Advanced Cryptography CS 655

Week 3:

- Memory-Tight Reductions
- RSA-FDH
- Memory-Tightness

Memory-Tight Reductions

Benedikt Auerbach ${ }^{1}$ David Cash² Manuel Fersch ${ }^{1}$ Eike Kiltz ${ }^{1}$

${ }^{1}$ Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

${ }^{2}$ Rutgers University, New Jersey, USA

Crypto 2017, Santa Barbara
August 21, 2017

Tightness and MemoryTightness

Cryptographic Reductions and Tightness

Reduction is tight if $\operatorname{Time}\left(\mathbf{A P}_{\mathbf{p}}\right) \approx \operatorname{Time}\left(\mathbf{A s}_{\mathbf{s}}\right)$ and $\operatorname{Succ}\left(\mathbf{A}_{\mathbf{p}}\right) \approx \operatorname{Succ}\left(\mathbf{A s}_{\mathbf{s}}\right)$

Relevance of Tightness for Concrete Security

Time-success trade-off plot for algorithms solving problem \mathbf{P}

Relevance of Tightness for Concrete Security

 Time

Time-success trade-off plot for algorithms solving problem \mathbf{P}

Relevance of Tightness for Concrete Security

Time


```
Non-tight reduction
\[
\Delta_{\text {succ }}=\operatorname{Succ}\left(\mathbf{A s}_{\mathbf{s}}\right) / \operatorname{Succ}\left(\mathbf{A}_{\mathbf{P}}\right) » \quad 1
\]
\[
\text { or } \Delta_{\text {Time }}=\operatorname{Time}\left(\mathbf{A}_{\mathbf{P}}\right) / \operatorname{Time}\left(\mathbf{A}_{\mathbf{s}}\right) » 1
\]
```


Relevance of Tightness for Concrete Security

Tight reduction
$\operatorname{Succ}\left(A_{P}\right) \approx \operatorname{Succ}\left(A_{s}\right)$
Time $\left(A_{P}\right) \approx \operatorname{Time}\left(A_{s}\right)$

What about memory?

Resources of adversary

- Running time
- Success probability
- Memory consumption

Contributions

- Raise awareness for memory usage in reductions
- Propose tools for achieving memory-tightness
- Concrete application: memory-tight reduction for RSA-FDH
- Impossibility of memory-tight reductions for certain problems

Time-Memory Trade-offs

Benedikt Auerbach: Memory-Tight Reductions

Time-Memory Trade-offs

- Some problems are harder with less memory
. in particular many lattice / coding problems
- Needs to be taken into account in reductions
- Concrete example: Leaming Parity with Noise (LPN)

Adding Memory-Consumption

Adding Memory-Consumption

Adding Memory-Consumption

For simplicity: consider algorithms with constant success probability

Example: Time-Memory Trade-off for LPN

Algorithm 1: Gauss algorithm for dimension λ
Mem $=\operatorname{poly}(\lambda)$, Time $\approx 2^{\lambda}$

Example: Time-Memory Trade-off for LPN

Algorithm 2: BKW algorithm for dimension λ
Mem $\approx 2^{\lambda / \log \lambda}$, Time $\approx 2^{\lambda / \log \lambda}$

Example: Time-Memory Trade-off for LPN

Time-memory trade-off plot for LPN

Example: Time-Memory Trade-off for LPN

Time-memory trade-off plot for LPN [EKM, 11:00 Lotte Lehman Hall]

Memory-Tight Reductions

Benedikt Auerbach: Memory-

Memory-Tight Reductions

(Time-)Tight but not memory-tight reduction

Memory-Tight Reductions

Benedikt Auerbach: Memory-Tight

Memory-Sensitive Problems

Memory-sensitive:

- LPN
- Shortest Vector Problem
- 3 collision resistance
- DLP in finite fields
- Factoring

