
Advanced Cryptography
CS 655

Week 3:
• Memory-Tight Reductions
• RSA-FDH
• Memory-Tightness

1Spring 2023

Memory-Tight
Reductions

Benedikt Auerbach1 David Cash2 Manuel Fersch1 Eike Kiltz1

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

2 Rutgers University, New Jersey, USA

Crypto 2017, Santa Barbara
August 21, 2017

Benedikt Auerbach: Memory-Tight Reductions3 / 23

Tightness and
Memory-
Tightness

Cryptographic Reductions and Tightness

Problem P Reduction AP Adversary AS

Benedikt Auerbach: Memory-Tight Reductions

4 / 23

Reduction is tight if Time(AP) ≈ Time(AS) and Succ(AP) ≈ Succ(AS)

Relevance of Tightness for Concrete Security
Time

Succsm
al

l
bi

g
big small

broken

Benedikt Auerbach: Memory-Tight Reductions
4 / 23

unbroken

Time-success trade-off plot for algorithms solving problem P

Relevance of Tightness for Concrete Security
Time

Succsm
al

l
bi

g
big small

brokenunbroken

AS

Benedikt Auerbach: Memory-Tight Reductions
4 / 23

Time-success trade-off plot for algorithms solving problem P

Relevance of Tightness for Concrete Security

Succsm
al

l
bi g

big small

unbroken

∆Time

broken

AS∆Succ

Time

AP

Non-tight reduction

∆Succ = Succ(AS)/Succ(AP) » 1
or ∆Time = Time(AP)/Time(AS) » 1

Benedikt Auerbach: Memory-Tight
Reductions

4 / 23

Relevance of Tightness for Concrete Security
Time

Succsm
al

l
bi g

big small

brokenunbroken

AS/AP

Benedikt Auerbach: Memory-Tight Reductions
4 / 23

Tight reduction

Succ(AP) ≈ Succ(AS)
Time(AP) ≈ Time(AS)

What about memory?
Resources of adversary

• Running time
• Success probability
• Memory consumption

Benedikt Auerbach: Memory-Tight Reductions

5 / 23

Benedikt Auerbach: Memory-Tight Reductions

6 / 23

Contributions
• Raise awareness for memory usage in reductions
• Propose tools for achieving memory-tightness
• Concrete application: memory-tight reduction for RSA-FDH
• Impossibility of memory-tight reductions for certain problems

Benedikt Auerbach: Memory-Tight
Reductions

7 / 23

Time-Memory Trade-offs

Benedikt Auerbach: Memory-Tight Reductions8 / 23

Time-Memory Trade-offs
• Some problems are harder with less memory

• in particular many lattice / coding problems
• Needs to be taken into account in reductions
• Concrete example: Learning Parity with Noise (LPN)

Adding Memory-Consumption
Time

Succ

Benedikt Auerbach: Memory-Tight Reductions

9 / 23

sm
al

l
bi g

big small

Adding Memory-Consumption

Time

Succ

Mem

Benedikt Auerbach: Memory-Tight
Reductions 9 / 23

sm
al

l
bi g

big small

Adding Memory-Consumption

Time

Succsm
al

l

Benedikt Auerbach: Memory-Tight Reductions 9 / 23

bi g

big small

Mem

For simplicity: consider algorithms with constant success probability

Example: Time-Memory Trade-off for LPN

Memsm
al

l
bi

g

small big

Time

broken
unbroken

Benedikt Auerbach: Memory-Tight Reductions
10 / 23

Algorithm 1: Gauss algorithm for dimension λ
Mem = poly(λ), Time ≈2λ

Example: Time-Memory Trade-off for LPN
Time

Memsm
al

l
bi

g

small big

broken
unbroken

Benedikt Auerbach:
Memory-Tight
Reductions 10 / 23

Algorithm 2: BKW algorithm for dimension λ
Mem ≈ 2λ/ log λ, Time ≈ 2λ/ log λ

Example: Time-Memory Trade-off for LPN
Time

Memsm
al

l
bi

g

small big

broken
unbroken

Benedikt Auerbach:
Memory-Tight Reductions 10 / 23

Time-memory trade-off plot for LPN

Example: Time-Memory Trade-off for LPN
Time

Memsm
al

l
bi

g

small big

broken
unbroken

Benedikt Auerbach: Memory-Tight Reductions 10 / 23

Time-memory trade-off plot for LPN [EKM, 11:00 Lotte Lehman Hall]

