 where 𝐾𝐾𝑖𝑖 is the key used in the ith query to 𝐸𝐸 . , . or
𝐸𝐸−1(� , �)

If the attacker does not query K or fix an input for K then the attacker cannot distinguish
between b=0 or b=1 since 𝐸𝐸(𝐾𝐾, �) is a random permutation. Advantage is upper
bounded by

Pr 𝐿𝐿 + �
𝑖𝑖≤𝑇𝑇

Pr Ε𝑖𝑖 �𝐿𝐿 ∩ 𝐵𝐵1 ∩ ... ∩ 𝐵𝐵𝑖𝑖−1] ≤
𝑃𝑃
2𝜆𝜆

+
2𝑇𝑇
2𝜆𝜆

=
𝑃𝑃 + 2𝑇𝑇

2𝜆𝜆

61

Block-Ciphers with Leakage

• Analysis (Pre-Processing Attacker):

Advantage of pre-processing is upper bounded by

𝑂𝑂
𝑃𝑃 + 𝑇𝑇

2𝜆𝜆
+

𝑆𝑆 + 𝜆𝜆 (𝑇𝑇 + 𝑞𝑞)
𝑃𝑃

Set 𝑃𝑃 = 𝑆𝑆 + 𝜆𝜆 𝑇𝑇2𝜆𝜆 𝑂𝑂 𝑇𝑇
2𝜆𝜆

+ 𝑆𝑆+𝜆𝜆 (𝑇𝑇+𝑞𝑞)
2𝜆𝜆

62

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇 + 1 combined # of
queries to ideal object

Block-Ciphers with Leakage

• Thm (Informal): an ideal cipher is 𝑺𝑺,𝑻𝑻,𝒒𝒒 , 𝜺𝜺 -secure against preprocessing
attacks in the auxiliary-input model with

𝜺𝜺 = 𝑂𝑂
𝑇𝑇
2𝜆𝜆

+
𝑆𝑆 + 𝜆𝜆 (𝑇𝑇 + 𝑞𝑞)

2𝜆𝜆

Best Attack: 𝜀𝜀 = Ω 𝑇𝑇
2𝜆𝜆

+ 𝑆𝑆
2𝜆𝜆

Open Question: Better attack or tighter lower-bound?
Note: Lower-bound likely requires different techniques (e.g., compression?)

63

Sponge-Construction

• Input: 𝑚𝑚 = (𝑚𝑚1, … ,𝑚𝑚ℓ) with 𝑚𝑚𝑖𝑖 ∈ 0,1 𝑟𝑟

• 𝑠𝑠0 = 𝑠𝑠0
(1) �𝑠𝑠0

(2) where 𝑠𝑠0
(1) = 0𝑟𝑟 and 𝑠𝑠0

(2) = 0𝑐𝑐 and

• For 𝑖𝑖 = 1, … , ℓ; set 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖
(1) �𝑠𝑠𝑖𝑖

(2) = 𝜋𝜋 𝑠𝑠𝑖𝑖−1
(1)⨁𝑚𝑚𝑖𝑖 �𝑠𝑠𝑖𝑖−1

(2)

• Output: 𝑠𝑠ℓ
(1)

• Collision-Game: Attacker 𝐴𝐴1outputs s-bit hint based on ideal permutation
𝜋𝜋. 𝐴𝐴2 tries to find collision for sponge construction.

64

Sponge-Construction: Spongeπ(.)
• Input: 𝑚𝑚 = (𝑚𝑚1, … ,𝑚𝑚ℓ) with 𝑚𝑚𝑖𝑖 ∈ 0,1 𝑟𝑟

• 𝑠𝑠0 = 𝑠𝑠0
(1) �𝑠𝑠0

(2) where 𝑠𝑠0
(1) = 0𝑟𝑟 and 𝑠𝑠0

(2) = 0𝑐𝑐 and

• For 𝑖𝑖 = 1, … , ℓ; set 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖
(1) �𝑠𝑠𝑖𝑖

(2) = 𝜋𝜋 𝑠𝑠𝑖𝑖−1
(1)⨁𝑚𝑚𝑖𝑖 �𝑠𝑠𝑖𝑖−1

(2)

• Output: Spongeπ 𝑚𝑚1, … ,𝑚𝑚ℓ : = 𝑠𝑠ℓ
(1)

• Pre-processing Attack: Find 𝑚𝑚1 and 𝑚𝑚2 such that 𝜋𝜋 𝑚𝑚1 �0𝑐𝑐 and
𝜋𝜋 𝑚𝑚2 �0𝑐𝑐 match on first r-bits. 𝐴𝐴1 outputs hint 𝑚𝑚1 and 𝑚𝑚2.

