Advanced Cryptography
CS 655

Week 4:

e Generic Group Model/lIdeal Permutation
 Pre-Computation Attacks

e Bit-Fixing Model/Auxiliary Input

e Compression Arguments

Spring 2023



|dealized Models of Computation

 Random Oracle Model
 All parties have oracle access to a truly random function H(-)

e |deal Permutation Model
 All {)arties have access to a truly random permutation f () and its inverse
=)

 |deal Cipher Model

e All parties have oracle access to E(+, -)and E~1(-, )

* For any fixed key K the function Ex(x) := E(K, x) is a truly random
permutation and Ex 1 (x) := E71(K, x) is the inverse

e Generic Group Model [Shoup 97]



Warm-Up

* In the random oracle model we are given y = H(x) for a random
value x. The attacker can make g queries to the random oracle. What
is the probability that the attacker can find a pre-image of y € (0,1}

* In the ideal-permutation model we are giveny = f(x) for a random
value x. What is the probability that the attacker can find a pre-image

of y € {0,1}* after at most q oracle queries?



Warm-Up

* In the random oracle model we are given y = H(x) for a random value x.
The attacker can make g queries to the random oracle. What ii the
probability that the attacker can find a pre-image of y € {0,1}*?

* Answer: At most 2q X 274 Let X1, s Xg denote the queries the attacker makes. The
robability one of the g queries is x is Pr[x € {xl, e, X }] <qX 271 Given that x ¢
Ex][, ,9{c we can view each H(x;) as a uniformly rangom string. Thus, we have
€ {H(

r x1), o, H(xg) ] € qx 274

y

* In the ideal-permutation model we are given y = f(x) for a random value
x. What is the probability that the attacker can find a pre-image of y €
{0,1}* after at most q oracle queries?

 Answer: There is a trivial attack using g=1 queries!

x=f"()



Warm-Up: Part 2

* In the Ideal-Cipher Model we are given (m, EK(m)) where K € {0,1}4
is random. The attacker may make g queries to the ideal cipher. What
is the probability that the attacker can find K?



Warm-Up: Part 2

* In the Ideal-Cipher Model we are given (m, EK(m)) where K € {0,1}4
is random. The attacker may make g queries to the ideal cipher. What
is the probability that the attacker can find K?

* Answer: At most q X 274 4 ﬁ (the probability of making a query of the

form E(K,.) plus the probability of guessing the correct key out of the
remaining 2% — q options if this query does not happen).

e Challenge: In the ideal-permutation model we are given y; where
y = (y1,¥2) = f(x) for arandom value x. What is the probability
that the attacker can finds x (or y,) after at most q oracle queries?



What Can We Do with Ideal Permutation?

 Answer 1: Build a Block-Cipher

e Evan-Mansor Block Cipher
° Key: K = (Klr KZ)

EMf,K(x) = f(K1®x)DK;

~1
EM;  (v) = f 1 (K, @y)DK;

Dunkelman et al. observed that one can safely use a single key K; = K, (see
https://eprint.iacr.org/2011/541.pdf)

Security Game for Block-Cipher: )
 B=0 (real world): Attacker is given oracle access to f(.), f "1(y) and EM,];(-) and EM; . () but
not the secret key K = (K, K5)

 B=0 (ideal world) Attacker is given oracle accessto f(.), f *(y) and m(.) = 1(.) where (.) is
truly random permutation (independent of f(.))


https://eprint.iacr.org/2011/541.pdf

What Can We Do with Ideal Permutation?

* Evan-Mansor Block Cipher
* Key: K = (K, K3)

* EM; x(x) = f(K:©x)DK;

* EMpix () = fTH(K,@y)®K,
* Dunkelman et al. observed that one can safely use a single key K; = K,

e Security Game for Block-Cipher:

* B=0 (real world): Attacker is given oracle access to f(.), f ~1(y) and EMg i () and EMf_,% )
but not the secret key K = (K, K>)

 B=0 (ideal world) Attacker is given oracle access to f(.), f1(y) and w(.) #~1(.) where r(.)
is truly random permutation (independent of f(.))

e Attacker’s advantage is at most O(CI];%) where gr (resp. ) denotes the number of
queries to f or f ™! (resp. EM; ; or EM; ;)



What Can We Do with Ideal Permutation?

 Answer 2: Build a Collision-Resistant Hash Function
e Sponge Construction: SHA3
e Input: P = (Py, Py, ..., P,,_1) viewed as r-bit blocks e.g.,
e |Input “absorbed” in multiple rounds Keccak (SHA3): |r|+]c|=1600-bit state

e Output squeezed out in subsequent rounds ¢ € {256,512, ..}
absorbing | squeezing

Fy Fy Phei | 7} 4
' i
|
& . o, o o, —‘L.-—-.
r 0 %"" —i- JL* —i- 'L ; - - _——
| i -
|
f f Fl o f f
() | — - = - . - = - S -
: 9
w L S - ot : L S . o




Pre-Processing Attacks

e Often times the same cipher/permutation/group/hash function is
used across multiple applications

* Adversary with nation-state level resources might spend a lot of time

pre-computing hints to help break protocols using these building
blocks

e Auxiliary-Input Attacker Model A = (4, 4,)

e Offline attacker A, is unbounded and outputs an S-bit hint for online
attacker A,

e A, will try to win security games using this hint



Pre-Processing Attacks: Trivial Example

* Auxiliary-Input Attacker Model A = (44, 45,)

e Offline attacker A, is unbounded, and can find collisions for our
random oracle H by brute-force.

e Output Hint: x; and x, such that H(x;) and H(x,)
* A, can trivially find a collision using this hint.

e However, we may still hope that A, (s, hint) cannot find x and x’ such
that H(s, x;) and H(s, x,) given a random salt s (picked after pre-
processing)



Pre-Processing Lower Bounds

* Auxiliary-Input Attacker Model A = (44, 45,)

e Offline attacker A, is unbounded and outputs an S-bit hint for online
attacker A,

e A, will try to win security games using this hint

e Can be difficult! We can no longer assume that H(x) looks uniformly
random to online attacker (due to hint)

 Compression Technique: If online attacker is too successful then we
may be able to compress” H. (Compressing a random string is
impossible). These arguments are very tricky!



Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)
 Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢



Generic Group Model (GGM)

 Models generic attacks [Shoup 97]
» don’t exploit structure of cyclic Group G = (g)
* WLOG assume G = Z,

* Attacker can only manipulate group elements x € Z,, via the following
oracles:

mult(7(x),7(y)) = 17(x + y)

Input: handles for group elements x,y € Z,, Output: handles for group elementx +y € Z,

Where 1: Z,, — {0,1}%" is a random injective function mapping group elements
to binary strings (handles)



Generic Group Model (GGM)

e Models generic attacks [Shoup 97]
* Generic attacks don’t exploit structure of cyclic Group G = (g)
* WLOG assume G = Z,

* Attacker can only manipulate group elements x € Z,, via the following oracles:
mult(z(x), 7(y)) = t(x +y)
inv(t(x) ) = 1(—x)

pOW(T(x), n ) — T(Tlx) Output: handle for group element (nx mod p) € Z,

Input: handle for group elements x € Z,, and integer n

Where t: Z,, = {0,132 is a random injective function mapping group elements to
binary strings (handles)
Sample GGM Result [Shoup 97] (Discrete Log): any attacker making T GGM queries

2

solves discrete log problem with probability at most O (ZT?)




Generic Group Model

Typically we use an Elliptic Curve Group of prime order p forp = 224
e Provides A-bit security

Discrete Log Problem: Given generator g and g* find x

Generic Group Version: Given 7(1) and 7(x) find x

* Best Generic Attack (Baby-Step Giant Step):
1) Compute y;, = gk?” for each k < 2% (Time: G(2%))
2) For each x;, = g**k for each k < 24 (Time: 0(2%))
3) Find intersection (i,j) such that x; = g**' = y; = g/?" and solve x = j2* —

 Note: x = j2* — i for some pairi,j < 2%

Generic Group Version Lower Bound: Any generic attacker making q queries to GGM
oracles succeeds with probability at most

2
(73]
22/’1



Generic Group Lower Bound

 Discrete Log Problem: Given generator g and g”* find x
e Generic Group Version: Given 7(1) and 7(x) find x

* Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles succeeds with
probability at most ,
224

* Proof Sketch: Initialize two sets K = {(1,7(1))}and U = {(x, t(x))}
e K =» Discrete Log Known
e U = Discrete Log Depends on Unknown x
« mult(z(1),7(1)) = 7(2) D Add (2,7(2)) to K
e mult(t(x),7(x)) = 7(2x)=> Add (Zx,r(x + 1)) toU
e mult(t(x),7(1)) = t(x + 1)=> Add (x +1,7(x + 1)) toU
e Each new query adds item to K or U

e Cannot learn x unless sets intersect e.g., mult(z(x),t(x + 1)) = t(2x + 1) isfound in K

Uikl _ a*
224 — 9224

* Sets remain disjoint with probability



Generic Group Model

» Typically we use an Elliptic Curve Group of prime order p for p = 224
* Provides A-bit security

* Discrete Log Problem: Given generator g and g* find x
e Generic Group Version: Given 7(1) and 7(x) find x

e Computational-Diffie Hellman: Given g, g* and g” find g*Y
* Generic Group Version: Given 7(1), 7(x) and 7(y) find t(xy)

e Similar Proof: Any generic attacker making q queries to GGM oracles succeeds
with probability at most ,
222



Generic Group Model with Preprocessing

e Offline Attacker: A(7) =0

* Input: the secret/random encoding function 7 for our group Z,
e Output: S-bit hint o € {0,1}° for online attacker
 No bound on the running time for the offline attacker

* Online Attacker: May use hint o during attack
* Bounded running time T, g;o queries to generic group oracles etc...
 May use hint o during attack

 Motivation:
e Handful of groups (NIST P-256, Curve25519 etc...) used by most real-world cryptosystems
e Offline phase of preprocessing attack is only executed once

Sample Result [CK18] (Discrete Log with Preprocessing): any preprocessing

2
attacker making solves discrete log problem with probability at most O (szk)




GGM + ROM with Preprocessing

e Offline Attacker: A (1) = ¢

* Input: the secret/random encoding function 7 for our group Z,,, oracle access to the
random oracle H

e Output: S-bit hint ¢ € {0,1}° for online attacker
e The offline attacker may make a very large number of random oracle queries e.g., 23%
 Unbounded running time

e Online Attacker: May use hint o during attack

e Bounded running time T, g (resp. grp) queries to group oracle (resp. random oracle)
etc...

 May use hint o during attack



The Discrete Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt — 1 May 2018
Tel Aviv, Israel



Signatures 11 1) PDH ,
(DSA and Schnorr)  €Xchange 1 =1

@ s

1000008000 6()(]

O\Screte /O



The discrete-log problem

Group: G =(g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A

Why do we believe this
problem is hard? .