Memory-Tight Reductions
Time

Memsm
al

l
bi

g

small big

AS

broken
unbroken

Benedikt Auerbach: Memory-
Tight Reductions

11 / 23

Memory-Tight Reductions
Time

Memsm
al

l
bi

g

small big

broken
unbroken

∆ MemAS

AP

(Time-)Tight but not memory-tight reduction

Benedikt Auerbach: Memory-
Tight Reductions 11 / 23

Memory-Tight Reductions
Time

Memsm
al

l
bi

g

small big

AS/AP

broken
unbroken

Benedikt Auerbach: Memory-Tight
Reductions 11 / 23

(Time-)Tight and memory-tight reduction
Time(AP) ≈ Time(AS), Mem(AP) ≈ Mem(AS)

Memory-Sensitive Problems
Time

Mem

AS

AP

Memory-sensitive:
• LPN
• Shortest Vector Problem
• 3 collision resistance
• DLP in finite fields
• Factoring

Time

Mem

AS

AP

Not memory-sensitive:
• Collision resistance
• Preimage resistance
• DLP over elliptic curves

Benedikt Auerbach: Memory-Tight Reductions 12 / 23

Might change in future

Benedikt Auerbach: Memory-Tight Reductions1
3
/
2
3

Typical Non-Memory-Tight
Reductions

Example 1: Random Oracle Simulation
P AP

If H(x1) = ⊥:H(x1) ← $
X1________

H(x1)___

...

If H(xq) = ⊥:H(xq) ← $
xq

H(xq)

AS

Benedikt Auerbach: Memory-Tight
Reductions 14 / 23

Worst case: Mem(AP) ≈ Time(AS), while Mem(AS) small

Example 2: Unforgeability of Signatures
P AP

M ← M ∪{m1}
m1

σ1

...

mq_____

σq_-________

(m∗,σ∗)__

σ1 ← Sign(m1)

M ← M ∪{mq }
σq ← Sign(mq)

?m∗ ∈ M

AS

Benedikt Auerbach: Memory-Tight Reductions 15 / 23

Worst case: Mem(AP) ≈ Time(AS), while Mem(AS) small

Benedikt Auerbach: Memory-Tight Reductions 16 / 23

Recap
• Currently memory often ignored in reductions
• Many existing reductions not memory-tight

• Worst case Mem(AP) ≈ Time(AS) while Mem(AS) small
• Particularly problematic for memory-sensitive problems

Benedikt Auerbach: Memory-Tight Reductions 17 / 23

Achieving Memory-Tightness

Example 1: Random Oracle Simulation
P AP

If H(x1) = ⊥:H(x1) ← $
x1

H(x1)

If H(xq) = ⊥:H(xq) ← $
xq

H(xq)

AS

Benedikt Auerbach: Memory-Tight Reductions 18 / 23

RO simulation via lazy sampling

Example 1: Random Oracle Simulation
P AP

K ← $
x1

PRFK (x1)

.

xq

PRFK(xq)

AS

Benedikt Auerbach: Memory-Tight
Reductions 18 / 23

Memory efficient RO simulation [Bernstein 2011]

Example 2: Unforgeability of Signatures
P AP

M ← M ∪{m1}
m1

σ1

...

mq

σq

(m∗ ,σ∗)

σ1 ← Sign(m1)

M ← M ∪{mq }
σq ← Sign(mq)

?m∗ ∈ M

AS

Benedikt Auerbach: Memory-Tight
Reductions 19 / 23

Usual simulation of unforgeability game

Example 2: Unforgeability of Signatures
P AP

σ1 ← Sign(m1)

σq ← Sign(mq)

Store m∗

Rewind AS

m1

σ1

...

mq_______
σq

(m∗ ,σ∗)

AS

Benedikt Auerbach: Memory-Tight Reductions 19 / 23
Memory-efficient simulation of unforgeability game