65

Salted Sponge-Construction: Spongeπ,IV(.)
• Input: 𝑚𝑚 = (𝑚𝑚1, … ,𝑚𝑚ℓ) with 𝑚𝑚𝑖𝑖 ∈ 0,1 𝑟𝑟

• 𝑠𝑠0 = 𝑠𝑠0
(1) �𝑠𝑠0

(2) where 𝑠𝑠0
(1) = 0𝑟𝑟 and 𝑠𝑠0

(2) = 𝐼𝐼𝐼𝐼 ∈ 0,1 𝑐𝑐 (random salt) For 𝑖𝑖 =
1, … , ℓ; set 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖

(1) �𝑠𝑠𝑖𝑖
(2) = 𝜋𝜋 𝑠𝑠𝑖𝑖−1

(1)⨁𝑚𝑚𝑖𝑖 �𝑠𝑠𝑖𝑖−1
(2)

• Output: 𝑠𝑠ℓ
(1)

• Question: Is the salted sponge-construction secure against pre-processing attacks?
• Parameters: Attacker gets S-bit hint, q queries to 𝜋𝜋 or 𝜋𝜋−1 and outputs a collision of

length at most ℓ.
• First Step: Analyze a bit-fixing attacker who can fix P input/outputs for 𝜋𝜋

66

Salted Sponge-Construction

• Input: 𝑚𝑚 = (𝑚𝑚1, … ,𝑚𝑚ℓ) with 𝑚𝑚𝑖𝑖 ∈ 0,1 𝑟𝑟

• 𝑠𝑠0 = 𝑠𝑠0
(1) �𝑠𝑠0

(2) where 𝑠𝑠0
(1) = 0𝑟𝑟 and 𝑠𝑠0

(2) = 𝐼𝐼𝐼𝐼 ∈ 0,1 𝑐𝑐 (random salt) For

𝑖𝑖 = 1, … , ℓ; set 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖
(1) �𝑠𝑠𝑖𝑖

(2) = 𝜋𝜋 𝑠𝑠𝑖𝑖−1
(1)⨁𝑚𝑚𝑖𝑖 �𝑠𝑠𝑖𝑖−1

(2)

• Output: 𝑠𝑠ℓ
(1)

• First Step: Analyze a bit-fixing attacker who can fix P input/outputs for 𝜋𝜋
• At the cost of 2ℓ additional queries to 𝜋𝜋 we can assume (WLOG) that the

attacker who outputs m and m𝑥 has queried 𝜋𝜋 at all points needed to evaluate
Spongeπ 𝑚𝑚 and Spongeπ 𝑚𝑚𝑥 since m and m𝑥 are at most ℓ-blocks long

67

Analysis Tool 1: Permutation Graph

Permutation Graph: 𝐺𝐺𝜋𝜋
• Nodes: 𝐼𝐼 = 0,1 𝑐𝑐+𝑟𝑟

• Directed Edges: (𝑠𝑠, 𝑖𝑖 = 𝜋𝜋 𝑠𝑠)
• Each node has indegree 1 and outdegree 1

• Label Edges with first 𝑟𝑟 bits of output 𝑖𝑖(1) �𝑖𝑖(2) = 𝜋𝜋 𝑠𝑠

• Special Start node: 𝑠𝑠0 = 0𝑟𝑟‖𝐼𝐼𝐼𝐼
• A sponge-input 𝑚𝑚 = (𝑚𝑚1, … ,𝑚𝑚ℓ) with 𝑚𝑚𝑖𝑖 ∈ 0,1 𝑟𝑟 defines a path in

the above graph 𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠ℓ with 𝑠𝑠𝑖𝑖 = 𝜋𝜋 𝑠𝑠𝑖𝑖−1
(1)⨁𝑚𝑚𝑖𝑖 �𝑠𝑠𝑖𝑖−1