Generic lower bounds give us confidence

Theorem. [Shoup'97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probabillity at least 4

o . 1 2
must run in time Q(N / ). Generic attack in 256-bit
group takes ~ 2128 time.

Best attacks on standard EC
groups are generic

24



Generic algorithms can only make
"black-box” use of the group operation

Generic-group model:

» Group is defined by an injective “labeling” function
0. ZN — {0,1}*
 Algorithm has access to a group-operation oracle:

OO-(O'(i),O'(j)) = o(i+])

Very useful way to

understand hardness
[BBO4,B05,M05,D06,
B0O8,Y15,..]

Generic dlog algorithm takes as input (o

make queries to O,, outputs x.
[Measure running time by query comple



Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows nothing
about the structure of the group G in advance



Preprocessing phase

Group: G =(g) Advice: stg

Online phase

Instance: g* € G ad S 3 Solution:
f X € Ly

Initiated by Hellman (1980) in context of OWFs Y




Preprocessing phase ;e/pm/c:essing time P }
LB

Advice: st¢

Advice m

Group: G =(g)

Online phase

ginetime T}
Instance: g* € G Tt Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs success pI‘Ob. € } e




e Preexisting S = T = O(N'/3) generic attack on discrete log

e The O(N1/3) generic dlog attack is optimal
e Any such attack must use lots of preprocessing: Q(N?/3)
« New O(N'/%) preprocessing attack on DDH-like problem

29



A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]
There Is a generic dlog algorithm with preprocessing that:
e uses S bits of group-specific advice,

e uses T online time, and
» succeeds with probability €,
such that: Will sketch the algorithm for

~ S =T = N3 constant ¢.
ST? = 0(eN)

... building on prior work on
multiple-discrete-log algorithms
[ESST99,KS01,HMCDO04,BL12]



Preliminaries

Define a pseudo-random walk on G:
g* - g*¥*® where  a = Hash(g¥)
Is a random function

gx gx+a1 gx+a1+a2 gx+2iczi — gy
‘ >’ )‘ > o0 0 —b‘
X < < < oo oo -— y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

31



Preprocessing phase

 Build N'/3 chains of P
length N*/3 l —

« Store dlogs of chain o—0—@ S o e
endpoints -

Advice: O(N1/3) bits

Online phase —0—0 —>‘ i
« Walk O(N1/3) steps o P

« When you hit a o g~ =
stored point, output -
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

suleyd ¢ /o N

Preprocessing time: Q(N?/3)




Generic discrete log 256-bit ECDL
- Without preprocessing: Q(N1/2) 2128 time
- With preprocessing: O(N1/3)

Is this dlog attack

the best possible?!

33



Sonawres DY oon P
(DSA and Schnorr)  €Xchange | . =1
100000000 0()(

-

Could there exist a generic
dlog preprocessing attack eproce g atta
with § = T = N1/10? 0 |G g



e v = ' s o L e L | 1 2t LT
|
N
4 -
¥
9 B

2NN
a
(&)

£
\




e Preexisting S = T = O(N'/3) generic attack on discrete log

e The O(N1/3) generic dlog attack is optimal
e Any such attack must use lots of preprocessing: Q(N?/3)
« New O(N'/%) preprocessing attack on DDH-like problem

36



Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:

e uses S bits of group-specific advice,

e uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)
This bound is tight for the

Shoup’s proof technique (1997) relies on BANBNMIEEIEO BRI IOk
about the group G when it starts running (up to log factors)

- Need different proof technique

37



Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
e uses S bits of group-specific advice,

e uses T online time, and

e succeeds with probability e,

must satisfy:

ST2 — ﬁ(EN) Online time N1/3 implies
Q(N?/3) preprocessing

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T?% = Q(eN)

38



Open questions and recent progress

 Tightness of DDH upper/lower bounds?

e Is it as hard as dlog or as easy as sqDDH?

* Non-generic preprocessing attacks on ECDL?
* As we have for Z,,

Coretti, Dodis, and Guo (2018)

* Elegant proofs of generic-group lower bounds using “presampling”
(a la Unruh, 2007)

* Prove hardness of “one-more” dlog, KEA assumptions, ...



Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)
 Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢



Bit-Fixing Model for Pre-Processing Attacks

 Auxiliary-Input Attacker Model A = (44,45,)

e Random Oracle Version:

e Offline attacker A, fixes output of random oracle H(.) at P locations and then
outputs a S-bit hint.

e A, initially knows nothing about remaining unfixed values i.e., H(x) picked
randomly for x & P after A; generates hint

e (PT,p)-attacker
e A, fixes H on at most P locations and outputs S-bit hint

* A, makes at most T random oracle queries
* A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

 ((S,T,p), 8)-security = Any (S, T, p) attacker wins with advantage at most &



Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)



Oracles. An oracle O has two interfaces O.pre and .main, where O.pre iz accessible only once
before any calls to P.main are made. CUracles used in this work are:

e Random oracle RO(N, M): Samples a random function table ¥ +— Fy e, where Fy s
is the set of all functions from [IV] to [M]; offers no functionality at .pre; answers queries
z € [N] at @.main by the corresponding value F|z] € [M].

e Auxiliary-input random oracle AI-RO(N, M): Samples a random function tahble F' +
Fwoag; outputs Foat O.pre; answers queries = € [IV] at @.main by the corresponding value
Flz] € [M].

e Bit-Fixing random oracle BF-RO(FP, ¥, M ): Samples a random function table ¥ +— Fi 1s;
takes a list at O.pre of at most P query/answer pairs that override # in the corresponding
positions; answers queries = € [IV] at (J.main by the corresponding value F|z| € [M].

e Standard model: Neither interface offers any functionality.