Benedikt Auerbach: Memory-Tight Reductions

Typical Non-Memory-Tight Reductions

Example 1: Random Oracle Simulation

Worst case: $\operatorname{Mem}\left(\mathbf{A p}_{\mathbf{p}}\right) \approx \operatorname{Time}\left(\mathbf{A s}_{\mathbf{s}}\right)$, while $\operatorname{Mem}\left(\mathbf{A s}_{\mathbf{s}}\right)$ small

Example 2: Unforgeability of Signatures

Worst case: $\operatorname{Mem}\left(\mathbf{A p}_{\mathbf{p}}\right) \approx \operatorname{Time}\left(\mathbf{A s}_{\mathbf{s}}\right)$, while $\operatorname{Mem}\left(\mathbf{A s}_{\mathbf{s}}\right)$ small

Recap

- Currently memory often ignored in reductions
- Many existing reductions not memory-tight
. Worst case $\operatorname{Mem}\left(\mathbf{A p}_{\mathrm{p}}\right) \approx \operatorname{Time}\left(\boldsymbol{A s}_{\mathrm{s}}\right)$ while $\operatorname{Mem}\left(\mathbf{A s}_{\mathrm{s}}\right)$ small
- Particularly problematic for memory-sensitive problems

Achieving Memory-Tightness

Example 1: Random Oracle Simulation

RO simulation via lazy sampling

Example 1: Random Oracle Simulation

Memory efficient RO simulation [Bemstein 2011]

Example 2: Unforgeability of Signatures

Usual simulation of unforgeability game

Example 2: Unforgeability of Signatures

Example 2: Unforgeability of Signatures

Memory-efficient simulation of unforgeability game

Example 2: Unforgeability of Signatures

[^0]
Lower Bounds

Unforgeability and Multi-Unforgeability

Unforgeability and Multi-Unforgeability

Tight but not memory-tight reduction (store queries)

Unforgeability and Multi-Unforgeability

$\mathbf{G}_{\text {mForge }}$
A

win $\leftarrow 0$	pk
$M \leftarrow M \cup\left\{m_{1}\right\}$	m_{1}
$\sigma_{1} \leftarrow \operatorname{Sign}\left(m_{1}\right)$	σ_{1}
If $m_{1}^{*} \in M$ and $\operatorname{Ver}\left(m_{1}^{*}, \sigma_{1}^{*}\right)=1$	$\left(m_{1}^{*}, \sigma_{1}^{*}\right)$
win $\leftarrow 1$	m_{q}
$M \leftarrow M \cup\left\{m_{q}\right\}$	
$\sigma_{q} \leftarrow \operatorname{Sign}\left(m_{q}\right)$	$\xrightarrow{O_{q}}$
If $m_{k}^{*} \in M$ and	
$\begin{gathered} \operatorname{Ver}\left(\tilde{m}_{k}^{*}, \sigma_{k}^{*}\right)=1 \\ \operatorname{win}^{2} \leftarrow 1 \end{gathered}$	$\checkmark\left(m_{k}^{*}, \sigma_{k}^{*}\right)$

Memory-tight reduction with lower success probability (guess forgery)

Unforgeability and Multi-Unforgeability

Memory-tight reduction with higher running time (rewind adversary)

Unforgeability and Multi-Unforgeability

Reductions from mForge to Forge (for q adversarial queries)

	Time Succ	Mem	
store queries	1	1	q
guess forgery	1	$1 / q$	1
rewind adversary	q	1	1

Lower Bounds

Theorem

A certain class of black box reductions from mForge to Forge can not be simultaneously tight and memory-tight.

- Proof uses techniques from streaming algorithms
- Similar results for multi-collision to collision resistance

Lower Bounds

Theorem

A certain class of black box reductions from mForge to Forge can not be simultaneously tight and memory-tight.

Streaming algorithm \mathbf{A}

Conclusions and Future Work

- Memory usage is ignored but affects security.
- Many reductions are easily fixed...
- ... but some seeminherently loose, including some widely used implicitly.