Example 2: Unforgeability of Signatures
P AP

σ1 ← Sign(m1)m =? m∗
1

σq ← Sign(mq)
m =? m∗

q

m1

σ1

...

mq

σq

(m∗ ,σ∗)

AS

Benedikt Auerbach: Memory-Tight Reductions 19 / 23

Memory-efficient simulation of unforgeability game

Example 2: Unforgeability of Signatures
P AP

σ1 ← Sign(m1)m =? m∗
1

σq ← Sign(mq)
m =? m∗

q

m1

σ1

...

mq

σq

(m∗ ,σ∗)

AS

Benedikt Auerbach: Memory-Tight Reductions
19 / 23

Important: Coins of AP and AS have to be stored memory-efficiently

B
e
n
e
d
i
k
t
A
u
e
r
b
a
c
h
:
M
e
m
o
r
y
-
T
i
g
h
t
R

2
0
/
2
3

Lower Bounds

Unforgeability and Multi-Unforgeability

GForge
win ← 0 pk

m1

σ1

...

mq

σq

(m∗ ,σ∗)

M ← M ∪ {m1}

σ1 ← Sign(m1)

M ← M ∪ {mq }
σq ← Sign(mq)

If m∗ ∈/M and
Ver(m∗ ,σ∗) = 1
win ← 1

A

win

21 / 23

Unforgeability and Multi-Unforgeability

win ← 0

M ← M ∪ {m1}
σ1 ← Sign(m1)

1If m∗ ∈/M and
Ver(m∗,σ∗) = 11 1

win ← 1

M ← M ∪{mq }
σq ←Sign(mq)

kIf m∗ ∈/M and
Ver(m∗,σ∗) = 1k k

win ← 1

GmForge
pk

m1

σ1

...
∗ ∗(m1,σ1)
...

mq

σq

k k(m∗,σ∗)

A

win

21 / 23

Unforgeability and Multi-Unforgeability

win ← 0

M ← M ∪ {m1}
σ1 ← Sign(m1)

1If m∗ ∈/M and
Ver(m∗,σ∗) = 11 1

win ← 1

M ← M ∪{mq }
σq ←Sign(mq)

kIf m∗ ∈/M and
k k

win ← 1

GmForge
pk

m1

σ1

...
∗ ∗(m1,σ1)
...

mq

σq

k k(m∗,σ∗)

A

win Ver(m∗,σ∗) = 1

B
e
n
e
d
i
k
t
A
u
e
r
b
a
c
h
:
M
e
m
o
r
y
-
T
i
g
h
t
R 21 / 23

Tight but not memory-tight reduction (store queries)

Unforgeability and Multi-Unforgeability

win ← 0

M ← M ∪ {m1}
σ1 ← Sign(m1)

1If m∗ ∈/M and
Ver(m∗,σ∗) = 11 1

win ← 1

M ← M ∪{mq }
σq ←Sign(mq)

kIf m∗ ∈/M and
k k

win ← 1

GmForge
pk

m1

σ1

...
∗ ∗(m1,σ1)
...

mq

σq

k k(m∗,σ∗)

A

win Ver(m∗,σ∗) = 1

B
e
n
e
d
i
k
t
A
u
e
r
b
a
c
h
:
M
e
m
o
r
y
-
T
i
g
h
t
R 21 / 23

Memory-tight reduction with lower success probability (guess forgery)

Unforgeability and Multi-Unforgeability

win ← 0

M ← M ∪ {m1}
σ1 ← Sign(m1)

1If m∗ ∈/M and
Ver(m∗,σ∗) = 11 1

win ← 1

M ← M ∪{mq }
σq ←Sign(mq)

kIf m∗ ∈/M and
k k

win ← 1

GmForge
pk

m1

σ1

...
∗ ∗(m1,σ1)
...

mq

σq

k k(m∗,σ∗)

A

win Ver(m∗,σ∗) = 1

Benedikt Auerbach: Memory-Tight Reductions 21 / 23

Memory-tight reduction with higher running time (rewind adversary)

Unforgeability and Multi-Unforgeability

Reductions from mForge to Forge (for q adversarial queries)

Time Succ Mem
store queries 1 1 q
guess forgery 1 1/q 1
rewind adversary q 1 1

Benedikt Auerbach: Memory-Tight Reductions 21 / 23

Lower Bounds

Theorem
A certain class of black box reductions from mForge to Forge can not be
simultaneously tight and memory-tight.