Definition 2. 4An (5 T-attacker .4 = (44, .40) in the O-model consists of fwo procedures

o A1, which is computationally unbounded, interacts with O.pre, and outputs an S-bit string,
ard

o Ao, which fokes an S-bit auziliory input and makes at most T gueries fo O.main.



Definition 3. for an indistinguishability application G in the O-model, the advantage of an at-
tacker A is defined as

Succag o(A) —=|.

iﬂld‘-ﬁ'g}@ (A) = 2 5

:
For an unpredictability application (&, the advaniage is defined as

Advg p(A) = Bucceol(A).
An application G is said to be ((5, T, p), £)secure in the O-model if for every (S, T, p)-attacker A,

Hdﬁ-’{_’;}@(ﬂ) £ O



Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

2(S+2A)T

Example: Sety = 2724 and the advantage is roughly &’ +

Balancing: &’ usually increases with P i.e., as BF-attacker gets to fix
more and more points.



Relationship: BF-RO and Al-RO

Theorem 6. For any P € N and every v > 0, if an unpredictability application &G is (S, T, p),£)-
secure in the BFE-RO(P, N, M )-model for

P > (8+42logy 1) T,
then it is ((5,T, p), £)-secure in the AI-RO(N, M )-model for
g < 2¢ 4+ 2v,

where T&me is the combined guery complerity corresponding to 7.




Application: Function-Inversion

e Challenger: Picks x in {0,1}* and sends y=H(x) to online attacker
where y in {0,1}4

e Goal: Find x” such that H(x’)=y (online attacker may use hints)

e Bit-Fixing Attacker: A = (44, 4,)
e LetL = {(x{’,y1), ..., (xp', yp')} denote set of points fixed by A;
e Let E' be the eventthat x = x;' or x = y;’ forsomei <P

e Pr[E’'] < Pr[3i.x = Xi’] +Pr[3i-y — ylll Vi.x # xl’] = 2%+2%

X is random y; = H(x;) is uniformly random if not previously fixed i.e., x # x; for all i



Application: Function-Inversion

. Challt/elnger: Picks x in {0,1}* and sends y=H(x) to online attacker where y in
{0,1}

e Goal: Find x” such that H(x’)=y (may use hints)

e Bit-Fixing Attacker: A = (A4, 4A5)
e LetL = {(x{,y1),...,(xp",yp")} denote set of points fixed by A,
 Let E' be the event that x = x;" orx = y;’ forsomei <P
e Let Q = {(x,¥1), ..., (X7, yr)} denote queries made by A, with corresponding

answers
e Let E; be the eventthatx = x; ory = vy;
— S— 1 1
® PI‘[El | E N El N..N Ei_l] S ZA—P—(i—l) + 2/1 Pr[y = yll ] note that

y; =H(x; )is uniformly random if
Pr[x = x;| ...] note that x is random, and there not previously fixed i.e., if x; # x,

24 — P — (i — 1) remaining possible values x; notinLand x; # x; forall<i,



Application: Function-Inversion

e Challenger: Picks x in {0,1}* and sends y=H(x) to online attacker
where y in {0,1}4

e Goal: Find x” such that H(x’)=y (may use hints)

e Bit-Fixing Attacker: A = (44, 4,)
e Attacker wins with probability at most

Pr(E'] + Z Pr[E; | ENn E{Nn..NE;_{] <

i<q

2P
+q+ q S2P+3q
24 2’1—P—q 24

Assume P + q < 2471



Application: Function-Inversion

e Bit-Fixing Attacker: A = (44, 4,)
e Attacker wins with probability at most
Pr(E'] + Z Pr[E;| ENE N.NnE_{]<

i<q

2P+q+ q
24 ZA—P—q

Set P > 6(S + 2A)T =» Auxilliary-Input Attacker wins with Probability at most

6(S+20)T+T 6(S + 2T 3 ST + AT
2 + +27%4 =0
24 24 —6(S+ 20T —T



Review: Bit-Fixing vs Auxiliary Input

e Auxiliary-Input: (S,T,p)-attacker
e A; outputs a S-bit hint based entire description of ideal-object
* A, makes at most T oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as
specified by parameters p.

e Bit-Fixing: (P,S,T,p)-attacker
o A, fixes at most P input/output pairs and outputs a S-bit hint. The remaining
ideal object is picked randomly subject to this restriction.
* A, makes at most T oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as
specified by parameters p.



Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)



Relationship Bit-Fixing and Auxilliary Input
Theorem 1. Let P, K, N, M &€ N, N > 16, and v > 0. Moreover, let
(Al,BF) € {(AI-IC(K,N),BF-IC(P, K, N)), (AlI-GG(N, M), BF-GG(P, N, M))} .
Then,

1. if an application G is ((S,T,p), <" )-secure in the BF-model, it is ((S,T,p),c)-secure in the

Al-model, where

6(S +logy~1) - T&™
e < 8!_|_ ( g}’; ) & —|—’}",

2. if an unpredictability application G is ((S,T, p),e’)-secure in the BF-model for
P > 6(S+logy 1) - TE™,
it is ((S,T,p),e)-secure in the Al-model for

e < 2"+,

where Té‘)mb is the combined query complexity corresponding to .



