
Advanced Cryptography
CS 655

Week 2:
• Authenticated Encryption with Associated Data
• Concrete (Multi-User) Security Analysis of AES-GCM
• Partitioning Oracle Attacks
• AES-GCM-SIV

1Spring 2023

Authenticated Encryption with Associated Data

• AE.KeyGen: Generates random key K
• AE.Enc(K,N,M,H)

• Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
• Output: ciphertext C

• AE.Dec(K,C,H)
• Inputs: Key: K, Ciphertext: C, Header: H (associated data)
• Output: message m (or “Invalid Ciphertext”)

2

Ideal Cipher Model
• For all keys K 𝐸𝐸(𝐾𝐾, .) is a truly random permutation with inverse 𝐸𝐸−1(𝐾𝐾, .)
• All parties (adversary + honest) have access to oracles 𝐸𝐸(. , .) and 𝐸𝐸−1(. , .)

• AE.Enc(K,N,M,H)

• Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
• Output: ciphertext C
• Will query 𝐸𝐸(𝐾𝐾, .) and/or 𝐸𝐸−1(𝐾𝐾, .) to generate C

• AE.Dec(K,C,H)
• Inputs: Key: K, Ciphertext: C, Header: H (associated data)
• Output: message m (or “Invalid Ciphertext”)
• Will query 𝐸𝐸(𝐾𝐾, .) and/or 𝐸𝐸−1(𝐾𝐾, .) to generate C

• Attacker my query 𝐸𝐸(. , .) and 𝐸𝐸−1(. , .), but does not know secret key K

3

Galois Counter Mode (GCM)

• AES-GCM
• Security Guarantee: Authentication

Encryption with Associated Data

• Message can be arbitrarily long
• Length of message and authentication

data is authenticated to avoid truncation
attacks etc…

• Public Associated Data is Authenticated
• Source IP
• Destination IP
• Why can’t these values be encrypted?

4
Outputs: iv, ciphertexts 1 & 2,
authentication tag

Input: plaintexts 1 & 2

GCM: Nonce Collision

• AES-GCM
• Suppose that message m1 is b1 blocks

long and message m2 is b2 block long.
• Suppose that we pick nonces N1 and

N2

• How should we define nonce
collision?

• What is the probability of this event?

5

GCM: Nonce Collision

• AES-GCM
• Suppose that message m1 is b1 blocks

long and message m2 is b2 block long.
• Suppose that we pick nonces N1 and

N2

• How should we define nonce
collision?

• If interval [N1,N1+b1] intersects with [N2,
N2+b2] then there could be problems.
Why?

6

GCM: Nonce Collision

• AES-GCM
• Suppose that message m1 is b1 blocks long and

message m2 is b2 block long.
• Suppose that we pick nonces N1 and N2
• How should we define nonce collision?

• If interval [N1,N1+b1] intersects with [N2, N2+b2] then
there could be problems. Why?

• Collision if N2 is in [N1-b2,N1+b1]
• Probability of a collision 𝟐𝟐−𝝀𝝀(𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐 + 𝟏𝟏)

• Union Bound: Probability of any nonce collision
over all pairs of queries

𝟐𝟐−𝝀𝝀 �
𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆

(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏)

7

Galois Counter Mode (GCM)

• AES-GCM
• Decryption?

• Step 1: Recompute authentication tag from
available data

• 𝐇𝐇 𝐤𝐤,𝐀𝐀,𝐂𝐂, 𝐂𝐂 , 𝐀𝐀 ≔ 𝐄𝐄𝐤𝐤 𝑵𝑵 ⨁ 𝐆𝐆(𝐀𝐀,𝐂𝐂, 𝐂𝐂 , 𝐀𝐀)
• Nonce: N, Authentication Data: A
• Length: |C|
• Length: |A|
• Ciphertext Blocks: C1,C2,
• If authentication tag does not match then

output “Invalid Ciphertext”
• Step 2: 𝐦𝐦𝐢𝐢 = 𝐄𝐄𝐤𝐤(𝐍𝐍 + 𝐢𝐢)⨁𝑪𝑪𝒊𝒊 for each block i

8

Parameters and Definitions

• 𝜅𝜅: length of secret key (bits)
• 𝜆𝜆: length of block (bits)

Definition: We say that a hash function H is 𝜀𝜀-almost XOR-universal if
for all distinct messages 𝑚𝑚1 and 𝑚𝑚2 and all strings s we have

Pr 𝐻𝐻 𝑘𝑘,𝑚𝑚1 ⨁𝐻𝐻 𝑘𝑘,𝑚𝑚2 = 𝑠𝑠 ≤ 𝜀𝜀
Where the randomness is taken over the selection of the secret key k.