• Proof uses techniques from streaming algorithms
• Similar results for multi-collision to collision resistance

Benedikt Auerbach: Memory-Tight Reductions
22 / 23

Lower Bounds
Theorem
A certain class of black box reductions from mForge to Forge can not be
simultaneously tight and memory-tight.

Streaming algorithm A

x1 x2 x3 . . . xq

Benedikt Auerbach: Memory-Tight Reductions 22 / 23

Benedikt Auerbach: Memory-Tight Reductions 23 / 23

Conclusions and Future Work
• Memory usage is ignored but affects security.
• Many reductions are easily fixed...
• ... but some seem inherently loose, including some widely used

implicitly.

Future work:
• Give memory-tight reductions for some constructions (e.g. Hashed

ElGamal).
• Prove lower bounds in less restrictive models.

ia.cr/2017/675

https://eprint.iacr.org/2017/675

Signature Experiment (Sig − forgeA,Π n)

45

(pk,sk) = Gen(.)

σ , 𝑚𝑚 ∉ 𝔔𝔔 = 𝑚𝑚1, 𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚, σ)

Signature Experiment (Sig − forgeA,Π n)

46

Random bit b
(pk,sk) = Gen(.)

σ , 𝑚𝑚 ∉ 𝑚𝑚1, 𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚, σ)

Formally, let Π = Gen, Sign, Vrfy denote the signature scheme,
call the experiment Sig − forgeA,Π n

We say that Π 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑒𝑒𝑒𝑒 𝑢𝑢𝑛𝑛𝑢𝑢𝑒𝑒𝑢𝑢 𝑒𝑒𝑛𝑛 𝑒𝑒𝑢𝑢𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑎𝑎𝑒𝑒 𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑒𝑒𝑛𝑛 𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑢𝑢𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑎𝑎
or just 𝑖𝑖𝑒𝑒𝑐𝑐𝑢𝑢𝑢𝑢𝑒𝑒 if for all PPT adversaries A, there 𝑖𝑖𝑖𝑖 𝑒𝑒 negligible function 𝜇𝜇 such that

Pr[Sig − forgeA,Π 𝑛𝑛 = 1] ≤ 𝜇𝜇(𝑛𝑛)

Existential Unforgeability

• Limitation: Does not prevent replay attacks
• σ ← Signsk("𝑃𝑃𝑒𝑒𝑒𝑒 𝐵𝐵𝑢𝑢𝑢𝑢 $50", 𝑅𝑅)
• If this is a problem then you can include timestamp in signature

• Unforgeability: does rule out the possibility attacker modifies a signature

• Plain RSA signatures are malleable (does not satisfy our security notion)

• Remark: By design signatures cannot hide all information about message m
• Public Verification Attacker can easily distinguish between a signature for m1 and m2

47

Plain RSA Signatures

• Plain RSA
• Public Key (pk): N = pq, e such that GCD e, 𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑎𝑎 − 1 𝑞𝑞 − 1 for distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎 = 𝒎𝒎𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒌𝒌 𝒎𝒎, σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎 𝑒𝑒 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑒𝑒 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚

48

No Message Attack

• Goal: Generate a forgery using only the public key
• No intercepted signatures required

• Public Key (pk): N = pq, e such that GCD e, 𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑎𝑎 − 1 𝑞𝑞 − 1 for distinct primes p and q

• Pick random σ ∈ ℤ
N
∗

• Set 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵 .
• Output 𝑚𝑚, σ

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒌𝒌 𝒎𝒎, σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

49

RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁
• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that
the RSA-Inversion problem is hard and H is modeled as a random
oracle.