(2)

68

s 𝜋𝜋 𝑠𝑠
𝑖𝑖(1)

Analysis Tool 1: Permutation Graph

Permutation Graph: 𝐺𝐺𝜋𝜋
• Nodes: 𝐼𝐼 = 0,1 𝑐𝑐+𝑟𝑟

• Directed Edges: (𝑠𝑠, 𝑖𝑖 = 𝜋𝜋 𝑠𝑠)
• Each node has indegree 1 and outdegree 1
• Label Edges with first 𝑟𝑟 bits of output 𝑖𝑖(1) �𝑖𝑖(2) = 𝜋𝜋 𝑠𝑠

• Call a node s prefixed if 𝐴𝐴1 fixed the value of 𝜋𝜋 𝑠𝑠

• Attacker is only aware of some of the edges e.g., after making q queries to 𝜋𝜋
attacker is only aware at most P+q directed edges.

• Let 𝐺𝐺𝜋𝜋,0 denote initial known graph (using only edges defined by P prefixed
points)

• Let 𝐺𝐺𝜋𝜋,𝑖𝑖 denote known graph after i queries to 𝜋𝜋 or 𝜋𝜋−1

69

s 𝜋𝜋 𝑠𝑠
𝑖𝑖(1)

Analysis Tool 1: Permutation Graph

Permutation Graph: 𝐺𝐺𝜋𝜋
• Nodes: 𝐼𝐼 = 0,1 𝑐𝑐+𝑟𝑟

• Directed Edges: (𝑠𝑠, 𝑖𝑖 = 𝜋𝜋 𝑠𝑠)
• Each node has indegree 1 and outdegree 1
• Label Edges with first 𝑟𝑟 bits of output 𝑖𝑖(1) �𝑖𝑖(2) = 𝜋𝜋 𝑠𝑠

• Let 𝐺𝐺𝜋𝜋,0 denote initial known graph (using only edges defined by P prefixed points)
• Let 𝐺𝐺𝜋𝜋,𝑖𝑖 denote known graph after i queries to 𝜋𝜋 or 𝜋𝜋−1

• Special Start node: 𝑠𝑠∗ = 0𝑟𝑟‖𝐼𝐼𝐼𝐼
• Collision ⟺ for some label 𝑖𝑖(1) ∈ 0,1 𝑟𝑟are two distinct paths from start node 𝑠𝑠∗

both ending an edge labeled 𝑖𝑖(1) in 𝐺𝐺𝜋𝜋,𝑞𝑞

70

s 𝜋𝜋 𝑠𝑠
𝑖𝑖(1)

Analysis Tool 2: Super-Node Graph

Permutation Super Graph
• Nodes: 𝐼𝐼′ = 0,1 𝑐𝑐

• Directed Edges: (𝑠𝑠 2 , 𝑖𝑖 2) ∈ 𝐸𝐸𝑥 iff there exists strings 𝑠𝑠 1 , 𝑖𝑖 1 ∈ 0,1 𝑟𝑟 such
that 𝑖𝑖(1) �𝑖𝑖(2) = 𝜋𝜋 𝑠𝑠(1) �𝑠𝑠(2)

• Label edges with (𝑠𝑠 1 , 𝑖𝑖 1)

• Starting Super-node: 𝐼𝐼𝐼𝐼 ∈ 0,1 𝑐𝑐

• Let 𝐺𝐺0 denote the initial super-graph (defined using P fixed points)
• Let 𝐺𝐺𝑖𝑖 denote the super-graph after i queries to 𝜋𝜋 or 𝜋𝜋−1
• Call a super-node 𝑠𝑠 2 ∈ 0,1 𝑐𝑐 ``pre-fixed” if there exists 𝑠𝑠 1 ∈ 0,1 𝑟𝑟 such that

s = 𝑠𝑠(1) �𝑠𝑠(2) was pre-fixed

71

𝑠𝑠(2) 𝑖𝑖(2)
(𝑠𝑠 1 , 𝑖𝑖 1)