9

AES-GCM: Nonces

• Option 1: Random N
• Advantage: Stateless + simple to implement,
• Disadvantage: It is possible for a nonce to collide (typical solution: generate

fresh keys after 232 messages to keep probability of a nonce collision small)

• Option 2: Both parties increment N after each message
• Advantage: Avoids nonce collisions
• Disadvantage:

• Requires keeping track of current value.
• Implementation Challenges. What if packets are dropped?
• Security issue if implementation is buggy or if counter is accidently reset (e.g., radiation)

10

Multi-User Security

• Suppose that u users generate independent 𝜅𝜅 bit keys K1,…,Ku

• Attacker may be happy to decrypt just one ciphertext intercepted from any
of these use (or just tamper with just one ciphertext for sent to any of
these users)

• General Reduction: If the encryption scheme is (t,q,eps)-secure with
respect to a single user then it provides (t,q,u*eps)-multi-user security

• Reduction? Can we do better for AES-GCM?

11

Multi-User Security Game for AEAD

• Challenger picks a random bit b and Generates u independent keys 𝐾𝐾1, … ,𝐾𝐾𝐾𝐾
• Real Mode: b=1
• Ideal Mode: b=0

• Attacker Goal: guess b

• Attacker Oracles:
• Ideal Cipher
• Encryption oracle (Takes as input an individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, message M, header H) :

• Outputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
• Real Mode: Encrypts message using key 𝐾𝐾𝑖𝑖 and outputs ciphertext
• Ideal Mode: Returns random string instead of ciphertext

• Verification Oracle: (Takes as input individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, ciphertext M, header H):
• Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header;

otherwise
• Ideal Mode: Output 0
• Real Mode: Attempt to decrypt using key 𝐾𝐾𝑖𝑖; output 0 if decryption fails and 1 otherwise

12Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3

M
ul

ti-
U

se
r S

ec
ur

ity
 G

am
e

O
ra

cl
es

13Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3

• Though Question: Which parameters do we expect to be large in
practice? qe, qv or p?

14

• P: may be very large (can compute E(.,.) offline)
• qe, qv require cooperation from a party who knows secret key

15

Hybrid Argument: Slowly Make Real/Ideal
Oracles Identical
• Hybrid 0: Original Game

• Challenger Generates u independent keys 𝑲𝑲𝟏𝟏, … ,𝑲𝑲𝑲𝑲
• Note: It is possible that the attacker gets lucky and that 𝑲𝑲𝒊𝒊 = 𝑲𝑲𝒋𝒋 for some users i and j.

• Question: How could attacker attacker exploit this?
• Question 2: What is the probability of the bad event KCOLLISION that there exists

a key collision?

• Hybrid 1: Original game, but random keys are selected subject to the constraint
that they all are distinct .

• Question: What is the probability that an attacker can distinguish between
hybrids 0 and 1?

16

Hybrid Argument: Slowly Make Real/Ideal
Oracles Identical
• Hybrid 0: Original Game in Real Mode (b=0):

• Challenger Generates u independent keys 𝑲𝑲𝟏𝟏, … ,𝑲𝑲𝑲𝑲
• Note: It is possible that the attacker gets lucky and that 𝑲𝑲𝒊𝒊 = 𝑲𝑲𝒋𝒋 for some users i and j.

• Question 2: What is the probability of the bad event KCOLLISION that there exists a key
collision?

• Hybrid 1: Original game, but random keys are selected subject to the constraint that they all
are distinct .

• Question: What is the probability that an attacker can distinguish between hybrids 0 and 1?
• Answer: at most Pr KCOLLISION ≤ 2−𝜅𝜅 𝑢𝑢

2

17

18

Hybrid Argument: Slowly Make Real/Ideal
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a
fresh random permutation 𝑓𝑓𝑖𝑖 for each user

• Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since
E(𝐾𝐾𝑖𝑖,.) is already a truly random permutation.