Future work:

- Give memory-tight reductions for some constructions (e.g. Hashed ElGamal).
- Prove lower bounds in less restrictive models.

ia.cr/2017/675

Signature Experiment (Sig - forge $_{\mathrm{A}, \Pi}(\mathrm{n})$)

Public Key: pk
Public Key: pk
(pk,sk) = Gen(.)

$$
\begin{gathered}
\forall P P T A \exists \mu(\text { negligible }) \text { s.t } \\
\operatorname{Pr}\left[\operatorname{Sig}-\text { forge }_{\mathrm{A}, \Pi}(\mathrm{n})=1\right] \leq \mu(n)
\end{gathered}
$$

Signature Experiment (Sig - forge ${ }_{\wedge-}(\eta)$)

Formally, let $\Pi=$ (Gen, Sign, Vrfy) denote the signature scheme, call the experiment Sig - forge $_{\mathrm{A}, \Pi}(\mathrm{n})$

We say that Π is existentially unforgeable under an adaptive chosen message attack (or just secure) if for all PPT adversaries A, there is a negligible function μ such that

$$
\operatorname{Pr}\left[\operatorname{Sig}-\operatorname{forge}_{\mathrm{A}, \Pi}(n)=1\right] \leq \mu(n)
$$

Existential Unforgeability

- Limitation: Does not prevent replay attacks
- $\sigma \leftarrow \operatorname{Sign}_{\mathrm{sk}}($ "Pay Bob $\$ 50$ ", R)
- If this is a problem then you can include timestamp in signature
- Unforgeability: does rule out the possibility attacker modifies a signature
- Plain RSA signatures are malleable (does not satisfy our security notion)
- Remark: By design signatures cannot hide all information about message m
- Public Verification \rightarrow Attacker can easily distinguish between a signature for m_{1} and m_{2}

Plain RSA Signatures

- Plain RSA
- Public Key (pk): $\mathrm{N}=\mathrm{pq}, \mathrm{e}$ such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 $\bmod \phi(N)$

$$
\begin{gathered}
\operatorname{Sign}_{s k}(m)=m^{d} \bmod N \\
\operatorname{Vrfy}_{p k}(m, \sigma)=\left\{\begin{array}{lr}
1 & \text { if } m=\left[\sigma^{e} \bmod N\right] \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

- Verification Works because
$\left[\operatorname{Sign}_{\boldsymbol{s k}}(\boldsymbol{m})^{e} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(\boldsymbol{N})]} \bmod \mathrm{N}\right]=m$

No Message Attack

- Goal: Generate a forgery using only the public key
- No intercepted signatures required
- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Pick random $\sigma \in \mathbb{Z}_{\mathrm{N}}^{*}$
- Set $\boldsymbol{m}=\left[\sigma^{e} \bmod \boldsymbol{N}\right]$.
- Output (m, σ)

$$
\operatorname{Vrfy}_{p k}(m, \sigma)=\left\{\begin{array}{rr}
1 & \text { if } m=\left[\sigma^{e} \bmod N\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

RSA-FDH

- Full Domain Hash: $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}$
- Given a message $m \in\{0,1\}^{*}$

$$
\sigma=\operatorname{Sign}_{s k}(m)=H(m)^{d} \bmod N
$$

Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is modeled as a random oracle.