Generic Group Lower Bound

Discrete Log Problem: Given generator g and g* find x
Generic Group Version: Given 7(1) and 7(x) find x

Generic Group Version Lower Bound: Any generic attacker making q queries to GGM oracles
succeeds with probability at most ,
221

Proof Sketch: Initialize two sets K = {(1,7(1))}and U = {(x, t(x))}
* K =>» Discrete Log Known
* U =>» Discrete Log Depends on Unknown x
 mult(z(1),7(1)) = t(2) = Add (Z,T(Z)) to K
 mult(z(x),7(x)) = 7(2x)=> Add (Zx,r(x + 1)) toU
 mult(z(x),7(1)) = 7(x + 1)=> Add (x +1,7(x + 1)) toU
 Each new query addsitemto K or U

e Cannot learn x unless sets intersect e.g., mult(7(x),7(x + 1)) = t(2x + 1) is found in K

* Sets remain disjoint with probability ~ WIK] 4
221 - 22/1

 Technical Note: If attacker queries mult(s,.) for fresh » which is not in K or U then can add (7 71(3), %) to K




Generic Group Lower Bound with Bit-Fixing

* Generic Group Version Lower Bound: Any Bit-Fixing attacker making
q queries to GGM oracles (online) and fixing at most P points
succeeds with probability at most

2 4+ gP
0(61 q)
22/1

Proof Sketch: Let L = {(x1,y1), ..., (xp, yp)} denote the fixed points where attacker fixed 7(x;) = y;
Initialize two sets K = {(1,1(1))} ULand U = {(x,r(x))}

K =>» Discrete Log Known

U = Discrete Log Depends on Unknown x

Each new query adds itemto K or U

Cannot learn x unless sets intersect

Ik q?
221 — 221

Sets remain disjoint with probability =



Generic Group Lower Bound with
Preprocessing Attacker

e Generic Group Version Lower Bound: Any auxiliary-input attacker
making q queries to GGM oracles (online) and with a S bit hint
points succeeds with probability at most

5 (qz +q%(S + ﬂ))

22/1

Proof Sketch: Set P = 0((5 + 2/1)q) for our bit-fixing attacker A bit-fixing attacker succeeds with probability at most

<q2 +q*(S + l))
=20
22/1

q2+q2(5+/1))

It follows that the Al-attacker succeeds with probability at most 2e 4+ 2724 = 0 ( 7




Block-Ciphers with Leakage

* Ideal Cipher Model

e All parties have oracle access to E(+, -)and E~1(-, )

* For any fixed key K the function Ex(x) := E(K, x) is a truly random
permutation and Ex 1 (x) := E~1(K, x) is the inverse

* Question: Can we still safely use the block-cipher after S-bit leakage?



Block-Ciphers with Leakage

e Question: Can we still safely use the block-cipher after S-bit leakage?

e Leakage Security Game:
e Offline Attacker A;outputs S-bit hint

* Online Attacker has to predict secret bit b

e Real World (b=0): Online attacker may query E(-,*), E7X(-, ), E(K,-)and E"}(K, ),
where K is a random key picked by the challenger

e ldeal World (b=1): Online attacker may query E(-, ), E~1(-, -), f(:) and f~1(-) where f
is a truly random permutation (independent of block-cipher + hint).

e Online Attacker may make T queries to E(+, *) or E~1(-, +) and q queries to E(K, ) or
E~Y(K, -) when b=0 (resp. f(+) or f ~1(-) when b=1)



Block-Ciphers with Leakage

* Leakage Security Game:
e Offline Attacker A;outputs S-bit hint
* Online Attacker has to predict secret bit b

* Real World (b=0): Online attacker may query E(-,-), E7*(-, -), E(K, -) and
E~1(K, -), where K is a random key picked by the challenger

e Ideal World (b=1): Online attacker may query E(-,¢), E~1(-, ), f(:)and f~1(")
where f is a truly random permutation (independent of block-cipher + hint).

* Analysis (Bit Fixing Attacker): Let
L={K": 3Axs.t.E(K,x) was fixed by A}

and observe that Pr[K € L] < |L|27%.



Block-Ciphers with Leakage

* Analysis (Bit Fixing Attacker): Let
L={K": 3Axs.t.E(K,x) was fixed by A}
Pr[K € L] < |L|27* < P2~

Let B; denote event that K = K; where K; is the key used in the ith query
toE(.,.) orE71(-, 9

_ 1 2
PriB; | LN ByNn..NB;_{] < < =

2% — |P| — i possible keys remain WLOG assume |P| + T < 241
(otherwise upper bound on success rate of
bit-fixing attacker becomes 1 holds trivially)



Block-Ciphers with Leakage

e Analysis (Bit Fixing Attacker): Let
L={K'": 3xs.t.E(K,x) was fixed by A}
Pr[K e L] < |L|27* < P2~

Ii?e‘tl% d)enote event that K = K; where K; is the key used in the ith queryto E(.,.) or

If the attacker does not query K or fix an input for K then the attacker cannot distinguish

between b=0 or b=1 since E (K, *) is a random permutation. Advantage is upper
bounded by

_ P 2T P+2T
Pr[L] + z Prl[E; | Ln B;n..nB;_{] < At51="57
I<T




Block-Ciphers with Leakage

* Analysis (Pre-Processing Attacker):

Teomp =T + 1 combined # of
gueries to ideal object

Advantage of pre-processing is upper bounded by

_|_

0 P+T S+A)(T+q)
S

Set P = \/(5 + A)TZA => 0 (2% + \/(S+A;;T+q))



Block-Ciphers with Leakage

e Thm (Informal): an ideal cipher is (I(S, T, q), 8)—secure against preprocessing
attacks in the auxiliary-input model with

T S+ A)(T + q)
=0 ?‘F 2)‘

\
Best Attack: & = Q <% + /%)
2 2

Open Question: Better attack or tighter lower-bound?
Note: Lower-bound likely requires different techniques (e.g., compression?)