• What is the flaw in this argument?

19

Hybrid Argument: Slowly Make Real/Ideal
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a fresh random permutation
𝑓𝑓𝑖𝑖 for each user

• Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since E(𝐾𝐾𝑖𝑖,.) is already a truly
random permutation.

• What is the flaw in this argument?
• Answer: Attacker might get lucky and query E(𝐾𝐾𝑖𝑖 ,.), while 𝑓𝑓𝑖𝑖 is completely independent of

E(𝐾𝐾𝑖𝑖,.)
• However, hybrids are indistinguishable if attacker never submits query of the form E(𝐾𝐾𝑖𝑖 ,.). Let

BADQ be the event that the attacker submits a query to ideal cipher with key 𝐾𝐾𝑖𝑖 for some
user.

Pr BADQ ≤ 𝑝𝑝𝐾𝐾2−𝜅𝜅

20

21

Hybrid Argument: Slowly Make Real/Ideal
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a fresh random permutation
𝑓𝑓𝑖𝑖 for each user

• Hybrid 3:
• Change 𝑓𝑓𝑖𝑖 for each user to a truly random function

• Hybrid 2 is statistically indistinguishable from Hybrid 2

• At most 𝑞𝑞𝑣𝑣 (resp. 𝑞𝑞𝐸𝐸) queries to encryption/decryption oracle per user
• Each query generates at most ℓ𝑏𝑏𝑏𝑏𝑏𝑏 queries to 𝑓𝑓𝑖𝑖 per user
• Hybrid 3 and 2 are equivalent unless there is a collision in one of the queries to 𝑓𝑓𝑖𝑖

Pr 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝐾𝐾 ℓ𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞𝐸𝐸 + 𝑞𝑞𝑣𝑣
22−𝜆𝜆−1

22

23

• Hybrid 4 is equivalent to Hybrid 3 (introduces bad flag)
• Hybrid 5 returns false if nonce i has not been used for user i Can view 𝑓𝑓𝑖𝑖(𝐶𝐶) as

random 𝜆𝜆 bit string that is yet to be picked.
Pr 𝐺𝐺𝐺 − Pr[𝐺𝐺𝐺] ≤

𝐾𝐾𝑞𝑞𝑣𝑣
2𝜆𝜆 24

25

26

What is Probability Attacker wins in Hybrid 7

• What is the probability attacker wins in Hybrid 7?
• Exactly ½
• Why? In hybrid 7 of all oracles is identical when b=0 and b=1.

27

Question:

• What is the probability of distinguishing between Hybrid 6 and 7?

• For each query to verification oracle hybrids 6 and 7 are equivalent
unless we have a hash collision

• Union Bound over all 𝐾𝐾𝑞𝑞𝑣𝑣 queries

28

29

30

Multi-User Security Game for AEAD

• Challenger picks a random bit b and Generates u independent keys 𝐾𝐾1, … ,𝐾𝐾𝐾𝐾
• Real Mode: b=1
• Ideal Mode: b=0

• Attacker Goal: guess b

• Attacker Oracles:
• Ideal Cipher
• Encryption oracle (Takes as input an individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, message M, header H) :

• Outputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
• Real Mode: Encrypts message using key 𝐾𝐾𝑖𝑖 and outputs ciphertext
• Ideal Mode: Returns random string instead of ciphertext

• Verification Oracle: (Takes as input individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, ciphertext M, header H):
• Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header;

otherwise
• Ideal Mode: Output 0
• Real Mode: Attempt to decrypt using key 𝐾𝐾𝑖𝑖; output 0 if decryption fails and 1 otherwise

31Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3

Reminder: Last Class

32

GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where
• 𝑋𝑋0= 0,
• 𝐶𝐶1, … , 𝐶𝐶𝑡𝑡 = 𝐴𝐴 ∘ 𝐶𝐶 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶 and

𝑋𝑋𝑖𝑖 = 𝐶𝐶𝑖𝑖⨁𝑋𝑋𝑖𝑖−1 ⋅ 𝐻𝐻

AES-GCM: 𝐻𝐻 = EK 0𝜆𝜆 (secret value)
Authentication Tag: 𝐄𝐄𝐊𝐊 𝐍𝐍 ⨁𝐆𝐆𝐇𝐇𝐀𝐀𝐆𝐆𝐇𝐇 𝑯𝑯,𝑨𝑨,𝑪𝑪

