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Authenticated Encryption with Associated Data

• AE.KeyGen: Generates random key K
• AE.Enc(K,N,M,H)

• Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
• Output: ciphertext C

• AE.Dec(K,C,H)
• Inputs: Key: K, Ciphertext: C, Header: H (associated data)
• Output: message m (or “Invalid Ciphertext”)
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Ideal Cipher Model
• For all keys K 𝐸𝐸(𝐾𝐾, . ) is a truly random permutation with inverse 𝐸𝐸−1(𝐾𝐾, . )
• All parties (adversary + honest) have access to oracles 𝐸𝐸(. , . ) and 𝐸𝐸−1(. , . )

• AE.Enc(K,N,M,H)

• Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
• Output: ciphertext C
• Will query 𝐸𝐸(𝐾𝐾, . ) and/or 𝐸𝐸−1(𝐾𝐾, . ) to generate C

• AE.Dec(K,C,H)
• Inputs: Key: K, Ciphertext: C, Header: H (associated data)
• Output: message m (or “Invalid Ciphertext”)
• Will query 𝐸𝐸(𝐾𝐾, . ) and/or 𝐸𝐸−1(𝐾𝐾, . ) to generate C

• Attacker my query 𝐸𝐸(. , . ) and 𝐸𝐸−1(. , . ), but does not know secret key K
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Galois Counter Mode (GCM)

• AES-GCM 
• Security Guarantee: Authentication 

Encryption with Associated Data

• Message can be arbitrarily long 
• Length of message and authentication 

data is authenticated to avoid truncation 
attacks etc… 

• Public Associated Data is Authenticated
• Source IP
• Destination IP
• Why can’t these values be encrypted? 

4
Outputs: iv, ciphertexts 1 & 2, 
authentication tag

Input: plaintexts 1 & 2



GCM: Nonce Collision

• AES-GCM 
• Suppose that message m1 is b1 blocks 

long and message m2 is b2 block long.
• Suppose that we pick nonces N1 and 

N2

• How should we define nonce 
collision?

• What is the probability of this event?
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GCM: Nonce Collision

• AES-GCM 
• Suppose that message m1 is b1 blocks 

long and message m2 is b2 block long.
• Suppose that we pick nonces N1 and 

N2

• How should we define nonce 
collision?

• If interval [N1,N1+b1] intersects with [N2, 
N2+b2] then there could be problems. 
Why?
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GCM: Nonce Collision

• AES-GCM 
• Suppose that message m1 is b1 blocks long and 

message m2 is b2 block long.
• Suppose that we pick nonces N1 and N2
• How should we define nonce collision?

• If interval [N1,N1+b1] intersects with [N2, N2+b2] then 
there could be problems. Why?

• Collision if N2 is in [N1-b2,N1+b1]
• Probability of a collision 𝟐𝟐−𝝀𝝀(𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐 + 𝟏𝟏)

• Union Bound: Probability of any nonce collision 
over all pairs of queries

𝟐𝟐−𝝀𝝀 �
𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆

(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏)
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Galois Counter Mode (GCM)

• AES-GCM 
• Decryption?

• Step 1: Recompute authentication tag from 
available data

• 𝐇𝐇 𝐤𝐤,𝐀𝐀,𝐂𝐂, 𝐂𝐂 , 𝐀𝐀 ≔ 𝐄𝐄𝐤𝐤 𝑵𝑵 ⨁ 𝐆𝐆(𝐀𝐀,𝐂𝐂, 𝐂𝐂 , 𝐀𝐀 )
• Nonce: N, Authentication Data: A
• Length: |C|
• Length: |A|
• Ciphertext Blocks: C1,C2,
• If authentication tag does not match then 

output “Invalid Ciphertext”
• Step 2: 𝐦𝐦𝐢𝐢 = 𝐄𝐄𝐤𝐤(𝐍𝐍 + 𝐢𝐢)⨁𝑪𝑪𝒊𝒊 for each block i
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Parameters and Definitions

• 𝜅𝜅: length of secret key (bits)
• 𝜆𝜆: length of block (bits)

Definition: We say that a hash function H is 𝜀𝜀-almost XOR-universal if 
for all distinct messages 𝑚𝑚1 and 𝑚𝑚2 and all strings s we have