Remark: The range of H (e.g.,SHA3) may be shorter than ℤ𝑁𝑁 .
Solution: Repeated application of H e.g., 𝐻𝐻′ 𝑚𝑚 =
𝐻𝐻 1| 𝑚𝑚 … 𝐻𝐻 𝑎𝑎 𝑚𝑚 mod N

50

RSA-FDH
• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁

∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is
modeled as a random oracle.
Proof Sketch: Given an RSA-Inversion challenge c = 𝑢𝑢𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 (r is unknown) we will simulate the signature
attacker. WLOG assume attacker always queries H mi before Sign𝑠𝑠𝑠𝑠 mi

1. Whenever the attacker queries H mi we can pick a random ri ∈ ℤ𝑁𝑁
∗ and program H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so
that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Whenever the attacker queries Sign𝑠𝑠𝑠𝑠 mi we can simply return ri ∈ ℤ𝑁𝑁

∗

3. Exception: Pick a random query index 𝑗𝑗 ≤ 𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ and program H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 instead of H mi =

ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

4. If the attacker forges a signature 𝜎𝜎 for mi we can win the RSA-Inversion game by computing 𝑢𝑢 = 𝜎𝜎 × ri
−1

since 𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = c × ri
𝑒𝑒 𝑒𝑒 = 𝑢𝑢 × ri

𝑒𝑒𝑒𝑒 = 𝑢𝑢ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁.
Analysis: If signature forgery attacker wins with probability f(n) we win RSA-inversion game with probability
f(n)/𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ where 𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ is the number of queries to the random oracle.

51

RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁
∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7 (Concrete): Suppose that any attacker running in time at
most 𝑒𝑒𝑡(𝑛𝑛) wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛
then the RSA-FDH is 𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker
running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 − 𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and
making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the random oracle (resp.
signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤ 4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)

52

RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most 𝑒𝑒𝑡(𝑛𝑛)
wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛 then the RSA-FDH is

𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 −
𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the

random oracle (resp. signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤
4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)
Proof Idea: Whenever the attacker queries H mi we can pick a random ri ∈ ℤ𝑁𝑁

∗

and flip a biased coin Pr heads = 1 − 1
1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

1. Heads: program H mi = ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Tails: and program H mi = c × ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒

53

RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most 𝑒𝑒𝑡(𝑛𝑛)
wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛 then the RSA-FDH is

𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 −
𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the

random oracle (resp. signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤
4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)
Proof Idea: Whenever the attacker queries H mi we pick a random ri ∈ ℤ𝑁𝑁

∗ and
flip a biased coin Pr heads = 1 − 1

1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆
1. Heads: program H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi
𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .

2. Tails: and program H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒

54

Reducing Memory Usage in Reduction
Prior reduction is not memory-tight since we need to remember that H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 for each query.

Solution: Set ri = 𝐻𝐻 (𝐾𝐾, mi) where K is secret key used in the reduction. Program H mi as before.

flip a biased coin Pr heads = 1 − 1
1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

1. Heads: program H mi = ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Tails: and program H mi = c × ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒

Idea 1: If the attacker does not query 𝐻𝐻 (𝐾𝐾, …) then the reduction is unchanged.

Idea 2: If the attacker forges a signature 𝜎𝜎 for mi we will hope that we programmed H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

(tails) and compute ri = 𝐻𝐻 (𝐾𝐾, mi)
𝑢𝑢 = 𝜎𝜎 × ri

−1 since 𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = c × ri
𝑒𝑒 𝑒𝑒 = 𝑢𝑢 × ri

𝑒𝑒𝑒𝑒 = 𝑢𝑢ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁.

55

CPA-Security Game (Single Message Version)

56

m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐒𝐒 𝟏𝟏𝒏𝒏

𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑢𝑢2, 𝐹𝐹𝑠𝑠 𝑢𝑢2 ⨁𝑚𝑚2

𝑢𝑢3, 𝐹𝐹𝑠𝑠 𝑢𝑢3 ⨁𝑚𝑚3

m3

…

𝑒𝑒 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q
queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛

Recall: Week 1 Reduction

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck(𝑢𝑢, 𝑖𝑖) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n)
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎1

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)

57

PRF Security

𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)
Probability of Nonce
Collision with initial challenge

CPA-Security Game (Left-Right)

58

𝑚𝑚0
1, 𝑚𝑚1

1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐒𝐒 𝟏𝟏𝒏𝒏

𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚𝑏𝑏
1

b’