Sponge-Construction

o Input: m = (my, ..., m,) with m; € {0,1}"

* Sy = Sél) Séz) where Sél) = 0" and Séz) = 0°¢ and
eFori=1,..,7; sets; = Si(l) Si(z) = n((si(_l)l@mi) Si(f)1>
e Output: Sél)

* Collision-Game: Attacker A;outputs s-bit hint based on ideal permutation
. A, tries to find collision for sponge construction.



Sponge-Construction: Sponge(.)

o Input: m = (my, ..., m,) with m; € {0,1}"

* Sy = Sél) Séz) where Sél) = 0" and Séz) = 0°¢ and
eFori=1,..,7; sets; = Si(l) Si(z) = n((si(_l)l@mi) Si(f)1>
(1)

* Output: Sponge,(my, ...,mp): = s,

e Pre-processing Attack: Find m; and m, such that & ((ml)HOC) and
T ((mz)”OC) match on first r-bits. A; outputs hint m, and m,.



Salted Sponge-Construction: Spongey v (. )

o Input: m = (my, ..., my) with m; € {0,1}"

* Sg =S, (1) H (2) where S = 0" and S( )= IV € {0,1}¢ (random salt) Fori =
2 1
1,..,%; setsl—s () ( ()EBml z()1
 Output: S( )

e Question: Is the salted sponge-construction secure against pre-processing attacks?

 Parameters: Attacker gets S-bit hint, q queries to w or =1 and outputs a collision of
length at most £.

* First Step: Analyze a bit-fixing attacker who can fix P input/outputs for



Salted Sponge-Construction
o Input: m = (my, ..., m,) with m; € {0,1}"

(1)

* So = S, Séz) where Sél) = 0" and Séz) = [V € {0,1}¢ (random salt) For

=t s =50 s = () )
e Output: S{E”

* First Step: Analyze a bit-fixing attacker who can fix P input/outputs for

e At the cost of 2¢ additional queries to m we can assume (WLOG) that the
attacker who outputs m and m’ has queried 7 at all points needed to evaluate
Sponge(m) and Sponge(m") since m and m’ are at most £-blocks long



Analysis Tool 1: Permutation Graph

Permutation Graph: G,

€y
e Nodes: V = {0,1}¢*T Q ; Q

* Directed Edges: (s,t = m(s))

e Each node has indegree 1 and outdegree 1

e Label Edges with first r bits of output t( Ht(z) = 1t(s)

e Special Start node: s, = 0"||IV
e A sponge-input m = (my, ..., my) with m< € {0,1}" defines a path in

the above graph sg, 51, ..., Sp withs; =1




Analysis Tool 1: Permutation Graph

Permutation Graph: G,

e Nodes: V = {0,1}°*" t(
Directed Edges: (s,t = m(s))

* Each node has indegree 1 and outdegree 1

o Label Edges with first r bits of output ¢ Ht(z) = 1t(s)

 Call a node s prefixed if A; fixed the value of m(s)

e Attacker is only aware of some of the edges e.g., after making q queriesto
attacker is only aware at most P+q directed edges.

Let Gn)o denote initial known graph (using only edges defined by P prefixed
points

Let G ; denote known graph after i queries tow or m™

1



Analysis Tool 1: Permutation Graph

Permutation Graph: G;
e Nodes: V = {0,1}¢*" O e Q
* Directed Edges: (s,t = (s))

e Each node has indegree 1 and outdegree 1

« Label Edges with first r bits of output ¢t Ht(z) = 1t(s)

* Let G, o denote initial known graph (using only edges defined by P prefixed points)

* Let G, ; denote known graph after i queries to  or 1

 Special Start node: s* = 0" ||IV

» Collision < for some label t(1) € {0,1}"are two distinct paths from start node s*
both ending an edge labeled t(1 in Gr g



Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph O Q
e Nodes: V' = {0,1}¢
Directed ﬁdges: (s, t(2) € 3’ iff there exists strings s(1, t() € {0,1}" such

that t(D [[¢(2) = n(S(l) Hs(z)
Label edges with (s, t(1)

Starting Super-node: [V € {0,1}¢
Let Gy denote the initial super-graph (defined using P fixed points)
Let G; denote the super-graph after i queries to w or w1

Call a suger-node s € {0,1}¢ “pre-fixed” if there exists s(1) € {0,1}" such that
s = S(l)jrs(z) was pre-fixed



Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph Q Q

Starting Super-node: [V € {0,1}¢

Let Gy denote the initial super-graph (defined using P fixed points)

Let G; denote the super-graph after i queries to w or w1

e Call a super-node s € {0,1}¢ “pre-fixed” if there exists s(¥) € {0,1}" such thats =
s T s(®) was pre-fixed

Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

P
Pr|B,] = Pr[lIV prefixed] < T




Analysis Tool 2: Super-Node Graph

(s, ()
Permutation Super Graph O Q

* Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
. F{Z) G;l- contains two distinct paths from starting node IV to x for some supernode x €
0,1}¢
o |f BT+2€ does not occur then every supernode has one incoming edge and the
value tD € {0,1}" (potential hash output) is uniform.