Pr 𝐻𝐻 𝑘𝑘,𝑚𝑚1 ⨁𝐻𝐻 𝑘𝑘,𝑚𝑚2 = 𝑠𝑠 ≤ 𝜀𝜀
Where the randomness is taken over the selection of the secret key k.
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AES-GCM: Nonces

• Option 1: Random N
• Advantage: Stateless + simple to implement, 
• Disadvantage: It is possible for a nonce to collide (typical solution: generate 

fresh keys after 232 messages to keep probability of a nonce collision small)

• Option 2: Both parties increment N after each message
• Advantage: Avoids nonce collisions 
• Disadvantage: 

• Requires keeping track of current value.
• Implementation Challenges. What if packets are dropped?
• Security issue if implementation is buggy or if counter is accidently reset (e.g., radiation)
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Multi-User Security

• Suppose that u users generate independent 𝜅𝜅 bit keys K1,…,Ku

• Attacker may be happy to decrypt just one ciphertext intercepted from any 
of these use (or just tamper with just one ciphertext for sent to any of 
these users)

• General Reduction: If the encryption scheme is (t,q,eps)-secure with 
respect to a single user then it provides (t,q,u*eps)-multi-user security

• Reduction? Can we do better for AES-GCM?
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Multi-User Security Game for AEAD

• Challenger picks a random bit b and Generates u independent keys 𝐾𝐾1, … ,𝐾𝐾𝐾𝐾
• Real Mode: b=1   
• Ideal Mode: b=0

• Attacker Goal: guess b

• Attacker Oracles:
• Ideal Cipher
• Encryption oracle (Takes as input an individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, message M, header H) :

• Outputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
• Real Mode: Encrypts message using key 𝐾𝐾𝑖𝑖 and outputs ciphertext
• Ideal Mode: Returns random string instead of ciphertext

• Verification Oracle: (Takes as input individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, ciphertext M, header H):
• Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header; 

otherwise
• Ideal Mode: Output 0
• Real Mode: Attempt to decrypt using key 𝐾𝐾𝑖𝑖; output 0 if decryption fails and 1 otherwise

12Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3



M
ul

ti-
U

se
r S

ec
ur

ity
 G

am
e

O
ra

cl
es

13Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3



• Though Question: Which parameters do we expect to be large in 
practice? qe, qv or p?
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• P: may be very large (can compute E(.,.) offline)
• qe, qv require cooperation from a party who knows secret key
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Hybrid Argument: Slowly Make Real/Ideal 
Oracles Identical
• Hybrid 0: Original Game 

• Challenger Generates u independent keys 𝑲𝑲𝟏𝟏, … ,𝑲𝑲𝑲𝑲
• Note: It is possible that the attacker gets lucky and that 𝑲𝑲𝒊𝒊 = 𝑲𝑲𝒋𝒋 for some users i and j.

• Question: How could attacker attacker exploit this?
• Question 2: What is the probability of the bad event KCOLLISION that there exists 

a key collision?

• Hybrid 1: Original game, but random keys are selected subject to the constraint 
that they all are distinct .

• Question: What is the probability that an attacker can distinguish between 
hybrids 0 and 1?
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Hybrid Argument: Slowly Make Real/Ideal 
Oracles Identical
• Hybrid 0: Original Game in Real Mode (b=0): 

• Challenger Generates u independent keys 𝑲𝑲𝟏𝟏, … ,𝑲𝑲𝑲𝑲
• Note: It is possible that the attacker gets lucky and that 𝑲𝑲𝒊𝒊 = 𝑲𝑲𝒋𝒋 for some users i and j.

• Question 2: What is the probability of the bad event KCOLLISION that there exists a key 
collision?

• Hybrid 1: Original game, but random keys are selected subject to the constraint that they all 
are distinct .

• Question: What is the probability that an attacker can distinguish between hybrids 0 and 1?
• Answer: at most Pr KCOLLISION ≤ 2−𝜅𝜅 𝑢𝑢

2
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Hybrid Argument: Slowly Make Real/Ideal 
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a 
fresh random permutation 𝑓𝑓𝑖𝑖 for each user 

• Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since 
E(𝐾𝐾𝑖𝑖,.) is already a truly random permutation.