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

• Starting Super-node: 𝐼𝐼𝐼𝐼 ∈ 0,1 𝑐𝑐

• Let 𝐺𝐺0 denote the initial super-graph (defined using P fixed points)
• Let 𝐺𝐺𝑖𝑖 denote the super-graph after i queries to 𝜋𝜋 or 𝜋𝜋−1
• Call a super-node 𝑠𝑠 2 ∈ 0,1 𝑐𝑐 ``pre-fixed” if there exists 𝑠𝑠 1 ∈ 0,1 𝑟𝑟 such that s =
𝑠𝑠(1) �𝑠𝑠(2) was pre-fixed

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈ 0,1 𝑐𝑐

Pr 𝐵𝐵0 = Pr[IV prefixed] ≤
𝑃𝑃
2𝑐𝑐

72

𝑠𝑠(2) 𝑖𝑖(2)
(𝑠𝑠 1 , 𝑖𝑖 1)

Analysis Tool 2: Super-Node Graph

Permutation Super Graph

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈

0,1 𝑐𝑐

• If 𝐵𝐵𝑇𝑇+2ℓ does not occur then every supernode has one incoming edge and the
value 𝑖𝑖 1 ∈ 0,1 𝑟𝑟 (potential hash output) is uniform.

Pr 𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝐼𝐼𝑂𝑂𝑁𝑁| 𝐵𝐵𝑇𝑇+2ℓ ≤
𝑇𝑇 + 2ℓ

2
2−𝑟𝑟

73

𝑠𝑠(2) 𝑖𝑖(2)
(𝑠𝑠 1 , 𝑖𝑖 1)

Probability of Bad Event (Forward Query)

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈ 0,1 𝑐𝑐

Suppose that no bad event has occurred after the first i-1 queries to 𝜋𝜋 or 𝜋𝜋−1
and that the ith query is of the form

𝜋𝜋 𝑖𝑖(1) �𝑖𝑖(2) = 𝑦𝑦(1) �𝑦𝑦(2)

Adds edge from supernode 𝑖𝑖(2) to 𝑦𝑦(2).
Bad if there was already a path to 𝑦𝑦(2) or if 𝑦𝑦(2) was fixed.

At most (𝑖𝑖 + 𝑃𝑃)2𝑟𝑟 bad outputs for 𝜋𝜋 𝑖𝑖(1) �𝑖𝑖(2) out of 2𝑟𝑟+𝑐𝑐 − 𝑖𝑖 − 1 + 𝑃𝑃
possibilities

74

Probability of Bad Event (Forward Query)

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈

0,1 𝑐𝑐

Suppose that no bad event has occurred after the first i-1 queries to 𝜋𝜋 or
𝜋𝜋−1 and that the ith query is of the form

𝜋𝜋 𝑖𝑖(1) �𝑖𝑖(2) = 𝑦𝑦(1) �𝑦𝑦(2)

Adds edge from supernode 𝑖𝑖(2) to 𝑦𝑦(2). Bad if there was already a path to
𝑦𝑦(2) or if 𝑦𝑦(2) was fixed.

Pr 𝐵𝐵𝑖𝑖 𝐵𝐵1 ∩ ... ∩ 𝐵𝐵𝑖𝑖−1] ≤
𝑖𝑖 + 𝑃𝑃 2𝑟𝑟

2𝑐𝑐+𝑟𝑟 − 𝑖𝑖 − 1 + 𝑃𝑃
≤
𝑖𝑖 + 𝑃𝑃
2𝑐𝑐−1

75WLOG assume 𝑃𝑃 + 𝑇𝑇 + 2ℓ ≤ 2𝑐𝑐+𝑟𝑟−1

Probability of Bad Event (Inverse Query)

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈ 0,1 𝑐𝑐

Suppose that no bad event has occurred after the first i-1 queries to 𝜋𝜋 or 𝜋𝜋−1
and that the ith query is of the form

𝜋𝜋−1 𝑦𝑦(1) �𝑦𝑦(2) = 𝑖𝑖(1) �𝑖𝑖(2)

Adds edge from supernode 𝑖𝑖(2) to 𝑦𝑦(2).
Potentially bad if there was already a path from IV to 𝑦𝑦(2).

