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Cryptographic Reductions and Tightness

Problem P Reduction AP Adversary AS
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Reduction is tight if Time(AP) ≈ Time(AS) and Succ(AP) ≈ Succ(AS)
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unbroken

Time-success trade-off plot for algorithms solving problem P
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Time-success trade-off plot for algorithms solving problem P



Relevance of Tightness for Concrete Security
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Non-tight reduction

∆Succ = Succ(AS)/Succ(AP) »  1  
or   ∆Time = Time(AP)/Time(AS) » 1
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Tight reduction

Succ(AP) ≈ Succ(AS)  
Time(AP) ≈ Time(AS)



What about memory?
Resources of adversary

• Running time
• Success probability
• Memory consumption
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Contributions
• Raise awareness for memory usage in reductions
• Propose tools for achieving memory-tightness
• Concrete application:  memory-tight reduction for RSA-FDH
• Impossibility of memory-tight reductions for certain problems
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Time-Memory Trade-offs
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Time-Memory Trade-offs
• Some problems are harder with less memory

• in particular many lattice / coding  problems
• Needs to be taken into account in reductions
• Concrete example:  Learning Parity with Noise (LPN)
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Adding Memory-Consumption
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For simplicity:  consider algorithms with constant success probability



Example:  Time-Memory Trade-off for LPN
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Algorithm 1:  Gauss algorithm for dimension λ
Mem = poly(λ), Time ≈2λ
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Algorithm 2:  BKW algorithm for dimension λ
Mem ≈ 2λ/ log λ, Time ≈ 2λ/ log λ
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Time-memory trade-off plot for LPN
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Time-memory trade-off plot for LPN [EKM, 11:00 Lotte Lehman Hall]
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(Time-)Tight and memory-tight reduction
Time(AP) ≈ Time(AS), Mem(AP) ≈ Mem(AS)



Memory-Sensitive Problems
Time

Mem

AS

AP

Memory-sensitive:
• LPN
• Shortest Vector Problem
• 3 collision resistance
• DLP in finite fields
• Factoring

Time

Mem

AS

AP

Not memory-sensitive:
• Collision resistance
• Preimage resistance
• DLP over elliptic curves
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Might change in future
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Example 1:  Random Oracle Simulation
P AP

If H(x1) = ⊥:H(x1) ← $
X1________

H(x1)___

...

If H(xq ) = ⊥:H(xq ) ← $
xq

H(xq )

AS

Benedikt Auerbach:  Memory-Tight
Reductions 14 / 23

Worst case:  Mem(AP) ≈ Time(AS), while Mem(AS) small



Example 2:  Unforgeability of Signatures
P AP

M ← M ∪{m1}
m1

σ1

...

mq_____

σq_-________

(m∗,σ∗)__

σ1  ← Sign(m1)

M ← M ∪{mq }
σq  ← Sign(mq)

?m∗  ∈ M

AS
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Worst case:  Mem(AP) ≈ Time(AS), while Mem(AS) small
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Recap
• Currently memory often ignored in reductions
• Many existing reductions not memory-tight

• Worst case Mem(AP)  ≈  Time(AS )  while Mem(AS ) small
• Particularly problematic for memory-sensitive problems
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Achieving Memory-Tightness



Example 1:  Random Oracle Simulation
P AP

If H(x1) = ⊥:H(x1) ← $
x1

H(x1)

If H(xq ) = ⊥:H(xq ) ← $
xq

H(xq )
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RO simulation via lazy sampling



Example 1:  Random Oracle Simulation
P AP

K ← $
x1

PRFK (x1)

.

xq

PRFK(xq)

AS
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Memory efficient RO simulation [Bernstein 2011]



Example 2:  Unforgeability of Signatures
P AP

M ← M ∪{m1}
m1

σ1

...

mq

σq

(m∗ ,σ∗)

σ1  ← Sign(m1)

M ← M ∪{mq }
σq  ← Sign(mq)

?m∗  ∈ M

AS
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Usual simulation of unforgeability game



Example 2:  Unforgeability of Signatures
P AP

σ1  ← Sign(m1)

σq ← Sign(mq)  

Store m∗

Rewind AS

m1

σ1

...

mq_______
σq

(m∗ ,σ∗)

AS
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Memory-efficient simulation of unforgeability game



Example 2:  Unforgeability of Signatures
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Memory-efficient simulation of unforgeability game