• What is the flaw in this argument? 
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Hybrid Argument: Slowly Make Real/Ideal 
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a fresh random permutation 
𝑓𝑓𝑖𝑖 for each user 

• Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since E(𝐾𝐾𝑖𝑖,.) is already a truly 
random permutation.

• What is the flaw in this argument?  
• Answer: Attacker might get lucky and query E(𝐾𝐾𝑖𝑖 ,.), while 𝑓𝑓𝑖𝑖 is completely independent of 

E(𝐾𝐾𝑖𝑖,.)
• However, hybrids are indistinguishable if attacker never submits query of the form E(𝐾𝐾𝑖𝑖 ,.). Let 

BADQ be the event that the attacker submits a query to ideal cipher with key 𝐾𝐾𝑖𝑖 for some 
user.

Pr BADQ ≤ 𝑝𝑝𝐾𝐾2−𝜅𝜅
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Hybrid Argument: Slowly Make Real/Ideal 
Oracles Identical
• Hybrid 2:

• Instead of using E(𝐾𝐾𝑖𝑖,.) in the encryption oracle the we replace E(𝐾𝐾𝑖𝑖,.) with a fresh random permutation 
𝑓𝑓𝑖𝑖 for each user 

• Hybrid 3:
• Change 𝑓𝑓𝑖𝑖 for each user to a truly random function

• Hybrid 2 is statistically indistinguishable from Hybrid 2

• At most 𝑞𝑞𝑣𝑣 (resp. 𝑞𝑞𝐸𝐸) queries to encryption/decryption oracle per user
• Each query generates at most ℓ𝑏𝑏𝑏𝑏𝑏𝑏 queries to 𝑓𝑓𝑖𝑖 per user
• Hybrid 3 and 2 are equivalent unless there is a collision in one of the queries to 𝑓𝑓𝑖𝑖

Pr 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝐾𝐾 ℓ𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞𝐸𝐸 + 𝑞𝑞𝑣𝑣
22−𝜆𝜆−1
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• Hybrid 4 is equivalent to Hybrid 3 (introduces bad flag)
• Hybrid 5 returns false if nonce i has not been used for user i Can view 𝑓𝑓𝑖𝑖(𝐶𝐶) as 

random 𝜆𝜆 bit string that is yet to be picked. 
Pr 𝐺𝐺𝐺 − Pr[𝐺𝐺𝐺] ≤

𝐾𝐾𝑞𝑞𝑣𝑣
2𝜆𝜆 24
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What is Probability Attacker wins in Hybrid 7

• What is the probability attacker wins in Hybrid 7?
• Exactly ½ 
• Why? In hybrid 7 of all oracles is identical when b=0 and b=1. 
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Question: 

• What is the probability of distinguishing between Hybrid 6 and 7?

• For each query to verification oracle hybrids 6 and 7 are equivalent 
unless we have a hash collision 

• Union Bound over all 𝐾𝐾𝑞𝑞𝑣𝑣 queries
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Multi-User Security Game for AEAD

• Challenger picks a random bit b and Generates u independent keys 𝐾𝐾1, … ,𝐾𝐾𝐾𝐾
• Real Mode: b=1   
• Ideal Mode: b=0

• Attacker Goal: guess b

• Attacker Oracles:
• Ideal Cipher
• Encryption oracle (Takes as input an individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, message M, header H) :

• Outputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
• Real Mode: Encrypts message using key 𝐾𝐾𝑖𝑖 and outputs ciphertext
• Ideal Mode: Returns random string instead of ciphertext

• Verification Oracle: (Takes as input individual 𝑖𝑖 ≤ 𝐾𝐾, nonce N, ciphertext M, header H):
• Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header; 

otherwise
• Ideal Mode: Output 0
• Real Mode: Attempt to decrypt using key 𝐾𝐾𝑖𝑖; output 0 if decryption fails and 1 otherwise

31Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3



Reminder: Last Class
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GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where 
• 𝑋𝑋0= 0, 
• 𝐶𝐶1, … , 𝐶𝐶𝑡𝑡 = 𝐴𝐴 ∘ 𝐶𝐶 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶 and 