33

GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶

GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where
• 𝑋𝑋0= 0,
• 𝐶𝐶1, … , 𝐶𝐶𝑡𝑡 = 𝐴𝐴 ∘ 𝐶𝐶 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶 and

𝑋𝑋𝑖𝑖 = 𝐶𝐶𝑖𝑖⨁𝑋𝑋𝑖𝑖−1 ⋅ 𝐻𝐻

𝑋𝑋𝑡𝑡+1 = �
𝑖𝑖≤𝑡𝑡

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻𝑡𝑡−𝑖𝑖+1

34

GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶

Back to the Nonces

• Prior Security Analysis Assumes no Nonce Collisions

• If nonces are randomized in 0,1 𝝀𝝀 we need to add a term

• 𝟐𝟐−𝝀𝝀 ∑𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏) ≤ 𝟐𝟐−𝝀𝝀 𝒒𝒒𝒆𝒆
𝟐𝟐 (2ℓ𝑏𝑏𝑏𝑏𝑏𝑏 + 1)

35

Back to the Nonces: AES GCM

• In AES-GCM 𝝀𝝀 = 𝟏𝟏𝟐𝟐𝟏𝟏 , but the nonce is typically 96-bits

𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝐶 = 𝐶𝐶 ∘ 031 ∘ 1

Constraint: plaintext/associated is at most 232 − 1 blocks long
If all nonces are unique then all counters are unique

𝐏𝐏𝐏𝐏 𝐄𝐄𝐄𝐄𝐢𝐢𝐄𝐄𝐄𝐄𝐄𝐄 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐂𝐂𝐍𝐍𝐂𝐂𝐂𝐂𝐢𝐢𝐄𝐄𝐢𝐢𝐍𝐍𝐍𝐍 ≤ 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

= 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

𝟐𝟐−𝝀𝝀 �
𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆

(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏) ≤𝟐𝟐−𝝀𝝀
𝒒𝒒𝒆𝒆
𝟐𝟐

(2ℓ𝑏𝑏𝑏𝑏𝑏𝑏 + 1)

36

Back to the Nonces: AES GCM

• In AES-GCM 𝝀𝝀 = 𝟏𝟏𝟐𝟐𝟏𝟏 , but the nonce is typically 96-bits

𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝐶 = 𝐶𝐶 ∘ 031 ∘ 1

Constraint: plaintext/associated is at most 232 − 1 blocks long
If all nonces are unique then all counters are unique

𝐏𝐏𝐏𝐏 𝐄𝐄𝐄𝐄𝐢𝐢𝐄𝐄𝐄𝐄𝐄𝐄 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐂𝐂𝐍𝐍𝐂𝐂𝐂𝐂𝐢𝐢𝐄𝐄𝐢𝐢𝐍𝐍𝐍𝐍 ≤ 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

= 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

Practice: Pick fresh key once 𝒒𝒒𝒆𝒆 = 232

37

Nonce-Misuse Resistance

• Recall Encryption Scheme 𝐸𝐸𝑙𝑙𝐸𝐸(𝐾𝐾,𝑚𝑚) = 𝐶𝐶,𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚

• If attacker intercepts two ciphertexts with repeated nonce
𝐸𝐸 = 𝐶𝐶, 𝑠𝑠 = 𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚 and c′ = 𝐶𝐶, 𝑠𝑠′ = 𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚′

Attacker can obtain 𝑠𝑠⨁𝑠𝑠′ = 𝑚𝑚⨁𝑚𝑚′ which often reveals both 𝑚𝑚 and 𝑚𝑚′

AES-GCM suffers similar weaknesses

38

Nonce-Misuse Resistance

Generally, for any encryption scheme Enc(K,N,m) if the nonces are
repeated for messages m and m’ then the attacker will learn whether
or not 𝑚𝑚 = 𝑚𝑚′ (Assume that N is the only randomness)

Ideally this is the only thing the attacker should learn!

39

Attacker is allowed to repeat nonce N for same user i as long as the
message M (or authentication headers A) are different.

40

Attacker is allowed to repeat nonce N for same user i as long as the
message M (or authentication headers A) are different.