Example 2:  Unforgeability of Signatures
P AP

σ1  ← Sign(m1)m =? m∗
1

σq  ← Sign(mq)
m =? m∗

q
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Important:  Coins of AP  and AS  have to be stored memory-efficiently



B
e
n
e
d
i
k
t 
A
u
e
r
b
a
c
h
:  
M
e
m
o
r
y
-
T
i
g
h
t
R

2
0 
/
2
3

Lower Bounds



Unforgeability and Multi-Unforgeability

GForge
win ← 0 pk

m1

σ1

...

mq

σq

(m∗ ,σ∗)

M ← M ∪ {m1}

σ1  ← Sign(m1)

M ← M ∪ {mq }
σq ← Sign(mq )

If m∗  ∈/M and
Ver(m∗ ,σ∗) = 1
win ← 1

A

win
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Tight but not memory-tight reduction (store queries)
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Memory-tight reduction with lower success probability (guess forgery)



Unforgeability and Multi-Unforgeability

win ← 0

M ← M ∪ {m1}
σ1  ← Sign(m1)

1If m∗  ∈/M and
Ver(m∗,σ∗) = 11    1

win ← 1

M ← M ∪{mq }
σq ←Sign(mq )

kIf m∗  ∈/M and
k   k

win ← 1

GmForge
pk

m1

σ1

...
∗          ∗(m1,σ1)
...

mq

σq

k   k(m∗,σ∗)

A

win Ver(m∗,σ∗) = 1

Benedikt Auerbach:  Memory-Tight Reductions 21 / 23

Memory-tight reduction with higher running time (rewind adversary)



Unforgeability and Multi-Unforgeability

Reductions from mForge to Forge (for q  adversarial queries)

Time Succ Mem
store queries 1 1 q
guess forgery 1 1/q 1
rewind adversary q 1 1
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Lower Bounds

Theorem
A certain class of black box reductions from mForge to Forge can not be  
simultaneously tight and memory-tight.

• Proof uses techniques from streaming algorithms
• Similar results for multi-collision to collision resistance
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Lower Bounds
Theorem
A certain class of black box reductions from mForge to Forge can not be  
simultaneously tight and memory-tight.

Streaming algorithm A

x1 x2 x3 . . . xq
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Conclusions and Future Work
• Memory usage is ignored but affects security.
• Many reductions are easily fixed...
• ... but some seem inherently loose, including some widely used  

implicitly.

Future work:
• Give memory-tight reductions for some constructions (e.g. Hashed  

ElGamal).
• Prove lower bounds in less restrictive models.

ia.cr/2017/675

https://eprint.iacr.org/2017/675


Signature Experiment (Sig − forgeA,Π n )

45

(pk,sk) = Gen(.)

σ , 𝑚𝑚 ∉ 𝔔𝔔 = 𝑚𝑚1, 𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚, σ)



Signature Experiment (Sig − forgeA,Π n )
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Random bit b
(pk,sk) = Gen(.)

σ , 𝑚𝑚 ∉ 𝑚𝑚1, 𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚, σ)

Formally, let Π = Gen, Sign, Vrfy denote the signature scheme,
call the experiment Sig − forgeA,Π n

We say that Π 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑒𝑒𝑒𝑒 𝑢𝑢𝑛𝑛𝑢𝑢𝑒𝑒𝑢𝑢 𝑒𝑒𝑛𝑛 𝑒𝑒𝑢𝑢𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑎𝑎𝑒𝑒 𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑒𝑒𝑛𝑛 𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑢𝑢𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑎𝑎
or just 𝑖𝑖𝑒𝑒𝑐𝑐𝑢𝑢𝑢𝑢𝑒𝑒 if for all PPT adversaries A, there 𝑖𝑖𝑖𝑖 𝑒𝑒 negligible function 𝜇𝜇 such that 

Pr[Sig − forgeA,Π 𝑛𝑛 = 1] ≤ 𝜇𝜇(𝑛𝑛)



Existential Unforgeability

• Limitation: Does not prevent replay attacks
• σ ← Signsk("𝑃𝑃𝑒𝑒𝑒𝑒 𝐵𝐵𝑢𝑢𝑢𝑢 $50", 𝑅𝑅)
• If this is a problem then you can include timestamp in signature

• Unforgeability: does rule out the possibility attacker modifies a signature 

• Plain RSA signatures are malleable (does not satisfy our security notion)