𝑋𝑋𝑖𝑖 = 𝐶𝐶𝑖𝑖⨁𝑋𝑋𝑖𝑖−1 ⋅ 𝐻𝐻

AES-GCM: 𝐻𝐻 = EK 0𝜆𝜆 (secret value)
Authentication Tag:  𝐄𝐄𝐊𝐊 𝐍𝐍 ⨁𝐆𝐆𝐇𝐇𝐀𝐀𝐆𝐆𝐇𝐇 𝑯𝑯,𝑨𝑨,𝑪𝑪

33
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GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where 
• 𝑋𝑋0= 0, 
• 𝐶𝐶1, … , 𝐶𝐶𝑡𝑡 = 𝐴𝐴 ∘ 𝐶𝐶 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴 ∘ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶 and 

𝑋𝑋𝑖𝑖 = 𝐶𝐶𝑖𝑖⨁𝑋𝑋𝑖𝑖−1 ⋅ 𝐻𝐻

𝑋𝑋𝑡𝑡+1 = �
𝑖𝑖≤𝑡𝑡

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻𝑡𝑡−𝑖𝑖+1
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Back to the Nonces

• Prior Security Analysis Assumes no Nonce Collisions

• If nonces are randomized in 0,1 𝝀𝝀 we need to add a term

• 𝟐𝟐−𝝀𝝀 ∑𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏) ≤ 𝟐𝟐−𝝀𝝀 𝒒𝒒𝒆𝒆
𝟐𝟐 (2ℓ𝑏𝑏𝑏𝑏𝑏𝑏 + 1)
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Back to the Nonces: AES GCM

• In AES-GCM 𝝀𝝀 = 𝟏𝟏𝟐𝟐𝟏𝟏 , but the nonce is typically 96-bits

𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝐶 = 𝐶𝐶 ∘ 031 ∘ 1

Constraint: plaintext/associated is at most 232 − 1 blocks long
If all nonces are unique then all counters are unique

𝐏𝐏𝐏𝐏 𝐄𝐄𝐄𝐄𝐢𝐢𝐄𝐄𝐄𝐄𝐄𝐄 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐂𝐂𝐍𝐍𝐂𝐂𝐂𝐂𝐢𝐢𝐄𝐄𝐢𝐢𝐍𝐍𝐍𝐍 ≤ 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

= 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

𝟐𝟐−𝝀𝝀 �
𝒊𝒊<𝒋𝒋≤𝒒𝒒𝒆𝒆

(𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 + 𝟏𝟏) ≤𝟐𝟐−𝝀𝝀
𝒒𝒒𝒆𝒆
𝟐𝟐

(2ℓ𝑏𝑏𝑏𝑏𝑏𝑏 + 1)
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Back to the Nonces: AES GCM

• In AES-GCM 𝝀𝝀 = 𝟏𝟏𝟐𝟐𝟏𝟏 , but the nonce is typically 96-bits

𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝐶 = 𝐶𝐶 ∘ 031 ∘ 1

Constraint: plaintext/associated is at most 232 − 1 blocks long
If all nonces are unique then all counters are unique

𝐏𝐏𝐏𝐏 𝐄𝐄𝐄𝐄𝐢𝐢𝐄𝐄𝐄𝐄𝐄𝐄 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐂𝐂𝐍𝐍𝐂𝐂𝐂𝐂𝐢𝐢𝐄𝐄𝐢𝐢𝐍𝐍𝐍𝐍 ≤ 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

= 𝟐𝟐−𝟗𝟗𝟗𝟗
𝒒𝒒𝒆𝒆
𝟐𝟐

Practice: Pick fresh key once 𝒒𝒒𝒆𝒆 = 232
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Nonce-Misuse Resistance

• Recall Encryption Scheme 𝐸𝐸𝑙𝑙𝐸𝐸(𝐾𝐾,𝑚𝑚) = 𝐶𝐶,𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚

• If attacker intercepts two ciphertexts with repeated nonce
𝐸𝐸 = 𝐶𝐶, 𝑠𝑠 = 𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚 and c′ = 𝐶𝐶, 𝑠𝑠′ = 𝐹𝐹𝑏𝑏 𝐶𝐶 ⨁𝑚𝑚′

Attacker can obtain 𝑠𝑠⨁𝑠𝑠′ = 𝑚𝑚⨁𝑚𝑚′ which often reveals both 𝑚𝑚 and 𝑚𝑚′

AES-GCM suffers similar weaknesses 
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Nonce-Misuse Resistance

Generally, for any encryption scheme Enc(K,N,m) if the nonces are 
repeated for messages m and m’ then the attacker will learn whether 
or not 𝑚𝑚 = 𝑚𝑚′ (Assume that N is the only randomness)

Ideally this is the only thing the attacker should learn!