41

Generic Attack

• Fix nonce N, message |M|> 𝜅𝜅 + 𝐺 and associated data A.
• Attacker queries Ci=Enc(i,N,M,A) for q different users.
• Output 1 If we find a collision Cj=Ci ; otherwise 0;

• Analysis:
• Real World: two users will have the same key with probability at least 𝑞𝑞(𝑞𝑞−1)

2𝜅𝜅+2
• Ideal World: two users will have the same ciphertext with probability at most
𝑞𝑞(𝑞𝑞−1)
2|𝑀𝑀|+1 ≤

𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+5

• Advantage: at least 𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+2

− 𝑞𝑞 𝑞𝑞−1
2𝜅𝜅+5

> 𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+3

42

AES-GCM-SIV

• Key Ideas:
• Pick two keys 𝐾𝐾1 and 𝐾𝐾2

• Final authentication TAG derived using 𝐾𝐾2 based on nonce and hash T which
in turn derived from A, M and 𝐾𝐾1

• 𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶0 is derived from TAG

• Note: If we repeat the same nonce, but message M and or authentication
data A changes then so will the counter 𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝑖𝑖

43

44

Security Bounds

n – blocksize; k – key length; B – blocks encrypted per user,
𝛽𝛽, 𝐸𝐸, 𝑎𝑎 = 𝐶𝐶(1) are constants
d – upper bound on the number of users re-using a given nonce

𝑝𝑝 < 2 0.9 𝑛𝑛 (num queries to ideal cipher)
𝐶𝐶 < 2 0.9 𝑛𝑛 (total #block encrypted)

45Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation and Better Bounds [BHT18]

Nonce Multi-Collisions (d)

• Suppose we sample 𝑞𝑞 nonces 𝐶𝐶1, … ,𝐶𝐶𝑞𝑞 ≤ 2𝜆𝜆 . What is the probability that
some nonce N appears d time?

Pr exists d collision ≤
𝑞𝑞
𝑑𝑑

2−(𝑑𝑑−1)𝜆𝜆 ≤ 𝑞𝑞𝑑𝑑2−(𝑑𝑑−1)𝜆𝜆

If 𝑞𝑞 < 2𝜆𝜆(1−𝜀𝜀) and 𝑑𝑑 = 2
𝜀𝜀

then
Pr exists d collision ≤ 2𝜆𝜆 1−𝜀𝜀 𝑑𝑑2− 𝑑𝑑−1 𝜆𝜆 = 2𝜆𝜆 1−𝜀𝜀𝑑𝑑 = 2𝜆𝜆

Point: We can safely assume d is a small constant.

46

Partitioning Oracle Attacks
Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

USENIX Security 2021
1

Authenticated Encryption

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M)

For simplicity, we
ignore associated data
in this presentation

48

Authenticated Encryption

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

?

For simplicity, we
ignore associated data
in this presentation

49

Authenticated Encryption

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

Popular
• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

Easy to use
• Efficient
• Standardized
• Widely supported

Secure
• Proven CCA-secure
• Confidentiality
• Integrity

?

For simplicity, we
ignore associated data
in this presentation

5
0

?

Authenticated Encryption

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

• Efficient
• Standardized
• Widely supported

Popular Easy to use Secure
• Proven CCA-secure
• Confidentiality
• Integrity

But don’t target robustness, also called committing AEAD, as a security goal
[ABN TCC’10], [FLPQ PKC’13] for PKE, [FOR FSE’17] for AEAD

5
1

For simplicity, we
ignore associated data
in this presentation

(Non-) Committing AEAD

Nonce N’
Ciphertext C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

For simplicity, we
ignore associated data
in this presentation

52

(Non-) Committing AEAD

M ← AEAD.Dec(

M* ← AEAD.Dec(

?
Nonce N’
Ciphertext C’

For simplicity, we
ignore associated data
in this presentation

53

, N’, C’)

, N’, C’)

(Non-) Committing AEAD

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

N’ || C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

?

For simplicity, we
ignore associated data
in this presentation

54

(Non-) Committing AEAD

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

N’ || C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

?