• Remark: By design signatures cannot hide all information about message m
• Public Verification  Attacker can easily distinguish between a signature for m1 and m2
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Plain RSA Signatures

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e, 𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑎𝑎 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎 = 𝒎𝒎𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒌𝒌 𝒎𝒎, σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆

• Verification Works because
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎 𝑒𝑒 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑒𝑒 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚

48



No Message Attack

• Goal: Generate a forgery using only the public key
• No intercepted signatures required

• Public Key (pk): N = pq, e  such that GCD e, 𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑎𝑎 − 1 𝑞𝑞 − 1 for  distinct primes p and q

• Pick random σ ∈ ℤ
N
∗

• Set 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵 .
• Output 𝑚𝑚, σ

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝒑𝒑𝒌𝒌 𝒎𝒎, σ = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝒎𝒎 = σ𝒆𝒆 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵
𝟎𝟎 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆
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RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁
• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that 
the RSA-Inversion problem is hard and H is modeled as a random 
oracle.

Remark: The range of H (e.g.,SHA3) may be shorter than ℤ𝑁𝑁 .
Solution: Repeated application of H e.g., 𝐻𝐻′ 𝑚𝑚 =
𝐻𝐻 1| 𝑚𝑚 … 𝐻𝐻 𝑎𝑎 𝑚𝑚 mod N
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RSA-FDH
• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁

∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is 
modeled as a random oracle.
Proof Sketch: Given an RSA-Inversion challenge c = 𝑢𝑢𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 ( r is unknown) we will simulate the signature 
attacker. WLOG assume attacker always queries H mi before Sign𝑠𝑠𝑠𝑠 mi

1. Whenever the attacker queries H mi we can pick a random ri ∈ ℤ𝑁𝑁
∗ and program H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so 
that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Whenever the attacker queries Sign𝑠𝑠𝑠𝑠 mi we can simply return ri ∈ ℤ𝑁𝑁

∗

3. Exception: Pick a random query index 𝑗𝑗 ≤ 𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ and program H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 instead of H mi =

ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

4. If the attacker forges a signature 𝜎𝜎 for mi we can win the RSA-Inversion game by computing 𝑢𝑢 = 𝜎𝜎 × ri
−1

since 𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = c × ri
𝑒𝑒 𝑒𝑒 = 𝑢𝑢 × ri

𝑒𝑒𝑒𝑒 = 𝑢𝑢ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁.
Analysis: If signature forgery attacker wins with probability f(n) we win RSA-inversion game with probability 
f(n)/𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ where 𝑞𝑞ℎ𝑎𝑎𝑠𝑠ℎ is the number of queries to the random oracle.  
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RSA-FDH

• Full Domain Hash: 𝐻𝐻: 0,1 ∗ → ℤ𝑁𝑁
∗

• Given a message 𝑚𝑚 ∈ 0,1 ∗

𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = 𝐻𝐻 𝑚𝑚 𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
Theorem 12.7 (Concrete): Suppose that any attacker running in time at 
most 𝑒𝑒𝑡(𝑛𝑛) wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛
then the RSA-FDH is 𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker 
running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 − 𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and 
making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the random oracle (resp. 
signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤ 4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)

52



RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most 𝑒𝑒𝑡(𝑛𝑛)
wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛 then the RSA-FDH is 

𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 −
𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the 

random oracle (resp. signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤
4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)
Proof Idea: Whenever the attacker queries H mi we can pick a random ri ∈ ℤ𝑁𝑁

∗

and flip a biased coin Pr heads = 1 − 1
1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

1. Heads: program H mi = ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Tails: and program H mi = c × ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒
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RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most 𝑒𝑒𝑡(𝑛𝑛)
wins RSA-Inversion game with probability at most 𝜀𝜀𝑡 𝑛𝑛 then the RSA-FDH is 

𝑒𝑒 𝑛𝑛 , 𝑞𝑞𝐻𝐻 , 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀(𝑛𝑛) -secure i.e., any attacker running in time 𝑒𝑒 𝑛𝑛 = 𝑒𝑒′ 𝑛𝑛 −
𝑞𝑞𝐻𝐻 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 + 1 𝑂𝑂 𝑎𝑎𝑢𝑢𝑒𝑒𝑒𝑒 𝑛𝑛 and making at most 𝑞𝑞𝐻𝐻 (resp. 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆) queries to the 

random oracle (resp. signature oracle) wins with probability at most 𝜀𝜀 𝑛𝑛 ≤
4𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑡(𝑛𝑛)
Proof Idea: Whenever the attacker queries H mi we pick a random ri ∈ ℤ𝑁𝑁

∗ and 
flip a biased coin Pr heads = 1 − 1

1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆
1. Heads: program H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi
𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .

2. Tails: and program H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒

54



Reducing Memory Usage in Reduction
Prior reduction is not memory-tight since we need to remember that H mi = ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 for each query.

Solution: Set ri = 𝐻𝐻 (𝐾𝐾, mi ) where K is secret key used in the reduction. Program H mi as before.

flip a biased coin Pr heads = 1 − 1
1+𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

1. Heads: program H mi = ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 so that H mi

𝑒𝑒 = ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁 .
2. Tails: and program H mi = c × ri

𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁
1. If attacker queries signing oracle on this message we will need to abort

Pr 𝑛𝑛𝑢𝑢 abort = Pr heads 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
1

1 + 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆

≈
1
𝑒𝑒

Idea 1: If the attacker does not query 𝐻𝐻 (𝐾𝐾, … ) then the reduction is unchanged.

Idea 2: If the attacker forges a signature 𝜎𝜎 for mi we will hope that we programmed H mi = c × ri
𝑒𝑒 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁

(tails) and compute ri = 𝐻𝐻 (𝐾𝐾, mi )
𝑢𝑢 = 𝜎𝜎 × ri

−1 since 𝜎𝜎 = Sign𝑠𝑠𝑠𝑠 𝑚𝑚 = c × ri
𝑒𝑒 𝑒𝑒 = 𝑢𝑢 × ri

𝑒𝑒𝑒𝑒 = 𝑢𝑢ri 𝑚𝑚𝑢𝑢𝑢𝑢 𝑁𝑁.
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CPA-Security Game (Single Message Version)

56

m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐒𝐒 𝟏𝟏𝒏𝒏

𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑢𝑢2, 𝐹𝐹𝑠𝑠 𝑢𝑢2 ⨁𝑚𝑚2

𝑢𝑢3, 𝐹𝐹𝑠𝑠 𝑢𝑢3 ⨁𝑚𝑚3

m3

…

𝑒𝑒 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q 
queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛



Recall: Week 1 Reduction

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck( 𝑢𝑢, 𝑖𝑖 ) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n) 
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎1

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)
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PRF Security

𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)
Probability of Nonce 
Collision with initial challenge



CPA-Security Game (Left-Right)

58

𝑚𝑚0
1, 𝑚𝑚1

1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐒𝐒 𝟏𝟏𝒏𝒏

𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚𝑏𝑏
1

b’

𝑚𝑚0
2, 𝑚𝑚1

2

𝑢𝑢2, 𝐹𝐹𝑠𝑠 𝑢𝑢2 ⨁𝑚𝑚𝑏𝑏
2

𝑢𝑢3, 𝐹𝐹𝑠𝑠 𝑢𝑢3 ⨁𝑚𝑚𝑏𝑏
3

…

𝑒𝑒 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q 
encryption queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛



Example: Left-Right Security

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck( 𝑢𝑢, 𝑖𝑖 ) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n) 
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎𝐿𝐿𝐿𝐿

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2
2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)
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PRF Security𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)

Probability there exists a nonce collision



Example: Left-Right Security

Enck(m) = 𝑢𝑢, 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑚𝑚

Deck( 𝑢𝑢, 𝑖𝑖 ) = 𝐹𝐹𝑠𝑠 𝑢𝑢 ⨁𝑖𝑖

For any attacker A running in time 𝑒𝑒(𝑛𝑛) and making at most q(n) 
encryption queries we have

Pr 𝑃𝑃𝑢𝑢𝑖𝑖𝑎𝑎𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑎𝑎𝐿𝐿𝐿𝐿

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2
2𝑛𝑛 + 𝜇𝜇 𝑛𝑛, 𝑒𝑒𝑡 𝑛𝑛 , 𝑞𝑞(𝑛𝑛)
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PRF Security𝑒𝑒𝑡 𝑛𝑛 ≈ 𝑒𝑒(𝑛𝑛)

Probability there exists a nonce collision

Question: Suppose the attacker is space bounded and 
that 𝑆𝑆 ≪ 𝑞𝑞(𝑛𝑛) so that the attacker cannot store all of the 
random nonces. Can we prove a tighter security bound?
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“Switching Lemma”
for Random Permutation\Function