39



Attacker is allowed to repeat nonce N for same user i as long as the 
message M (or authentication headers A) are different.
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Attacker is allowed to repeat nonce N for same user i as long as the 
message M (or authentication headers A) are different.
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Generic Attack

• Fix nonce N, message |M|> 𝜅𝜅 + 𝐺 and associated data A. 
• Attacker queries Ci=Enc(i,N,M,A) for q different users.
• Output 1 If we find a collision Cj=Ci ; otherwise 0; 

• Analysis: 
• Real World: two users will have the same key with probability at least 𝑞𝑞(𝑞𝑞−1)

2𝜅𝜅+2
• Ideal World: two users will have the same ciphertext with probability at most 
𝑞𝑞(𝑞𝑞−1)
2|𝑀𝑀|+1 ≤

𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+5

• Advantage: at least 𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+2

− 𝑞𝑞 𝑞𝑞−1
2𝜅𝜅+5

> 𝑞𝑞(𝑞𝑞−1)
2𝜅𝜅+3
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AES-GCM-SIV

• Key Ideas: 
• Pick two keys 𝐾𝐾1 and 𝐾𝐾2

• Final authentication TAG derived using 𝐾𝐾2 based on nonce and hash T which 
in turn derived from A, M and 𝐾𝐾1

• 𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶0 is derived from TAG

• Note: If we repeat the same nonce, but message M and or authentication 
data A changes then so will the counter 𝐶𝐶𝐶𝐶𝐾𝐾𝑙𝑙𝐶𝐶𝑙𝑙𝐶𝐶𝑖𝑖

43



44



Security Bounds

n – blocksize;  k – key length; B – blocks encrypted per user,  
𝛽𝛽, 𝐸𝐸, 𝑎𝑎 = 𝐶𝐶(1) are constants
d – upper bound on the number of users re-using a given nonce

𝑝𝑝 < 2 0.9 𝑛𝑛 (num queries to ideal cipher)
𝐶𝐶 < 2 0.9 𝑛𝑛 (total #block encrypted)
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Nonce Multi-Collisions (d)

• Suppose we sample 𝑞𝑞 nonces 𝐶𝐶1, … ,𝐶𝐶𝑞𝑞 ≤ 2𝜆𝜆 . What is the probability that 
some nonce N appears d time?

Pr exists d collision ≤
𝑞𝑞
𝑑𝑑

2−(𝑑𝑑−1)𝜆𝜆 ≤ 𝑞𝑞𝑑𝑑2−(𝑑𝑑−1)𝜆𝜆

If 𝑞𝑞 < 2𝜆𝜆(1−𝜀𝜀) and 𝑑𝑑 = 2
𝜀𝜀

then 
Pr exists d collision ≤ 2𝜆𝜆 1−𝜀𝜀 𝑑𝑑2− 𝑑𝑑−1 𝜆𝜆 = 2𝜆𝜆 1−𝜀𝜀𝑑𝑑 = 2𝜆𝜆

Point: We can safely assume d is a small constant.
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Authenticated Encryption

Nonce N  
Plaintext M
C ← AEAD.Enc( , N, M)

For simplicity, we  
ignore associated data  
in this presentation
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Authenticated Encryption

Nonce N  
Plaintext M
C ← AEAD.Enc( , N, M) M ← AEAD.Dec( , N, C)

N || C

?

For simplicity, we  
ignore associated data  
in this presentation
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Authenticated Encryption

Nonce N  
Plaintext M
C ← AEAD.Enc( , N, M) M ← AEAD.Dec( , N, C)

N || C

Popular
• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

Easy to use
• Efficient
• Standardized
• Widely supported

Secure
• Proven CCA-secure
• Confidentiality
• Integrity

?

For simplicity, we  
ignore associated data  
in this presentation

5
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?