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO’17], [DGRW CRYPTO’18]

For simplicity, we
ignore associated data
in this presentation

55

password5

password1
password2
password3
password4
password5
password6
password7
password8

5
6

Password
dictionary

D

Brute-force Dictionary Attack

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

C1 ← AEAD.Enc(“password1”, N, M)

C2 ← AEAD.Enc(“password2”, N, M)

C3 ← AEAD.Enc(“password3”, N, M)

C4 ← AEAD.Enc(“password4”, N, M)

C5 ← AEAD.Enc(“password5”, N, M)

N || C1

Decryption error

N || C2

Decryption error

N || C3

Decryption error
password5

N || C4

Decryption error

N || C5

Decryption success!

5
7

password5

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

password5
password6
password7
password8

5
8 Partitioning Oracle Attack

A high level overview of our attack

password1
password2
password3
password4

password5

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Nonce N
password5
password6
password7
password8[Ciphertext C

Partitioning Oracle Attack
A high level overview of our attack

password1
password2
password3
password4

splitting
ciphertext

k = 4

5
9

password5

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Nonce N
password5
password6
password7
password8[Ciphertext C

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
A high level overview of our attack

password1
password2
password3
password4

splitting
ciphertext

k = 4

6
0

password5

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Nonce N
password5
password6
password7
password8[Ciphertext CDecryption error

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
A high level overview of our attack

password1
password2
password3
password4

splitting
ciphertext

k = 4

6
1

password5

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Nonce N
password1
password2
password3
password4

password5
password6
password7
password8[Ciphertext CDecryption error

splitting
ciphertext

k = 4

6
2

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
A high level overview of our attack

Partitioning Oracle Attack

Brute-force dictionary attack

Requires 𝒪𝒪(|D|) queries to
learn the password

D

D1

D2

D3

…

17

k = 1

k = 1

k = 1

k = 1

Partitioning Oracle Attack

k = |D| / 2

k = |D| / 4

k = |D| / 8

k = |D| / 16

k = |D| / 32

D

D0 ✕D1

…
Requires 𝒪𝒪(log |D|) queries to learn the
password

✕D6 D7

D2 ✕D3

✕D4 D5

Brute-force dictionary attack

D

D1

D2

D3

…

Requires 𝒪𝒪(|D|) queries to
learn
the password

Exponential speedup over brute-force
dictionary attack!

18

k = 1

k = 1

k = 1

k = 1

Partitioning Oracle Attack

Exponential speedup over brute-force
dictionary attack!

k = 5000

k = 5000

k = 5000

k = 5000

k = 5000

|D| is large so a more realistic case is k = 5000

This still offers a good speedup over brute-force

D

✕D0 D1

✕D6 D7

✕D2 D3

✕D4 D5

D8 ✕D9

…
k = 2500

k = |D| / 2

k = |D| / 4

k = |D| / 8

k = |D| / 16

k = |D| / 32

D

D0 ✕D1

…
Requires 𝒪𝒪(log |D|) queries to learn the
password

✕D6 D7

D2 ✕D3

✕D4 D5

D

D1

D2

D3

…

19

Brute-force dictionary attack

Requires 𝒪𝒪(|D|) queries to
learn the password

k = 1

k = 1

k = 1

k = 1

6
6

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely
on:

6
7 Partitioning oracle attacks rely

on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle

Computing Key Multi-
Collisions: AES-GCM

Encrypt then MAC- -

Counter mode
encryption of AES

GHASH:
polynomial MAC

Attack
algorithm

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Run time: 𝒪𝒪(k2)
K1

K2

K3

Kk-1

Kk

…

68

Computing Key Multi-
Collisions: AES-GCM

Encrypt then MAC- -

Counter mode
encryption of AES

GHASH:
polynomial MAC

Attack
algorithm

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Run time: 𝒪𝒪(k2)
K1

K2

K3

Kk-1

Kk

…
Reduces finding

ciphertext to
solving set of

linear equations

69

GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where

𝑇𝑇 = 𝑋𝑋𝑡𝑡+1 = �
𝑖𝑖≤𝑡𝑡

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻𝑡𝑡−𝑖𝑖+1

70

GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶

Multi-Collision
Goal: Find 𝐶𝐶 = (𝐶𝐶1 ,𝐶𝐶3 ,𝐶𝐶3) and 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3 such that