At most 𝑖𝑖2𝑟𝑟 bad outputs form 𝜋𝜋−1 𝑦𝑦(1) �𝑦𝑦(2) out of 2𝑟𝑟+𝑐𝑐 − 𝑖𝑖 − 1 + 𝑃𝑃
possibilities

76

Probability of Bad Event (Inverse Query)

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some

supernode x ∈ 0,1 𝑐𝑐

Suppose that no bad event has occurred after the first i-1 queries to
𝜋𝜋 or 𝜋𝜋−1 and that the ith query is of the form

𝜋𝜋−1 𝑦𝑦(1) �𝑦𝑦(2) = 𝑖𝑖(1) �𝑖𝑖(2)

Pr 𝐵𝐵𝑖𝑖 𝐵𝐵1 ∩ ... ∩ 𝐵𝐵𝑖𝑖−1] ≤
𝑖𝑖2𝑟𝑟

2𝑐𝑐+𝑟𝑟 − 𝑖𝑖 − 1 + 𝑃𝑃
≤

𝑖𝑖
2𝑐𝑐−1

≤
𝑖𝑖 + 𝑃𝑃
2𝑐𝑐−1

77WLOG assume 𝑃𝑃 + 𝑇𝑇 + 2ℓ ≤ 2𝑐𝑐+𝑟𝑟−1

Probability of Bad Event (Total)

• Let 𝐵𝐵𝑖𝑖 denote the event that either
• (1) 𝐺𝐺𝑖𝑖 contains a path from starting node IV to some pre-fixed
• (2) 𝐺𝐺𝑖𝑖 contains two distinct paths from starting node IV to x for some supernode x ∈

0,1 𝑐𝑐

• After all 𝑇𝑇 + 2ℓ queries we have

Pr 𝐵𝐵𝑇𝑇+2ℓ ≤ Pr 𝐵𝐵0 + �
𝑖𝑖=1

𝑇𝑇+2ℓ

Pr 𝐵𝐵𝑖𝑖 𝐵𝐵1 ∩ ... ∩ 𝐵𝐵𝑖𝑖−1]

≤
𝑃𝑃
2𝑐𝑐

+ �
𝑖𝑖=1

𝑇𝑇+2ℓ
𝑖𝑖 + 𝑃𝑃
2𝑐𝑐−1

≤
(𝑇𝑇 + ℓ)2+𝑇𝑇𝑃𝑃 + 2ℓ𝑃𝑃 + 𝑃𝑃

2𝑐𝑐−1

78

Probability of Collision (Bit-Fixing)

Pr 𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝐼𝐼𝑂𝑂𝑁𝑁| 𝐵𝐵𝑇𝑇+2ℓ ≤
𝑇𝑇 + 2ℓ

2
2−𝑟𝑟

Pr 𝐵𝐵𝑇𝑇+2ℓ ≤
(𝑇𝑇 + ℓ)2+𝑇𝑇𝑃𝑃 + 2ℓ𝑃𝑃 + 𝑃𝑃

2𝑐𝑐−1

Pr 𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝐼𝐼𝑂𝑂𝑁𝑁 ≤
𝑇𝑇 + 2ℓ

2
2−𝑟𝑟 +

(𝑇𝑇 + ℓ)2+𝑇𝑇𝑃𝑃 + 2ℓ𝑃𝑃 + 𝑃𝑃
2𝑐𝑐−1

79

Probability of Collision: Auxilliary-Input

• Bit-Fixing(P): Pr 𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝐼𝐼𝑂𝑂𝑁𝑁 ≤ 𝑇𝑇+2ℓ
2 2−𝑟𝑟 + (𝑇𝑇+ℓ)2+𝑇𝑇𝑃𝑃+2ℓ𝑃𝑃+𝑃𝑃