Remark: The range of H (e.g.,SHA3) may be shorter than \mathbb{Z}_{N}. Solution: Repeated application of H e.g., $H^{\prime}(m)=$ $H(1 \mid m) \ldots H(k \mid m) \bmod \mathrm{N}$

RSA-FDH

- Full Domain Hash: $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}^{*}$
- Given a message $m \in\{0,1\}^{*}$

$$
\sigma=\operatorname{Sign}_{s k}(m)=H(m)^{d} \bmod N
$$

Theorem 12.7: RSA-FDH is a secure signature scheme assuming that the RSA-Inversion problem is hard and H is modeled as a random oracle.
Proof Sketch: Given an RSA-Inversion challenge $\mathrm{c}=r^{e} \bmod N$ (r is unknown) we will simulate the signature attacker. WLOG assume attacker always queries $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)$ before $\operatorname{Sign}_{s k}\left(\mathrm{~m}_{\mathrm{i}}\right)$

1. Whenever the attacker queries $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)$ we can pick a random $\mathrm{r}_{\mathrm{i}} \in \mathbb{Z}_{N}^{*}$ and program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}^{e} \bmod N$ so that $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)^{d}=\mathrm{r}_{\mathrm{i}} \bmod N$.
2. Whenever the attacker queries $\operatorname{Sign}_{s k}\left(\mathrm{~m}_{\mathrm{i}}\right)$ we can simply return $\mathrm{r}_{\mathrm{i}} \in \mathbb{Z}_{N}^{*}$
3. Exception: Pick a random query index $j \leq q_{\text {hash }}$ and program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{c} \times \mathrm{r}_{\mathrm{i}}^{e} \bmod N$ instead of $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=$ $\mathrm{r}_{\mathrm{i}}{ }^{e} \bmod N$
4. If the attacker forges a signature σ for m_{i} we can win the RSA-Inversion game by computing $r=\sigma \times \mathrm{r}_{\mathrm{i}}{ }^{-1}$ since $\sigma=\operatorname{Sign}_{s k}(m)=\left(c \times \mathrm{r}_{\mathrm{i}}^{e}\right)^{d}=\left(r \times \mathrm{r}_{\mathrm{i}}\right)^{e d}=r \mathrm{r}_{\mathrm{i}} \bmod N$.
Analysis: If signature forgery attacker wins with probability $f(n)$ we win RSA-inversion game with probability $\mathrm{f}(\mathrm{n}) / q_{\text {hash }}$ where $q_{\text {hash }}$ is the number of queries to the random oracle.

RSA-FDH

- Full Domain Hash: $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}^{*}$
- Given a message $m \in\{0,1\}^{*}$

$$
\sigma=\operatorname{Sign}_{s k}(m)=H(m)^{d} \bmod N
$$

Theorem $\mathbf{1 2 . 7}$ (Concrete): Suppose that any attacker running in time at most $t^{\prime}(n)$ wins RSA-Inversion game with probability at most $\varepsilon^{\prime}(n)$ then the RSA-FDH is $\left(t(n), q_{H}, q_{S i g}, \varepsilon(n)\right)$-secure i.e., any attacker running in time $t(n)=t^{\prime}(n)-\left(q_{H}+q_{\text {sig }}+1\right) O(\operatorname{poly}(n))$ and making at most q_{H} (resp. $q_{S i g}$) queries to the random oracle (resp. signature oracle) wins with probability at most $\varepsilon(n) \leq 4 q_{\text {Sig }} \varepsilon^{\prime}(n)$

RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most $t^{\prime}(n)$ wins RSA-Inversion game with probability at most $\varepsilon^{\prime}(n)$ then the RSA-FDH is $\left(t(n), q_{H}, q_{\text {sig }}, \varepsilon(n)\right)$-secure i.e., any attacker running in time $t(n)=t^{\prime}(n)-$ $\left(q_{H}+q_{S i g}+1\right) O(\operatorname{poly}(n))$ and making at most q_{H} (resp. $\left.q_{S i g}\right)$ queries to the random oracle (resp. signature oracle) wins with probability at most $\varepsilon(n) \leq$ $4 q_{\text {Sig }} \varepsilon^{\prime}(n)$
Proof Idea: Whenever the attacker queries $\mathrm{H}_{1}\left(\mathrm{~m}_{\mathrm{i}}\right)$ we can pick a random $\mathrm{r}_{\mathrm{i}} \in \mathbb{Z}_{N}^{*}$ and flip a biased coin $\operatorname{Pr}[$ heads $]=\left(1-\frac{1}{1+q_{\text {Sig }}}\right)$