• Classical problem: adversary A tries to distinguish a random 
permutation P:[N]->[N] from random function F:[N]->[N] 
with Q queries

• “Switching Lemma”: A has advantage bounded by O(Q2/N)
• | Pr[AP(⋅) = 1] – Pr[AF(⋅) = 1] | ∊ O(Q2/N)

• Widely used to establish concrete security of cryptosystems
up to birthday bound of Q = 𝑁𝑁
• E.g., modes of operation (counter-mode)

2 A

oracle

qi xi = P(qi) 
or F(qi)



“Switching Lemma”
for Random Permutation\Function

• “Switching Lemma”: A has advantage bounded by O(Q2/N)
• | Pr[AP(⋅) = 1] – Pr[AF(⋅) = 1] | ∊ O(Q2/N)

• Matching algorithm: store the Q query outputs and look for
collision (F(qi)= F(qj) for qi ≠qj)

3



Memory-Restricted Adversaries
• Algorithm requires memory ≈Q bits
• What about memory-restricted adversaries?
• Use cycle detection algorithm to obtain optimal O(Q2/N) 

advantage with ≈log(N) memory
• Requires adaptive queries to primitive
• What if adversary with S memory bits only given stream of 

Q elements produced by random function\permutation?
• Considered by Jaeger and Tessaro at EUROCRYPT 2019 

[JT’19]

S

A

oracle

xi = P(i) 
or F(i)



Streaming Switching Lemma [JT’19]

• “Streaming switching lemma“ [JT’19]: adversary with S bits 
of memory with (1-pass) access to stream of Q elements 
from random permutation\function has distinguishing
advantage of at most 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁

• Application: better security bounds against memory-
restricted adversaries for some modes of operation
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Streaming Switching Lemma [JT’19]
• Application: better security bounds against memory- restricted adversaries

for some modes of operation
• AES-based counter-mode:
• mi encrypted to (ri , ci = AESK(ri) ⊕ mi ) for uniform ri
• Eavesdropping adversary sees stream (r1 , c1 ), (r2 , c2 ),...

• Replace AES by random P + apply streaming switching lemma (several times):
• show (r1 , c1 ), (r2 , c2 ),... Indistinguishable from
• (ri, αi ) , (ri , αi ),... for uniform αi



Streaming Switching Lemma
• “Streaming switching lemma“ [JT’19]: adversary with S bits 

of memory with access to stream of Q elements from 
random permutation\function has distinguishing
advantage of at most 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁

• Application: if 𝑆𝑆 is limited, counter-mode secure beyond 
birthday bound

• Limitations of [JS’19]:
• 1) Proof based on unproven combinatorial conjecture
• 2) Bound 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁 not tight when 𝑄𝑄 ⋅ 𝑆𝑆 ≪ 𝑁𝑁

• E.g., when 𝑆𝑆 = 𝑄𝑄, bound is 𝑄𝑄2/𝑁𝑁, but (original) switching 
lemma gives 𝑄𝑄2/𝑁𝑁
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New Streaming Switching Lemma

• In this work: overcome limitations
• New streaming switching lemma bound 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Tight (up to poly-log factors):

• Algorithm: store first S elements and look for collision with 𝑄𝑄
elements

• Advantage: ≈ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁
• Note: when 𝑆𝑆 = 𝑄𝑄, we get (original) switching lemma

S
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CC → Streaming
• Main idea: reduce from communication complexity (CC) 

problem (with strong lower bounds) to streaming
• General reduction framework from one-way CC problem:

• Alice, Bob solve CC problem given access to streaming algorithm:
• View concatenated inputs as stream
• Alice simulates streaming algorithm on her input, passes state to 

Bob which continues simulation, outputs result

Alice S bits Bob

stream
69



CC → Streaming

• Streaming algorithm with memory S gives one-way 
communication protocol with communication cost S (and 
same advantage)

• Lower bound on cost of communication protocol →
lower bound on memory of streaming algorithm

Alice S bits Bob

stream
70



Reduction Attempt for Random 
Permutation\Function

• Attempt: CC problem – each player gets Q/2 elements, chosen using rand
permutation\function

• Useless: CC problem is easy
• E.g., if Q > 𝑁𝑁, players can trivially distinguish between permutation\function

with no communication
• Each player has unlimited resources and can detect a collision locally