Authenticated Encryption

Nonce N  
Plaintext M
C ← AEAD.Enc( , N, M) M ← AEAD.Dec( , N, C)

N || C

• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

• Efficient
• Standardized
• Widely supported

Popular Easy to use Secure
• Proven CCA-secure
• Confidentiality
• Integrity

But don’t target robustness, also called committing AEAD, as a security goal
[ABN TCC’10], [FLPQ PKC’13] for PKE, [FOR FSE’17] for AEAD

5
1

For simplicity, we  
ignore associated data  
in this presentation



(Non-) Committing AEAD

Nonce N’  
Ciphertext C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

For simplicity, we  
ignore associated data  
in this presentation
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(Non-) Committing AEAD

M ← AEAD.Dec(

M* ← AEAD.Dec(

?
Nonce N’
Ciphertext C’

For simplicity, we  
ignore associated data  
in this presentation
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(Non-) Committing AEAD

Nonce N’  
Ciphertext C’

M ← AEAD.Dec( , N’, C’)

N’ || C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

?

For simplicity, we  
ignore associated data  
in this presentation
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(Non-) Committing AEAD

Nonce N’  
Ciphertext C’

M ← AEAD.Dec( , N’, C’)

N’ || C’

M ← AEAD.Dec(

M* ← AEAD.Dec(

, N’, C’)

, N’, C’)

?

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO’17], [DGRW CRYPTO’18]

For simplicity, we  
ignore associated data  
in this presentation

55



password5

password1
password2
password3
password4
password5
password6
password7
password8

5
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Password  
dictionary  

D



Brute-force Dictionary Attack

password1
password2
password3
password4
password5
password6
password7
password8

Password  
dictionary  

D

C1  ← AEAD.Enc(“password1”, N, M)

C2  ← AEAD.Enc(“password2”, N, M)

C3  ← AEAD.Enc(“password3”, N, M)

C4  ← AEAD.Enc(“password4”, N, M)

C5  ← AEAD.Enc(“password5”, N, M)

N || C1

Decryption error

N || C2

Decryption error

N || C3

Decryption error
password5

N || C4

Decryption error

N || C5

Decryption success!

5
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password5

password1
password2
password3
password4
password5
password6
password7
password8

Password  
dictionary  

D

password5
password6
password7
password8

5
8 Partitioning Oracle Attack

A high level overview of our attack
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password1
password2
password3
password4
password5
password6
password7
password8

Password  
dictionary  

D

Nonce N
password5
password6
password7
password8[Ciphertext C

Partitioning Oracle Attack
A high level overview of our attack

password1
password2
password3
password4

splitting
ciphertext  

k = 4
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password1
password2
password3
password4
password5
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password7
password8

Password  
dictionary  

D

Nonce N
password5
password6
password7
password8[Ciphertext C

N || C

⏊  ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
A high level overview of our attack
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ciphertext  

k = 4
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password1
password2
password3
password4
password5
password6
password7
password8

Password  
dictionary  

D

Nonce N
password5
password6
password7
password8[Ciphertext CDecryption error

N || C

⏊  ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
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password2
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ciphertext  
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password5

password1
password2
password3
password4
password5
password6
password7
password8

Password  
dictionary  

D

Nonce N
password1
password2
password3
password4

password5
password6
password7
password8[Ciphertext CDecryption error

splitting
ciphertext  

k = 4
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N || C

⏊  ← AEAD.Dec(“password5”, N, C)

Partitioning Oracle Attack
A high level overview of our attack



Partitioning Oracle Attack

Brute-force dictionary attack

Requires 𝒪𝒪(|D|) queries to  
learn the password

D

D1

D2

D3

…
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k = 1

k = 1

k = 1



Partitioning Oracle Attack

k = |D| / 2

k = |D| / 4

k = |D| /  8  

k = |D| / 16

k = |D| / 32

D

D0 ✕D1

…
Requires 𝒪𝒪(log |D|) queries to learn the  
password

✕D6 D7

D2 ✕D3

✕D4 D5

Brute-force dictionary attack

D

D1

D2

D3

…

Requires 𝒪𝒪(|D|) queries to  
learn
the password

Exponential speedup over brute-force
dictionary attack!
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Partitioning Oracle Attack

Exponential speedup over brute-force  
dictionary attack!