T = GHASH 𝐻𝐻1,𝐶𝐶 = GHASH 𝐻𝐻2,𝐶𝐶 = GHASH 𝐻𝐻3,𝐶𝐶 = 𝑇𝑇
Where 𝐻𝐻𝑗𝑗 = 𝐸𝐸𝐾𝐾𝑗𝑗 0𝜆𝜆

Linear Constraints

�
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻1𝑡𝑡−𝑖𝑖+1 = �
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻2𝑡𝑡−𝑖𝑖+1 = �
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻3𝑡𝑡−𝑖𝑖+1

71

Multi-Collision
Goal: Find 𝐶𝐶 = 𝐶𝐶1 ,𝐶𝐶2 ,𝐶𝐶3 ,𝐶𝐶1 ,𝐶𝐶2 ,𝐶𝐶3 and 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3 such that

T = GHASH 𝐻𝐻1,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶1 = GHASH 𝐻𝐻2,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶2
= GHASH 𝐻𝐻3,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶3

where 𝐻𝐻𝑗𝑗 = 𝐸𝐸𝐾𝐾𝑗𝑗 0𝜆𝜆

Three Linear Constraints: For each 𝑗𝑗 = 1,2,3

T = 𝑪𝑪𝟏𝟏 ⋅ 𝐻𝐻𝑗𝑗4⊕𝑪𝑪𝟐𝟐 ⋅ 𝐻𝐻𝑗𝑗3⊕ 𝑪𝑪𝟑𝟑 ⋅ 𝐻𝐻𝑗𝑗2⊕L ⋅ 𝐻𝐻𝑗𝑗1⊕𝐸𝐸𝐾𝐾 𝐶𝐶𝑗𝑗
Three Unknowns: 𝑪𝑪𝟏𝟏, 𝑪𝑪𝟐𝟐 and 𝑪𝑪𝟑𝟑

72

7
3

H1・C1 ⊕ H1 ・C2 ⊕ H1 ・C3 ⊕ H1・L4 3 2
⊕ P1 = T

H2 ・C1 ⊕ H2 ・C2 ⊕ H2 ・C3 ⊕ H2・L4 3 2 ⊕ P2 = T

H3 ・C1 ⊕ H3 ・C2 ⊕ H3 ・C3 ⊕ H3・L4 3 2 ⊕ P3 = T

Input:

Goal:

Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary

Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|

Computing Key Multi-Collisions: AES-GCM

H22

H32

H1 1
H2 1

H3 1

H1 C12

C2

C3

⊕ P1)・H1-2

-2⊕ P2)・H2

-2

(T ⊕ H1・L

(T ⊕ H2・L

(T ⊕ H3・L ⊕ P3)・H3

[] [] []=

Vandermonde matrix: we can use polynomial interpolation!

Computing Key Multi-Collisions: AES-GCM
7
4

Input:

Goal:

Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary

Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|

‣ Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400
212 29 65,552

216 1,820 1,048,592

We make a ciphertext that
decrypts under > 4000
keys in < 30 seconds!

7
5

Computing Key Multi-Collisions: AES-GCM

‣ Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210

6.6

16,400

212

29

65,552

216

1 820

1,048,592

There exists an algorithm that
does polynomial
interpolation in 𝒪𝒪(k log2k)
using FFTs, so it’s possible to
create multi-collisions much
faster [BM ’74]

We make a ciphertext that
decrypts under > 4000
keys in < 30 seconds!

7
6 Computing Key Multi-Collisions: AES-

GCM

Computing Key Multi-Collisions

XSalsa20/Poly1305

ChaCha20/Poly1305

AES-GCM-SIV

7
7

}
⇒

Also vulnerable to key
multi-collision attacks!

Attacks are more
complex and less
scalable than those
for AES-GCM

7
8

Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle

7
9

Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle
Where do partitioning oracles arise?

Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

8
0

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

8
1

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

‣ Early implementations of the
OPAQUE asymmetric PAKE protocol
•

•

•

Selected by the IETF CFRG for standardization
Many early implementations went against
protocol specification to use a non-
committing AEAD scheme
These schemes are vulnerable to partitioning
oracle attacks

Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

82

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

‣ Early implementations of the
OPAQUE asymmetric PAKE protocol
•

•

•

Selected by the IETF CFRG for standardization
Many early implementations went against
protocol specification to use a non-
committing AEAD scheme
These schemes are vulnerable to partitioning
oracle attacks

Possible partitioning oracles
‣ Hybrid encryption: Hybrid Public-Key

Encryption (HPKE)

‣ Age file encryption tool

‣ Kerberos drafts (not adopted)

‣ JavaScript Object Signing and Encryption
(JOSE)

‣ Anonymity systems: use partitioning oracles
to learn which public key a recipient is using
from a set of public keys

What do we do?