2𝑐𝑐−1

• Set 𝑃𝑃 = 6(𝑆𝑆 + 𝑐𝑐 + 𝑟𝑟)(𝑇𝑇 + 2ℓ) to apply main theorem

Thm (Informal): Salted-Sponge is (𝑆𝑆,𝑇𝑇, ℓ , 𝜀𝜀)-secure in the auxiliary-
input model with

𝜀𝜀 ≤𝑂𝑂
𝑇𝑇 + ℓ 2

2𝑟𝑟−1
+

𝑇𝑇 + ℓ 2(𝑆𝑆 + 𝑐𝑐 + 𝑟𝑟)
2𝑐𝑐−1

80

81

Course Project Ideas: Analyze different construction vs pre-processing
attackers (easier) or tighten existing bounds (likely harder). 82

Reminder: Link Between BF-RO and AI-RO

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc…) as a black-box.

How is this result proved?

83

Leaky vs Dense Sources

• Idea 1: Leaky Source (auxiliary-input) can be replaced by convex
combination of (𝑃𝑃, 1 − 𝛿𝛿)-dense sources.

• Idea 2: Hard to distinguish between (𝑃𝑃, 1 − 𝛿𝛿)-dense source and P-bit-
fixing source after T queries

84

85

86

87

	Advanced Cryptography�CS 655
	Idealized Models of Computation	
	Warm-Up
	Warm-Up
	Warm-Up: Part 2
	Warm-Up: Part 2
	What Can We Do with Ideal Permutation?
	What Can We Do with Ideal Permutation?
	What Can We Do with Ideal Permutation?
	Pre-Processing Attacks
	Pre-Processing Attacks: Trivial Example
	Pre-Processing Lower Bounds
	Auxiliary-Input Attacker Model
	Generic Group Model (GGM)
	Generic Group Model (GGM)
	Generic Group Model
	Generic Group Lower Bound
	Generic Group Model
	Generic Group Model with Preprocessing
	GGM + ROM with Preprocessing
	The Discrete Logarithm Problem�with Preprocessing
	Slide Number 22
	The discrete-log problem
	Generic lower bounds give us confidence
	Generic algorithms can only make �“black-box” use of the group operation
	Existing generic lower bounds�do not account for preprocessing
	Slide Number 27
	Slide Number 28
	Rest of this talk
	Slide Number 30
	Preliminaries
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	This talk
	Slide Number 37
	Slide Number 38
	Open questions and recent progress
	Auxiliary-Input Attacker Model
	Bit-Fixing Model for Pre-Processing Attacks
	Bit-Fixing Model (Unruh)
	Slide Number 43
	Slide Number 44
	Relationship: BF-RO and AI-RO
	Relationship: BF-RO and AI-RO
	Application: Function-Inversion
	Application: Function-Inversion
	Application: Function-Inversion
	Application: Function-Inversion
	Review: Bit-Fixing vs Auxiliary Input
	Bit-Fixing Model (Unruh)
	Relationship Bit-Fixing and Auxilliary Input
	Generic Group Lower Bound
	Generic Group Lower Bound with Bit-Fixing
	Generic Group Lower Bound with Preprocessing Attacker
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Sponge-Construction
	Sponge-Construction: Sponge π (.)
	Salted Sponge-Construction: Sponge π,IV (.)
	Salted Sponge-Construction
	Analysis Tool 1: Permutation Graph
	Analysis Tool 1: Permutation Graph
	Analysis Tool 1: Permutation Graph
	Analysis Tool 2: Super-Node Graph
	Analysis Tool 2: Super-Node Graph
	Analysis Tool 2: Super-Node Graph
	Probability of Bad Event (Forward Query)
	Probability of Bad Event (Forward Query)
	Probability of Bad Event (Inverse Query)
	Probability of Bad Event (Inverse Query)
	Probability of Bad Event (Total)
	Probability of Collision (Bit-Fixing)
	Probability of Collision: Auxilliary-Input
	Slide Number 81
	Slide Number 82
	Reminder: Link Between BF-RO and AI-RO
	Leaky vs Dense Sources
	Slide Number 85
	Slide Number 86
	Slide Number 87