71

Alice Bob
x1,…,xQ/2 xQ/2+1,…,xQ
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Reduction Attempt for Random 
Permutation\Function

• General restriction: in hard CC problem joint distributions
for Alice and Bob’s inputs should have identical marginals
• Alice and Bob should have same local view

• Impossible when considering rand permutation\function 
distributions

• Solution: use hybrid argument
• Consider intermediate hybrid distributions between random 

permutation and random function
• Prove indistinguishability of neighboring hybrid distributions by

reduction from CC



Hybrid Argument

• Attempt: define Q hybrids games
• Game i: 𝑒𝑒1, … 𝒙𝒙𝑸𝑸−𝒊𝒊, 𝑒𝑒𝑄𝑄−𝑖𝑖+1, … , 𝑒𝑒𝑄𝑄 or 𝑒𝑒1, … 𝑒𝑒𝑄𝑄−𝑖𝑖−1, 𝒙𝒙𝑸𝑸−𝒊𝒊, … , 𝑒𝑒𝑄𝑄

• (Standard) hybrid argument far from tight
• (Distinguishing advantage) x (num of hybrids) too large

w\o replacement w replacement

73

w\o replacement w replacement
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Improved Hybrid Argument

• Main idea: break dependency between halves
• Denote 1st sequence by 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2, 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2
• 1st distribution: elements chosen using (same) permutation
• 1st intermediate hybrid: 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2 and 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑄𝑄/2

chosen using independent permutations

• Reduction from (one-way) CC:
• Alice gets 1st half of sequence, Bob gets 2nd half (decide if 

they obtain same or independent permutations)
• Marginals are identical



Permutation Dependence

• (one way) CC problem - permutation dependence (PDEP):
• Alice and Bob decide if their inputs were drawn using same

or independent permutations
• PDEP to streaming reduction:

𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2 𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2

stream

Alice Bob
𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2 𝑒𝑒1, … , 𝑒𝑒𝑄𝑄/2

S bits

17



UDISJ-> PDEP
• Communication cost \ advantage tradeoff for PDEP?
• Reduction from (unique) disjointness (UDISJ)

• Each player receives a set of size n (domain size O(n)), need to 
decide if sets intersect or disjoint

• Theorem (informal)[BM’13, GW’14]: if Alice and Bob 
communicate c bits for DISJ (UDISJ) in the worst case, their
max advantage is O(c/n)
• Even when given access to public randomness
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Alice Bob
𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 𝑢𝑢1, … , 𝑢𝑢𝑛𝑛



UDISJ-> PDEP

• Theorem (informal): there is a public coin local reduction 
that converts a UDISJ instance of size n=N/Q to a PDEP 
instance of size Q
• Shorter inputs harder from PDEP, but easier for UDISJ

• Overall: UDISJ -> PDEP-> streaming
bounds max advantage for hybrid game by
O(c/n) = 𝑂𝑂(𝑆𝑆/(𝑁𝑁/𝑄𝑄)) = 𝑂𝑂(𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)

Alice

Bob

𝑒𝑒1, … , 𝑒𝑒1
1 𝑄𝑄/2

𝑒𝑒1, … , 𝑒𝑒1
1 𝑄𝑄/2

𝑒𝑒1, … , 𝑒𝑒𝑁𝑁/𝑄𝑄 b1, … , b𝑁𝑁/𝑄𝑄

Alice

Bob

Public randomness



The Full Hybrid Argument
• Once dependency between 2 halves broken:

• Continue recursively (tree structure)
• 2’nd level: 2 games of distinguishing stream distributions on 

Q/2 elements
• Final distribution: Q elements divided into Q independent 

permutations == random function
• Max advantage for each level: 𝑂𝑂(𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Total max advantage: 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)

game 1

game 2

game 6

game 3

game 4 game 5 game 7
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Conclusions

• New streaming switching lemma bound 𝑂𝑂(log 𝑄𝑄 ⋅ 𝑄𝑄 ⋅ 𝑆𝑆/𝑁𝑁)
• Tight up to poly-log factors
• Reduction from CC to streaming uses unconventional

hybrid argument
• Standard streaming problems defined in worst case setting

• Gives freedom to choose hard distributions for CC problem
• In our (cryptographic) setting streams distributions fixed

• Hybrid argument reduction applicable to more problems?
• Extension: multi-pass streaming switching lemma

• Streaming alg allowed multiple passes over data
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Thanks for your attention!
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