2

T + 2¢
Pr[COLLISION| Byy,p] < 2T



Probability of Bad Event (Forward Query)

e Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

Suppose that no bad event has occurred after the first i-1 queries tomw or w1
and that the ith query is of the form

- (tm Ht<z>) =y Hy@)
= Adds edge from supernode t(® to y(?),
= Bad if there was already a path to y(? or if y(®) was fixed.

=> At most (i + P)2" bad outputs for (t(l) Ht(z)) out of 27t¢ — (i — 1 + P)
possibilities



Probability of Bad Event (Forward Query)

* Let B; denote the event that either
e (1) G; contains a path from starting node IV to some pre-fixed

. g)) 1G}l-ccontains two distinct paths from starting node IV to x for some supernode x €

Suppose that no bad event has occurred after the firsti-1 queries toT or
Y and that the ith query is of the form

- (tm ”t<z>) =y ”y<z>
-)A(‘d)ds edge from supernode t(? to y(z). Bad if there was already a path to
y(2) or if y(?) was fixed.
__ (i+ P)2" [+ P
Pr[B; | ByN..NBi1] < oo (—13p) > 7

WLOG assume P + T + 2¢ < 2¢*7—1



Probability of Bad Event (Inverse Query)

e Let B; denote the event that either
* (1) G; contains a path from starting node IV to some pre-fixed
* (2) G; contains two distinct paths from starting node IV to x for some supernode x € {0,1}¢

Suppose that no bad event has occurred after the first i-1 queries tomw or w1
and that the ith query is of the form

-1 (ym Hy@)) — +( Ht<z>
= Adds edge from supernode t(® to y(?),
=>» Potentially bad if there was already a path from IV to y(z).

=>» At most i2" bad outputs form 71 (y(l) Hy(z)) out of 27t¢ — (i — 1 + P)
possibilities



Probability of Bad Event (Inverse Query)

e Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed

* (2) G; contains two distinct paths from starting node IV to x for some
supernode x € {0,1}¢

S. uppose that no bad event has occurred after the first I-1 queries to
m or t— 1 and that the ith query is of the form

W [y@ ) = @ [P
" ( ”3’ ) LZE” Ht l i+ P
2€tT — (i — 1+ P) _ZC TS 2¢71

Pr[B; | ByN..NB;_{] <

WLOG assume P + T + 2¢ < 2¢*7—1



Probability of Bad Event (Total)

* Let B; denote the event that either

* (1) G; contains a path from starting node IV to some pre-fixed

e (2) G; contains two distinct paths from starting node IV to x for some supernode x €
{0,1}¢

o After all T + 2¢ queries we have

T+2¢

Pr(Br,ap]| < Pr[By | + 2 Pr[B; | Byn..NnB;_4]
=1

i+ P (T+£)2+TP+2€P+P
+chl— 2c1




Probability of Collision (Bit-Fixing)
T +2¢
Pr[COLLISION| B7,,,] < ( )2-"‘

2

(T + £)?+TP +2¢P + P
2c—1

PF[BT+2£] =

T+2¢\ . (T+£6)*+TP+2¢P+P
Pr[COLLISION] < , 277 + =




Probability of Collision: Auxilliary-Input

(T+£)?+TP+2{P+P
26—1

* Bit-Fixing(P): Pr[COLLISION] < ("*7%)27" +

e SetP =6(S+c+1r)(T + 2¢) to apply main theorem

Thm (Informal): Salted-Sponge is ((S, T, £), €)-secure in the auxiliary-

input model with
(T+6)? (T+OD*S+c+r)
Zr—l 2c—1




ATl Security

SM Security

Best Attack

OWP =L o 5L [33]

EM E S EGREE & Skt

BC-IC () & i (£)"° 07
PRF-DM 7+ 3 57
CRHF-DM (Sig)ﬁ TTf not known
CRHF-S ST 12 L+ T ST [15]

PRF-S (52)/2 L ()" 1171

MAC-S ChL | Tl | am (5D 1§58
CRHF-MD SIZ e ST [15]
PREMD-N | (SI)74 % | % £V
NMAC/HMAC ST i min { 57, (STYY%) 4 T (33




DL/CDH ST 4 & 5T% (16, 38, 5]
t-fold MDL (S(T;;t)g + (T;;)Q )t ((T;;})z )t see caption [16]
DDH T+ R ¥ ¥ (16,38, 5
WDDH | (ST r ST g
OM-DL (ST Tt e STZ (16, 38, 5
KEA S_}I\;? % not known

Tahble 2: Asymptotic upper and lower bounds on the security of applications in the generic-group model
against (5, T )-attackers in the AI-ROM; new bounds are in a bold-face font. The value t for the one-more
DL problem stands for the number of challenges requested by the attacker. The attack against MDL succeeds

with constant probebility and requires that ST/t + T

= O (tN).

Course Project Ideas: Analyze different construction vs pre-processing
attackers (easier) or tighten existing bounds (likely harder).




Reminder: Link Between BF-RO and AlI-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc...) as a black-box.

How is this result proved?