1. Heads: program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}^{e} \bmod N$ so that $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)^{d}=\mathrm{r}_{\mathrm{i}} \bmod N$.
2. Tails: and program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{c} \times \mathrm{r}_{\mathrm{i}}^{e} \bmod N$
3. If attacker queries signing oracle on this message we will need to abort

$$
\operatorname{Pr}[\text { no abort }]=\operatorname{Pr}[\text { heads }]^{q_{S i g}}=\left(1-\frac{1}{1+q_{\text {Sig }}}\right)^{\text {QSig }} \approx \frac{1}{e}
$$

RSA-FDH

Theorem 12.7 (Concrete): Suppose that any attacker running in time at most $t^{\prime}(n)$ wins RSA-Inversion game with probability at most $\varepsilon^{\prime}(n)$ then the RSA-FDH is $\left(t(n), q_{H}, q_{\text {sig }}, \varepsilon(n)\right)$-secure i.e., any attacker running in time $t(n)=t^{\prime}(n)-$ $\left(q_{H}+q_{\text {Sig }}+1\right) O($ poly $(n))$ and making at most q_{H} (resp. $\left.q_{S i g}\right)$ queries to the random oracle (resp. signature oracle) wins with probability at most $\varepsilon(n) \leq$ $4 q_{\text {sig }} \varepsilon^{\prime}(n)$
Proof Idea: Whenever the attacker queries $H\left(m_{i}\right)$ we pick a random $r_{i} \in \mathbb{Z}_{N}^{*}$ and flip a biased coin $\operatorname{Pr}[$ heads $]=\left(1-\frac{1}{1+q_{S i g}}\right)$

1. Heads: program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}^{e} \bmod N$ so that $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)^{d}=\mathrm{r}_{\mathrm{i}} \bmod N$.
2. Tails: and program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{c} \times \mathrm{r}_{\mathrm{i}}^{e} \bmod N$
3. If attacker queries signing oracle on this message we will need to abort

$$
\operatorname{Pr}[n o \text { abort }]=\operatorname{Pr}[\text { heads }]^{q_{S i g}}=\left(1-\frac{1}{1+q_{\text {Sig }}}\right)^{q_{\text {Sig }}} \approx \frac{1}{e}
$$

Reducing Memory Usage in Reduction

Prior reduction is not memory-tight since we need to remember that $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}^{e} \bmod N$ for each query.

Solution: Set $\mathrm{r}_{\mathrm{i}}=H \quad\left(K, \mathrm{~m}_{\mathrm{i}}\right)$ where K is secret key used in the reduction. Program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)$ as before.
flip a biased coin $\operatorname{Pr}[$ heads $]=\left(1-\frac{1}{1+q_{S i g}}\right)$

1. Heads: program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}^{e} \bmod N$ so that $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)^{d}=\mathrm{r}_{\mathrm{i}} \bmod N$.
2. Tails: and program $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{c} \times \mathrm{r}_{\mathrm{i}}^{e} \bmod N$
3. If attacker queries signing oracle on this message we will need to abort

$$
\operatorname{Pr}[\text { no abort }]=\operatorname{Pr}[\text { heads }]^{q_{S i g}}=\left(1-\frac{1}{1+q_{S i g}}\right)^{q_{S i g}} \approx \frac{1}{e}
$$

Idea 1: If the attacker does not query $H(K, \ldots)$ then the reduction is unchanged.