𝑚𝑚0
2, 𝑚𝑚1

2

𝑢𝑢2, 𝐹𝐹𝑠𝑠 𝑢𝑢2 ⨁𝑚𝑚𝑏𝑏
2

𝑢𝑢3, 𝐹𝐹𝑠𝑠 𝑢𝑢3 ⨁𝑚𝑚𝑏𝑏
3

…

𝑒𝑒 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q
encryption queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛

Example: Left-Right Security

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck(𝑢𝑢, 𝑖𝑖) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n)
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎𝐿𝐿𝐿𝐿

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2
2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)

59

PRF Security𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)

Probability there exists a nonce collision

Example: Left-Right Security

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck(𝑢𝑢, 𝑖𝑖) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n)
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎𝐿𝐿𝐿𝐿

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2
2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)

60

PRF Security𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)

Probability there exists a nonce collision

Question: Suppose the attacker is space bounded and
that 𝑆𝑆 ≪ 𝑞𝑞(𝑛𝑛) so that the attacker cannot store all of the
random nonces. Can we prove a tighter security bound?

On the Streaming Indistinguishability
of a Random Permutation and a

Random Function

Itai Dinur
Ben-Gurion University

Eurocrypt 2020

1

“Switching Lemma”
for Random Permutation\Function

• Classical problem: adversary A tries to distinguish a random
permutation P:[N]->[N] from random function F:[N]->[N]
with Q queries

• “Switching Lemma”: A has advantage bounded by O(Q2/N)
• | Pr[AP(⋅) = 1] – Pr[AF(⋅) = 1] | ∊ O(Q2/N)

• Widely used to establish concrete security of cryptosystems
up to birthday bound of Q = 𝑁𝑁
• E.g., modes of operation (counter-mode)

2 A

oracle

qi xi = P(qi)
or F(qi)

“Switching Lemma”
for Random Permutation\Function

• “Switching Lemma”: A has advantage bounded by O(Q2/N)
• | Pr[AP(⋅) = 1] – Pr[AF(⋅) = 1] | ∊ O(Q2/N)

• Matching algorithm: store the Q query outputs and look for
collision (F(qi)= F(qj) for qi ≠qj)

3

Memory-Restricted Adversaries
• Algorithm requires memory ≈Q bits
• What about memory-restricted adversaries?
• Use cycle detection algorithm to obtain optimal O(Q2/N)

advantage with ≈log(N) memory
• Requires adaptive queries to primitive
• What if adversary with S memory bits only given stream of

Q elements produced by random function\permutation?
• Considered by Jaeger and Tessaro at EUROCRYPT 2019

[JT’19]

S

A

oracle

xi = P(i)
or F(i)

Streaming Switching Lemma [JT’19]

• “Streaming switching lemma“ [JT’19]: adversary with S bits
of memory with (1-pass) access to stream of Q elements
from random permutation\function has distinguishing
advantage of at most 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁

• Application: better security bounds against memory-
restricted adversaries for some modes of operation

65

66

Streaming Switching Lemma [JT’19]
• Application: better security bounds against memory- restricted adversaries

for some modes of operation
• AES-based counter-mode:
• mi encrypted to (ri , ci = AESK(ri) ⊕ mi) for uniform ri
• Eavesdropping adversary sees stream (r1 , c1), (r2 , c2),...

• Replace AES by random P + apply streaming switching lemma (several times):
• show (r1 , c1), (r2 , c2),... Indistinguishable from
• (ri, αi) , (ri , αi),... for uniform αi

Streaming Switching Lemma
• “Streaming switching lemma“ [JT’19]: adversary with S bits

of memory with access to stream of Q elements from
random permutation\function has distinguishing
advantage of at most 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁

• Application: if 𝑆𝑆 is limited, counter-mode secure beyond
birthday bound

• Limitations of [JS’19]:
• 1) Proof based on unproven combinatorial conjecture
• 2) Bound 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁 not tight when 𝑄𝑄 ⋅ 𝑆𝑆 ≪ 𝑁𝑁

• E.g., when 𝑆𝑆 = 𝑄𝑄, bound is 𝑄𝑄2/𝑁𝑁, but (original) switching
lemma gives 𝑄𝑄2/𝑁𝑁

67

New Streaming Switching Lemma

• In this work: overcome limitations
• New streaming switching lemma bound 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Tight (up to poly-log factors):