k = 5000

k = 5000

k = 5000

k = 5000

k = 5000

|D| is large so a more realistic case is k = 5000

This still offers a good speedup over brute-force

D

✕D0 D1

✕D6 D7

✕D2 D3

✕D4 D5

D8 ✕D9

…
k = 2500

k = |D| / 2

k = |D| / 4

k = |D| /  8  

k = |D| / 16

k = |D| / 32

D

D0 ✕D1

…
Requires 𝒪𝒪(log |D|) queries to learn the  
password

✕D6 D7

D2 ✕D3

✕D4 D5

D

D1

D2

D3

…
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Brute-force dictionary attack

Requires 𝒪𝒪(|D|) queries to  
learn the password

k = 1

k = 1

k = 1

k = 1
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1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely
on:



6
7 Partitioning oracle attacks rely

on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle



Computing Key Multi-
Collisions: AES-GCM

Encrypt then MAC- -

Counter mode  
encryption of AES

GHASH:
polynomial MAC

Attack  
algorithm

Ciphertext that decrypts  
under all k keys

Length: k 16-byte blocks

Run time:  𝒪𝒪(k2)
K1

K2

K3

Kk-1

Kk

…
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Computing Key Multi-
Collisions: AES-GCM

Encrypt then MAC- -

Counter mode  
encryption of AES

GHASH:
polynomial MAC

Attack  
algorithm

Ciphertext that decrypts  
under all k keys

Length: k 16-byte blocks

Run time:  𝒪𝒪(k2)
K1

K2

K3

Kk-1

Kk

…
Reduces finding

ciphertext to  
solving set of  

linear equations
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GHASH in AES-GCM
GHASH 𝐻𝐻,𝐴𝐴,𝐶𝐶 = 𝑋𝑋𝑡𝑡+1

Where 

𝑇𝑇 = 𝑋𝑋𝑡𝑡+1 = �
𝑖𝑖≤𝑡𝑡

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻𝑡𝑡−𝑖𝑖+1

70
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Multi-Collision
Goal: Find 𝐶𝐶 = (𝐶𝐶1 ,𝐶𝐶3 ,𝐶𝐶3 ) and 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3 such that 

T = GHASH 𝐻𝐻1,𝐶𝐶 = GHASH 𝐻𝐻2,𝐶𝐶 = GHASH 𝐻𝐻3,𝐶𝐶 = 𝑇𝑇
Where 𝐻𝐻𝑗𝑗 = 𝐸𝐸𝐾𝐾𝑗𝑗 0𝜆𝜆

Linear Constraints

�
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻1𝑡𝑡−𝑖𝑖+1 = �
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻2𝑡𝑡−𝑖𝑖+1 = �
𝑖𝑖

𝐶𝐶𝑖𝑖 ⋅ 𝐻𝐻3𝑡𝑡−𝑖𝑖+1
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Multi-Collision
Goal: Find 𝐶𝐶 = 𝐶𝐶1 ,𝐶𝐶2 ,𝐶𝐶3 ,𝐶𝐶1 ,𝐶𝐶2 ,𝐶𝐶3 and 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3 such that 

T = GHASH 𝐻𝐻1,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶1 = GHASH 𝐻𝐻2,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶2
= GHASH 𝐻𝐻3,𝐶𝐶 ⊕𝐸𝐸𝐾𝐾 𝐶𝐶3

where  𝐻𝐻𝑗𝑗 = 𝐸𝐸𝐾𝐾𝑗𝑗 0𝜆𝜆

Three Linear Constraints: For each 𝑗𝑗 = 1,2,3

T = 𝑪𝑪𝟏𝟏 ⋅ 𝐻𝐻𝑗𝑗4⊕𝑪𝑪𝟐𝟐 ⋅ 𝐻𝐻𝑗𝑗3⊕ 𝑪𝑪𝟑𝟑 ⋅ 𝐻𝐻𝑗𝑗2⊕L ⋅ 𝐻𝐻𝑗𝑗1⊕𝐸𝐸𝐾𝐾 𝐶𝐶𝑗𝑗
Three Unknowns: 𝑪𝑪𝟏𝟏, 𝑪𝑪𝟐𝟐 and 𝑪𝑪𝟑𝟑
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7
3