Leaky vs Dense Sources

Definition 1. An (N, M)-source is a random variable X with range [M]Y. A source is called

o (1 —3d)-dense if for every subset I C [IV],
HoolXr) = (1—=8) I loghd = (1 —8) - logMHl

o (P 1—¢d)-dense if it is fized on af most P coordinates and is (1 — d)-dense on the rest,

o P_bit-fixing if it is fived on at most P coordinates and uniform on the rest.

e Idea 1: Leaky Source (auxiliary-input) can be replaced by convex
combination of (P, 1 — 6)-dense sources.

e Idea 2: Hard to distinguish between (P, 1 — §)-dense source and P-bit-
fixing source after T queries



Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +loglfy)-T
P

PIDX(F(X) = 1] - P[DY 0 (£(X)) = 1]| < iy

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim 2. For every & = 0, X, is y-close to a conver combination of finitely many (P, 1—3)-dense
sources for

Sy +1log 1/

P o=
d - log M




Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

‘P[‘D}f‘ —1] - P[DY = 1]‘ < Té-log M,

and

PID* =1] < MTP. P[D¥ =1].

Proof. Assume without loss of generality that 7 is deterministic and does not query any of the fixed
positions. Let T and T3+ be the random wvariables corresponding to the transcripts containing
the query/answer pairs resulting from T’s interaction with X’ and Y7, respectively. For a fixed
transcript 7, denote by piv(7) and py«(7) the probabilities that X’ and Y/, respectively, produce
the answers in 7 if the queries in 7 are asked. Observe that these probabilities depend only on X'
resp. Y/ and are independent of 7.

{tbeerve that for every transcript +,
po(r) < M~U=9T  and pyi(r) = M7 (1)

as X' ls (1 — d)-dense and Y’ is uniformly distributed.
Since T is deterministic, P[Ty: = 7] € {0, px/(7)}, and similarly, P[Tyr =7] € {0, pys(7)}.
Dencte by T the et of all transcriptes 7 for which P[T5% = 7] > 0. For such v, P[Tx = 7| = px(7)



Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

PIDX =1] —P[DY =1]| < T3 loghs,

and also P[Tys = 7] = py/ (7). Towards proving the first part of the lemma, cbserve that

and
‘P[‘Dxi _ 1] . P[DY«’ _ l]‘ < SD(TXHTY“’)
and a = > max {0, P[Tyx = 7] — P[Ty = 7]}
— Z max {0, px:(7) — py(7)}
TETX
- PR ~ prel(7)
= T;a px/(7) {D’l pxx(’r)}

< 1-M"T < Té logM,

where the first sum is over all poasible transcripts and where the last inequality uses 27% > 1 — x
for = = 0.

R =N

< 1— M1 < T§. log M,

where the first sum iz over all possible transcripta and where the last inequality uses 2% > 1 — =
for = = 0.



	Advanced Cryptography�CS 655
	Idealized Models of Computation	
	Warm-Up
	Warm-Up
	Warm-Up: Part 2
	Warm-Up: Part 2
	What Can We Do with Ideal Permutation?
	What Can We Do with Ideal Permutation?
	What Can We Do with Ideal Permutation?
	Pre-Processing Attacks
	Pre-Processing Attacks: Trivial Example
	Pre-Processing Lower Bounds
	Auxiliary-Input Attacker Model
	Generic Group Model (GGM)
	Generic Group Model (GGM)
	Generic Group Model
	Generic Group Lower Bound
	Generic Group Model
	Generic Group Model with Preprocessing
	GGM + ROM with Preprocessing
	The Discrete Logarithm Problem�with Preprocessing
	Slide Number 22
	The discrete-log problem
	Generic lower bounds give us confidence
	Generic algorithms can only make �“black-box” use of the group operation
	Existing generic lower bounds�do not account for preprocessing
	Slide Number 27
	Slide Number 28
	Rest of this talk
	Slide Number 30
	Preliminaries
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	This talk
	Slide Number 37
	Slide Number 38
	Open questions and recent progress
	Auxiliary-Input Attacker Model
	Bit-Fixing Model for Pre-Processing Attacks
	Bit-Fixing Model (Unruh)
	Slide Number 43
	Slide Number 44
	Relationship: BF-RO and AI-RO
	Relationship: BF-RO and AI-RO
	Application: Function-Inversion
	Application: Function-Inversion
	Application: Function-Inversion
	Application: Function-Inversion
	Review: Bit-Fixing vs Auxiliary Input
	Bit-Fixing Model (Unruh)
	Relationship Bit-Fixing and Auxilliary Input
	Generic Group Lower Bound
	Generic Group Lower Bound with Bit-Fixing
	Generic Group Lower Bound with Preprocessing Attacker
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Block-Ciphers with Leakage
	Sponge-Construction
	Sponge-Construction:  Sponge π (.) 
	Salted Sponge-Construction:  Sponge π,IV (.) 
	Salted Sponge-Construction
	Analysis Tool 1: Permutation Graph
	Analysis Tool 1: Permutation Graph
	Analysis Tool 1: Permutation Graph
	Analysis Tool 2: Super-Node Graph
	Analysis Tool 2: Super-Node Graph
	Analysis Tool 2: Super-Node Graph
	Probability of Bad Event (Forward Query)
	Probability of Bad Event (Forward Query)
	Probability of Bad Event (Inverse Query)
	Probability of Bad Event (Inverse Query)
	Probability of Bad Event (Total)
	Probability of Collision (Bit-Fixing)
	Probability of Collision: Auxilliary-Input
	Slide Number 81
	Slide Number 82
	Reminder: Link Between BF-RO and AI-RO
	Leaky vs Dense Sources
	Slide Number 85
	Slide Number 86
	Slide Number 87