• Algorithm: store first S elements and look for collision with 𝑄𝑄
elements

• Advantage: ≈ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁
• Note: when 𝑆𝑆 = 𝑄𝑄, we get (original) switching lemma

S

68

CC → Streaming
• Main idea: reduce from communication complexity (CC)

problem (with strong lower bounds) to streaming
• General reduction framework from one-way CC problem:

• Alice, Bob solve CC problem given access to streaming algorithm:
• View concatenated inputs as stream
• Alice simulates streaming algorithm on her input, passes state to

Bob which continues simulation, outputs result

Alice S bits Bob

stream
69

CC → Streaming

• Streaming algorithm with memory S gives one-way
communication protocol with communication cost S (and
same advantage)

• Lower bound on cost of communication protocol →
lower bound on memory of streaming algorithm

Alice S bits Bob

stream
70

Reduction Attempt for Random
Permutation\Function

• Attempt: CC problem – each player gets Q/2 elements, chosen using rand
permutation\function

• Useless: CC problem is easy
• E.g., if Q > 𝑁𝑁, players can trivially distinguish between permutation\function

with no communication
• Each player has unlimited resources and can detect a collision locally

71

Alice Bob
x1,…,xQ/2 xQ/2+1,…,xQ

72

Reduction Attempt for Random
Permutation\Function

• General restriction: in hard CC problem joint distributions
for Alice and Bob’s inputs should have identical marginals
• Alice and Bob should have same local view

• Impossible when considering rand permutation\function
distributions

• Solution: use hybrid argument
• Consider intermediate hybrid distributions between random

permutation and random function
• Prove indistinguishability of neighboring hybrid distributions by

reduction from CC

Hybrid Argument

• Attempt: define Q hybrids games
• Game i: 𝑒𝑒1, … 𝒙𝒙𝑸𝑸−𝒊𝒊, 𝑒𝑒𝑄𝑄−𝑖𝑖+1, … , 𝑒𝑒𝑄𝑄 or 𝑒𝑒1, … 𝑒𝑒𝑄𝑄−𝑖𝑖−1, 𝒙𝒙𝑸𝑸−𝒊𝒊, … , 𝑒𝑒𝑄𝑄

• (Standard) hybrid argument far from tight
• (Distinguishing advantage) x (num of hybrids) too large

w\o replacement w replacement

73

w\o replacement w replacement

16

Improved Hybrid Argument

• Main idea: break dependency between halves
• Denote 1st sequence by 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2, 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2
• 1st distribution: elements chosen using (same) permutation
• 1st intermediate hybrid: 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2 and 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2

chosen using independent permutations

• Reduction from (one-way) CC:
• Alice gets 1st half of sequence, Bob gets 2nd half (decide if

they obtain same or independent permutations)
• Marginals are identical

Permutation Dependence

• (one way) CC problem - permutation dependence (PDEP):
• Alice and Bob decide if their inputs were drawn using same

or independent permutations
• PDEP to streaming reduction:

𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2 𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2

stream

Alice Bob
𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2 𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2

S bits

17

UDISJ-> PDEP
• Communication cost \ advantage tradeoff for PDEP?
• Reduction from (unique) disjointness (UDISJ)

• Each player receives a set of size n (domain size O(n)), need to
decide if sets intersect or disjoint

• Theorem (informal)[BM’13, GW’14]: if Alice and Bob
communicate c bits for DISJ (UDISJ) in the worst case, their
max advantage is O(c/n)
• Even when given access to public randomness

18

Alice Bob
𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 𝑢𝑢1, … , 𝑢𝑢𝑛𝑛

UDISJ-> PDEP

• Theorem (informal): there is a public coin local reduction
that converts a UDISJ instance of size n=N/Q to a PDEP
instance of size Q
• Shorter inputs harder from PDEP, but easier for UDISJ

• Overall: UDISJ -> PDEP-> streaming
bounds max advantage for hybrid game by
O(c/n) = 𝑂𝑂(𝑆𝑆/(𝑁𝑁/𝑄𝑄)) = 𝑂𝑂(𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)