Idea 2: If the attacker forges a signature σ for m_{i} we will hope that we programmed $\mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathrm{c} \times \mathrm{r}_{\mathrm{i}}{ }^{e} \bmod N$ (tails) and compute $\mathrm{r}_{\mathrm{i}}=H\left(K, \mathrm{~m}_{\mathrm{i}}\right)$
$r=\sigma \times \mathrm{r}_{\mathrm{i}}^{-1}$ since $\sigma=\operatorname{Sign}_{s k}(m)=\left(\mathrm{c} \times \mathrm{r}_{\mathrm{i}}{ }^{e}\right)^{d}=\left(r \times \mathrm{r}_{\mathrm{i}}\right)^{e d}=r \mathrm{r}_{\mathrm{i}} \bmod N$.

CPA-Security Game (Single Message Version)

Random bit b $\mathrm{K} \leftarrow \operatorname{Gen}\left(\mathbf{1}^{\boldsymbol{n}}\right)$
$(t(n), q(n), \varepsilon(n))$-secure if any attacker A running in time t and making at most q queries wins with probability at most $\frac{1}{2}+\varepsilon(n)$

Recall: Week 1 Reduction

$$
\begin{gathered}
\operatorname{Enc}_{\mathrm{k}}(\mathrm{~m})=\left\langle r, F_{k}(r) \oplus m\right\rangle \\
\operatorname{Dec}_{\mathrm{k}}(\langle r, s\rangle)=F_{k}(r) \oplus s
\end{gathered}
$$

For any attacker A running in time $t(n)$ and making at most $q(n)$ encryption queries we have

$$
\operatorname{Pr}\left[\operatorname{Priv}_{A, \Pi}^{c p a 1}=1\right] \leq \frac{1}{2}+\frac{q(n)}{2^{n}}+\mu\left(n, t^{\prime}(n), q(n)\right)
$$

CPA-Security Game (Left-Right)

Random bit b
$K \leftarrow \operatorname{Gen}\left(1^{n}\right)$
$(t(n), q(n), \varepsilon(n))$-secure if any attacker A running in time t and making at most q encryption queries wins with probability at most $\frac{1}{2}+\varepsilon(n)$

Example: Left-Right Security

$$
\begin{gathered}
\mathrm{Enc}_{k}(\mathrm{~m})=\left\langle r, F_{k}(r) \oplus m\right\rangle \\
\operatorname{Dec}_{\mathrm{k}}(\langle r, s\rangle)=F_{k}(r) \oplus s
\end{gathered}
$$

For any attacker A running in time $t(n)$ and making at most $q(n)$ encryption queries we have

$$
\operatorname{Pr}\left[\operatorname{Priv}_{A, \Pi}^{\text {cpaLR }}=1\right] \leq \frac{1}{2}+\frac{\binom{q(n)}{2}}{2^{n}}+\mu\left(n, t^{\prime}(n), q(n)\right)
$$

PRF Security

Example: Left-Right Security

Question: Suppose the attacker is space bounded and that $S \ll q(n)$ so that the attacker cannot store all of the random nonces. Can we prove a tighter security bound?
$t^{\prime}(n) \approx t(n)$
PRF Security

$$
\operatorname{Pr}\left[\operatorname{Priv} K_{A, \Pi}^{\text {cpaLR }}=1\right] \leq \frac{1}{2}+\frac{\binom{q(n)}{2}}{2^{n}}+\mu\left(n, t^{\prime}(n), q(n)\right)
$$

On the Streaming Indistinguishability of a Random Permutation and a Random Function

Itai Dinur
Ben-Gurion University

Eurocrypt 2020

- Classical problem: adversary A tries to distinguish a random permutation P:[N]->[N] from random function F:[N]->[N] with Q queries
- "Switching Lemma": A has advantage bounded by $O\left(\mathrm{Q}^{2} / \mathrm{N}\right)$
- $\left|\operatorname{Pr}\left[A^{P(.)}=1\right]-\operatorname{Pr}\left[A^{F}()=1.\right]\right| \in O\left(Q^{2} / \mathrm{N}\right)$
- Widely used to establish concrete security of cryptosystems up to birthday bound of $\mathrm{Q}=\sqrt{N}$
- E.g., modes of operation (counter-mode)