H1・C1 ⊕ H1 ・C2 ⊕ H1 ・C3 ⊕ H1・L4 3 2
⊕ P1 = T

H2 ・C1 ⊕ H2 ・C2 ⊕ H2 ・C3 ⊕ H2・L4 3 2 ⊕ P2 = T

H3 ・C1 ⊕ H3 ・C2 ⊕ H3 ・C3 ⊕ H3・L4 3 2 ⊕ P3 = T

Input:  

Goal:

Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary  

Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi  = AESKi(N || 0311), L = |C|

Computing Key Multi-Collisions: AES-GCM



H22

H32

H1 1
H2 1

H3 1

H1 C12

C2

C3

⊕ P1)・H1-2

-2⊕ P2)・H2

-2

(T ⊕ H1・L

(T ⊕ H2・L

(T ⊕ H3・L ⊕ P3)・H3

[ ] [ ] [ ]=

Vandermonde matrix: we can use polynomial interpolation!

Computing Key Multi-Collisions: AES-GCM
7
4

Input:  

Goal:

Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary  

Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi  = AESKi(N || 0311), L = |C|



‣ Implemented Multi-Collide-GCM using SageMath and Magma computational  
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB  
RAM, running Linux x86-64

k Time (s) Size (B) 

2 0.18 48

210 6.6 16,400
212 29 65,552

216 1,820 1,048,592

We make a ciphertext that  
decrypts under > 4000  
keys in < 30 seconds!

7
5

Computing Key Multi-Collisions: AES-GCM



‣ Implemented Multi-Collide-GCM using SageMath and Magma computational  
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB  
RAM, running Linux x86-64

k Time (s) Size (B) 

2 0.18 48

210

6.6

16,400

212

29

65,552

216

1 820

1,048,592

There exists an algorithm that  
does polynomial
interpolation in 𝒪𝒪(k log2k)
using FFTs, so it’s possible to  
create multi-collisions much  
faster [BM ’74]

We make a ciphertext that  
decrypts under > 4000  
keys in < 30 seconds!

7
6 Computing Key Multi-Collisions: AES-

GCM



Computing Key Multi-Collisions

XSalsa20/Poly1305

ChaCha20/Poly1305

AES-GCM-SIV

7
7

}
⇒

Also vulnerable to key  
multi-collision attacks!

Attacks are more  
complex and less  
scalable than those 
for AES-GCM
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Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle
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Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys
Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle
Where do partitioning oracles arise?



Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

8
0

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker  
to efficiently recover a password from a  
Shadowsocks server



Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

8
1

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker  
to efficiently recover a password from a  
Shadowsocks server

‣ Early implementations of the  
OPAQUE asymmetric PAKE protocol
•

•

•

Selected by the IETF CFRG for standardization
Many early implementations went against  
protocol specification to use a non-
committing AEAD scheme
These schemes are vulnerable to partitioning  
oracle attacks



Partitioning Oracles

Schemes we looked at in depth
‣ Shadowsocks proxy servers for UDP

82

•

•

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker  
to efficiently recover a password from a  
Shadowsocks server

‣ Early implementations of the  
OPAQUE asymmetric PAKE protocol
•

•

•

Selected by the IETF CFRG for standardization
Many early implementations went against  
protocol specification to use a non-
committing AEAD scheme
These schemes are vulnerable to partitioning  
oracle attacks

Possible partitioning oracles
‣ Hybrid encryption: Hybrid Public-Key  

Encryption (HPKE)

‣ Age file encryption tool

‣ Kerberos drafts (not adopted)

‣ JavaScript Object Signing and Encryption  
(JOSE)

‣ Anonymity systems: use partitioning oracles
to learn which public key a recipient is using
from a set of public keys



What do we do?

‣ Our paper is the latest in a growing body of evidence that non-committing  
AEAD can lead to vulnerabilities*

‣ So which committing AEAD scheme do we use?
• None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

8
3

* After we published our results, [ADGKLS ’20] also discussed the importance of committing AEAD



8
4

Conclusion
Contact: jlen@cs.cornell.edu
Full version: https://eprint.iacr.org/2020/1491.pdf

‣ Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

‣ Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,  
and AES-GCM-SIV, are not committing

‣ Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers  
and incorrect implementations of OPAQUE

‣ Recommendation: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,  
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

mailto:jlen@cs.cornell.edu
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