Alice

Bob

𝑒𝑒1, … , 𝑒𝑒1
1 𝑄𝑄/2

𝑒𝑒1, … , 𝑒𝑒1
1 𝑄𝑄/2

𝑒𝑒1, … , 𝑒𝑒𝑁𝑁/𝑄𝑄 b1, … , b𝑁𝑁/𝑄𝑄

Alice

Bob

Public randomness

The Full Hybrid Argument
• Once dependency between 2 halves broken:

• Continue recursively (tree structure)
• 2’nd level: 2 games of distinguishing stream distributions on

Q/2 elements
• Final distribution: Q elements divided into Q independent

permutations == random function
• Max advantage for each level: 𝑂𝑂(𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Total max advantage: 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)

game 1

game 2

game 6

game 3

game 4 game 5 game 7

22

23

Conclusions

• New streaming switching lemma bound 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Tight up to poly-log factors
• Reduction from CC to streaming uses unconventional

hybrid argument
• Standard streaming problems defined in worst case setting

• Gives freedom to choose hard distributions for CC problem
• In our (cryptographic) setting streams distributions fixed

• Hybrid argument reduction applicable to more problems?
• Extension: multi-pass streaming switching lemma

• Streaming alg allowed multiple passes over data

24

Thanks for your attention!

	Advanced Cryptography�CS 655
	Memory-Tight Reductions
	Tightness and Memory-Tightness
	Cryptographic Reductions and Tightness
	Relevance of Tightness for Concrete Security
	Relevance of Tightness for Concrete Security
	Relevance of Tightness for Concrete Security
	Relevance of Tightness for Concrete Security
	What about memory?
	Contributions
	Time-Memory Trade-offs
	Time-Memory Trade-offs
	Adding Memory-Consumption
	Adding Memory-Consumption
	Adding Memory-Consumption
	Example: Time-Memory Trade-off for LPN
	Example: Time-Memory Trade-off for LPN
	Example: Time-Memory Trade-off for LPN
	Example: Time-Memory Trade-off for LPN
	Memory-Tight Reductions
	Memory-Tight Reductions
	Memory-Tight Reductions
	Memory-Sensitive Problems
	Typical Non-Memory-Tight Reductions
	Example 1: Random Oracle Simulation
	Example 2: Unforgeability of Signatures
	Recap
	Achieving Memory-Tightness
	Example 1: Random Oracle Simulation
	Example 1: Random Oracle Simulation
	Example 2: Unforgeability of Signatures
	Example 2: Unforgeability of Signatures
	Example 2: Unforgeability of Signatures
	Example 2: Unforgeability of Signatures
	Lower Bounds
	Unforgeability and Multi-Unforgeability
	Unforgeability and Multi-Unforgeability
	Unforgeability and Multi-Unforgeability
	Unforgeability and Multi-Unforgeability
	Unforgeability and Multi-Unforgeability
	Unforgeability and Multi-Unforgeability
	Lower Bounds
	Lower Bounds
	Conclusions and Future Work
	Signature Experiment (Sig−forge A,Π n)
	Signature Experiment (Sig−forge A,Π n)
	Existential Unforgeability
	Plain RSA Signatures
	No Message Attack
	RSA-FDH
	RSA-FDH
	RSA-FDH
	RSA-FDH
	RSA-FDH
	Reducing Memory Usage in Reduction
	CPA-Security Game (Single Message Version)
	Recall: Week 1 Reduction
	CPA-Security Game (Left-Right)
	Example: Left-Right Security
	Example: Left-Right Security
	On the Streaming Indistinguishability of a Random Permutation and a Random Function
	“Switching Lemma”for Random Permutation\Function
	“Switching Lemma”for Random Permutation\Function
	Memory-Restricted Adversaries
	Streaming Switching Lemma [JT’19]
	Streaming Switching Lemma [JT’19]
	Streaming Switching Lemma
	New Streaming Switching Lemma
	CC → Streaming
	CC → Streaming
	Reduction Attempt for Random Permutation\Function
	Reduction Attempt for Random Permutation\Function
	Hybrid Argument
	Improved Hybrid Argument
	Permutation Dependence
	UDISJ-> PDEP
	UDISJ-> PDEP
	The Full Hybrid Argument
	Conclusions
	Thanks for your attention!