"Switching Lemma" for Random Permutation\Function

- "Switching Lemma": A has advantage bounded by $O\left(\mathrm{Q}^{2} / \mathrm{N}\right)$
- $\left|\operatorname{Pr}\left[\mathrm{A}^{\mathrm{P}(.)}=1\right]-\operatorname{Pr}\left[\mathrm{A}^{\mathrm{F}(.)}=1\right]\right| \in O\left(\mathrm{Q}^{2} / \mathrm{N}\right)$
- Matching algorithm: store the Q query outputs and look for collision ($F\left(q_{i}\right)=F\left(q_{j}\right)$ for $\left.q_{i} \neq q_{j}\right)$

$$
\begin{array}{l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & \ldots & x_{a-1} \\
\hline
\end{array}
$$

Memory-Restricted Adversaries

- Algorithm requires memory $\approx Q$ bits
- What about memory-restricted adversaries?
- Use cycle detection algorithm to obtain optimal $O\left(\mathrm{Q}^{2} / \mathrm{N}\right)$ advantage with $\approx \log (\mathrm{N})$ memory
- Requires adaptive queries to primitive
- What if adversary with S memory bits only given stream of Q elements produced by random function\permutation?
- Considered by Jaeger and Tessaro at EUROCRYPT 2019 [JT'19]

Streaming Switching Lemma [JT'19]

- "Streaming switching lemma" [JT'19]: adversary with S bits of memory with (1-pass) access to stream of Q elements from random permutation\function has distinguishing advantage of at most $\sqrt{Q \cdot S / N}$
- Application: better security bounds against memoryrestricted adversaries for some modes of operation

Streaming Switching Lemma [JT'19]

- Application: better security bounds against memory- restricted adversaries for some modes of operation
- AES-based counter-mode:
- m_{i} encrypted to $\left(r_{i}, c_{i}=A E S_{k}\left(r_{i}\right) \oplus m_{i}\right)$ for uniform r_{i}
- Eavesdropping adversary sees stream $\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right), \ldots$
- Replace AES by random P + apply streaming switching lemma (several times):
- show $\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right)$,... Indistinguishable from
- $\quad\left(r_{i}, \alpha_{i}\right),\left(r_{i}, \alpha_{i}\right), \ldots$ for uniform α_{i}

Streaming Switching Lemma

- "Streaming switching lemma" [JT’19]: adversary with S bits of memory with access to stream of Q elements from random permutation \function has distinguishing advantage of at most $\sqrt{Q \cdot S / N}$
- Application: if S is limited, counter-mode secure beyond birthday bound
- Limitations of [JS'19]:
- 1) Proof based on unproven combinatorial conjecture
- 2) Bound $\sqrt{Q \cdot S / N}$ not tight when $Q \cdot S \ll N$
- E.g., when $S=Q$, bound is $\sqrt{Q^{2} / N}$, but (original) switching lemma gives Q^{2} / N

New Streaming Switching Lemma

- In this work: overcome limitations
- New streaming switching lemma bound $O(\log Q \cdot Q \cdot S / N)$
- Tight (up to poly-log factors):
- Algorithm: store first S elements and look for collision with Q elements
- Advantage: $\approx Q \cdot S / N$
- Note: when $S=Q$, we get (original) switching lemma

CC \rightarrow Streaming

- Main idea: reduce from communication complexity (CC) problem (with strong lower bounds) to streaming
- General reduction framework from one-way CC problem:
- Alice, Bob solve CC problem given access to streaming algorithm:
- View concatenated inputs as stream
- Alice simulates streaming algorithm on her input, passes state to Bob which continues simulation, outputs result

CC \rightarrow Streaming

- Streaming algorithm with memory S gives one-way communication protocol with communication cost S (and same advantage)
- Lower bound on cost of communication protocol \rightarrow lower bound on memory of streaming algorithm