‣ Our paper is the latest in a growing body of evidence that non-committing
AEAD can lead to vulnerabilities*

‣ So which committing AEAD scheme do we use?
• None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

8
3

* After we published our results, [ADGKLS ’20] also discussed the importance of committing AEAD

8
4

Conclusion
Contact: jlen@cs.cornell.edu
Full version: https://eprint.iacr.org/2020/1491.pdf

‣ Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

‣ Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV, are not committing

‣ Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers
and incorrect implementations of OPAQUE

‣ Recommendation: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

mailto:jlen@cs.cornell.edu

8
5

References
• [ABN TCC’10] Michel Abdalla, Mihir

Bellare, Gregory Neven. Robust
Encryption. TCC, 2010.

• [FLPQ PKC’13] Pooya Farshim, Benoît
Libert, Kenneth Paterson, Elizabeth
Quaglia. Robust encryption, revisited.
PKC, 2013.

• [FOR FSE’17] Pooya Farshim, Claudio

Orlandi, Răzvan Roşie. Security of

AES-GCM SIV

86

	Advanced Cryptography�CS 655
	Authenticated Encryption with Associated Data
	Ideal Cipher Model
	Galois Counter Mode (GCM)
	GCM: Nonce Collision
	GCM: Nonce Collision
	GCM: Nonce Collision
	Galois Counter Mode (GCM)
	Parameters and Definitions
	AES-GCM: Nonces	
	Multi-User Security	
	Multi-User Security Game for AEAD	
	Multi-User Security Game� Oracles
	Slide Number 14
	Slide Number 15
	Hybrid Argument: Slowly Make Real/Ideal Oracles Identical
	Hybrid Argument: Slowly Make Real/Ideal Oracles Identical
	Slide Number 18
	Hybrid Argument: Slowly Make Real/Ideal Oracles Identical
	Hybrid Argument: Slowly Make Real/Ideal Oracles Identical
	Slide Number 21
	Hybrid Argument: Slowly Make Real/Ideal Oracles Identical
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	What is Probability Attacker wins in Hybrid 7
	Question:
	Slide Number 29
	Slide Number 30
	Multi-User Security Game for AEAD	
	Reminder: Last Class
	GHASH in AES-GCM
	GHASH in AES-GCM
	Back to the Nonces
	Back to the Nonces: AES GCM
	Back to the Nonces: AES GCM
	Nonce-Misuse Resistance
	Nonce-Misuse Resistance
	Slide Number 40
	Slide Number 41
	Generic Attack
	AES-GCM-SIV
	Slide Number 44
	Security Bounds
	Nonce Multi-Collisions (d)
	Partitioning Oracle Attacks
	Authenticated Encryption
	Authenticated Encryption
	Authenticated Encryption
	Authenticated Encryption
	(Non-) Committing AEAD
	(Non-) Committing AEAD
	(Non-) Committing AEAD
	(Non-) Committing AEAD
	Slide Number 56
	Brute-force Dictionary Attack
	Partitioning Oracle AttackA high level overview of our attack
	Partitioning Oracle AttackA high level overview of our attack
	Partitioning Oracle AttackA high level overview of our attack
	Partitioning Oracle AttackA high level overview of our attack
	Partitioning Oracle AttackA high level overview of our attack
	Partitioning Oracle Attack
	Partitioning Oracle Attack
	Partitioning Oracle Attack
	Partitioning oracle attacks rely on:
	Partitioning oracle attacks rely on:
	Computing Key Multi-Collisions: AES-GCM
	Computing Key Multi-Collisions: AES-GCM
	GHASH in AES-GCM
	Multi-Collision
	Multi-Collision
	Computing Key Multi-Collisions: AES-GCM
	Slide Number 74
	Computing Key Multi-Collisions: AES-GCM
	Computing Key Multi-Collisions: AES-GCM
	Slide Number 77
	Partitioning oracle attacks rely on:
	Partitioning oracle attacks rely on:
	Partitioning Oracles
	Partitioning Oracles
	Partitioning Oracles
	What do we do?
	Conclusion
	References
	AES-GCM SIV