Reduction Attempt for Random Permutation\Function

- Attempt: CC problem - each player gets $\mathrm{Q} / 2$ elements, chosen using ran permutation\function
- Useless: CC problem is easy
- E.g., if $\mathrm{Q}>\sqrt{N}$, players can trivially distinguish between permutation $\backslash f u n c t i o n$ with no communication
- Each player has unlimited resources and can detect a collision locally

Reduction Attempt for Random Permutation\Function

- General restriction: in hard CC problem joint distributions for Alice and Bob's inputs should have identical marginals - Alice and Bob should have same local view
- Impossible when considering rand permutation\function distributions
- Solution: use hybrid argument
- Consider intermediate hybrid distributions between random permutation and random function
- Prove indistinguishability of neighboring hybrid distributions by reduction from CC

Hybrid Argument

- Attempt: define Q hybrids games

- (Standard) hybrid argument far from tight
- (Distinguishing advantage) \times (num of hybrids) too large

Improved Hybrid Argument

- Main idea: break dependency between halves
- Denote $1^{\text {st }}$ sequence by $x_{1}, x_{2}, \ldots, x_{Q / 2}, y_{1}, y_{2}, \ldots, y_{Q / 2}$
- $1^{\text {st }}$ distribution: elements chosen using (same) permutation
- $1^{\text {st }}$ intermediate hybrid: $x_{1}, x_{2}, \ldots, x_{Q / 2}$ and $y_{1}, y_{2}, \ldots, y_{Q / 2}$ chosen using independent permutations
- Reduction from (one-way) CC:
- Alice gets $1^{\text {st }}$ half of sequence, Bob gets $2^{\text {nd }}$ half (decide if they obtain same or independent permutations)
- Marginals are identical

Permutation Dependence

- (one way) CC problem - permutation dependence (PDEP):
- Alice and Bob decide if their inputs were drawn using same or independent permutations
- PDEP to streaming reduction:

UDISJ-> PDEP

- Communication cost \advantage tradeoff for PDEP?
- Reduction from (unique) disjointness (UDISJ)
- Each player receives a set of size n (domain size $O(\mathrm{n})$), need to decide if sets intersect or disjoint
- Theorem (informal)[BM'13, GW'14]: if Alice and Bob communicate c bits for DISJ (UDISJ) in the worst case, their max advantage is $O(c / n)$
- Even when given access to public randomness

Alice

$$
a_{1}, \ldots, a_{n}
$$

UDISJ-> PDEP

- Theorem (informal): there is a public coin local reduction that converts a UDISJ instance of size $n=N / Q$ to a PDEP instance of size Q
- Shorter inputs harder from PDEP, but easier for UDISJ
- Overall: UDISJ -> PDEP-> streaming bounds max advantage for hybrid game by $O(\mathrm{c} / \mathrm{n})=O(S /(N / Q))=O(Q \cdot S / N)$

The Full Hybrid Argument

- Once dependency between 2 halves broken:
- Continue recursively (tree structure)
- 2'nd level: 2 games of distinguishing stream distributions on Q/2 elements
- Final distribution: Q elements divided into Q independent permutations == random function
- Max advantage for each level: $O(Q \cdot S / N)$
- Total max advantage: $O(\log Q \cdot Q \cdot S / N)$

Conclusions

- New streaming switching lemma bound $O(\log Q \cdot Q \cdot S / N)$
- Tight up to poly-log factors
- Reduction from CC to streaming uses unconventional hybrid argument
- Standard streaming problems defined in worst case setting
- Gives freedom to choose hard distributions for CC problem
- In our (cryptographic) setting streams distributions fixed
- Hybrid argument reduction applicable to more problems?
- Extension: multi-pass streaming switching lemma
- Streaming alg allowed multiple passes over data

Thanks for your attention!

[^0]: Important: Coins of $\mathbf{A}_{\mathbf{P}}$ and $\mathbf{A s}_{\mathbf{s}}$ have to be stored memory-efficiently

