Advanced Cryptography
CS 655

Week 2:

* Authenticated Encryption with Associated Data

e Concrete (Multi-User) Security Analysis of AES-GCM
e Partitioning Oracle Attacks
e AES-GCM-SIV

Spring 2023



Authenticated Encryption with Associated Data

 AE.KeyGen: Generates random key K

e AE.Enc(K,N,M,H)
* Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
e Qutput: ciphertext C

e AE.Dec(K,C,H)
* Inputs: Key: K, Ciphertext: C, Header: H (associated data)
e Output: message m (or “Invalid Ciphertext”)



l[deal Cipher Model

For all keys K E(K,.) is a truly random permutation with inverse E~1(K,.)
All parties (adversary + honest) have access to oracles E(.,.) and E"1(.,.)

AE.Enc(K,N,M,H)

* Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
e Output: ciphertext C
e Will query E(K,.) and/or E"1(K,.) to generate C

AE.Dec(K,C,H)
* Inputs: Key: K, Ciphertext: C, Header: H (associated data)
e Output: message m (or “Invalid Ciphertext”)
e Will query E(K,.) and/or E"1(K,.) to generate C

Attacker my query E(.,.) and E~1(.,.), but does not know secret key K



Galois Counter Mode (GCM)

Input: plaintexts 1 & 2

° AES-GCM ‘ Cou:tero I—»( incr )—»l Counter 1 }—v{ incr H Counter 2 |
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[Auth Data 1] [fen(®) 1 en(C) }|—€D)
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e Destination IP @,t
e Why can’t these values be encrypted?
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N
Outputs: iv, ciphertexts 1 & 2, v
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GCM: Nonce Collision

e AES-GCM [ v ]

o ‘ Counter 0 I—»( incr )—»l Counter 1 H incr H Counter 2 |

* Suppose that message m, is b, blocks ] ] ]
long and message m, is b, block long. L= = = ]

e Suppose that we pick nonces N, and [Pt }—)  [Pametz ()
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GCM: Nonce Collision
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GCM: Nonce Collision

* AES-GCM [ v ]
o Suppose that message ml is b1 bIOCkS Iong and ‘ Coun:tero I—»( incr )—»l Counter 1 H incr H Counter 2 |

message m, is b, block long. I :
* Suppose that we pick nonces N, and N, = ) =) [ =)
 How should we define nonce collision? [Panexi (D [ Pamexz (P
e |If interval [N,,N,+b,] intersects with [N,, N,+b,] then ! |
there could be r}roﬁlems. Why? »ore [ Ciphertext 1 ] [_Ciphertext2 |
* Collision if N, is in [N,-b,,N,+b,] Ve Ve
* Probability of a collision 274(b, + b, + 1) | |
* Union Bound: Probability of any nonce collision o || mt |
over all pairs of queries i ]
A . . Auth Data 1 )
2- 2 (bi + bj + 1) e i
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Galois Counter Mode (GCM)

e AES-GCM [ v ]

* Decryption? I I !
e Step 1: Recompute authentication tag from (EED Ej CED
] | !
N

available data

+ H(k A, C,[CL,|A]) = E, (V)@ G(A, G, |C|,|Al) D i ¢

¢ Nonce: N, Authentication Data: A . [ Ciphertext 1 | [ Ciphertext2 |
e Length: |C]| '

e Length: |A]|

* Ciphertext Blocks: C1,C2,

 If authentication tag does not match then

output “Invalid Ciphertext”
e Step 2: m; = EK(N + 1) @ C; for each block i




Parameters and Definitions

e k: length of secret key (bits)
e A: length of block (bits)

Definition: We say that a hash function H is e-almost XOR-universal if
for all distinct messages m, and m, and all strings s we have

Pr[H(k,m)®H(k,m,) =s] < ¢
Where the randomness is taken over the selection of the secret key k.

McGrew and Viega |24, Lemma 2| show that H has this property for e(m,n) =
([m/A] + [n/X] + 1) /27,



AES-GCM: Nonces

* Option 1: Random N
e Advantage: Stateless + simple to implement,

e Disadvantage: It is possible for a nonce to collide (typical solution: generate
fresh keys after 232 messages to keep probability of a nonce collision small)

e Option 2: Both parties increment N after each message
e Advantage: Avoids nonce collisions ©

* Disadvantage:
e Requires keeping track of current value.
* Implementation Challenges. What if packets are dropped?
e Security issue if implementation is buggy or if counter is accidently reset (e.g., radiation)



Multi-User Security

e Suppose that u users generate independent k bit keys K,,...,K,

e Attacker may be happy to decrypt just one ciphertext intercepted from any
of these use (or just tamper with just one ciphertext for sent to any of
these users)

e General Reduction: If the encryption scheme is (t,q,eps)-secure with
respect to a single user then it provides (t,q,u*eps)-multi-user security

* Reduction? Can we do better for AES-GCM?



Multi-User Security Game for AEAD

* Challenger picks a random bit b and Generates u independent keys K, ..., Ku
* Real Mode: b=1
e Ideal Mode: b=0

e Attacker Goal: guess b

e Attacker Oracles:
* Ideal Cipher
* Encryption oracle (Takes as input an individual i < u, nonce N, message M, header H) :
e Qutputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
e Real Mode: Encrypts message using key K; and outputs ciphertext
* Ideal Mode: Returns random string instead of ciphertext
» Verification Oracle: (Takes as input individual i < u, nonce N, ciphertext M, header H):

. Olfqtputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header;
otherwise

* Ideal Mode: Output O
* Real Mode: Attempt to decrypt using key K;; output O if decryption fails and 1 otherwise

Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3



Game GRE""9(A)

bs{0,1} ;b s ANEW,ENC,VF,E,E™1
Return (b' = b)

NEwW()

vev+1; K, +s{0, l}»“ﬂ‘E'kl

ENc(i, N,M, H)

If not (1 <i < v) then return L

If ((¢, N) € U) then return L

C; < AE.Enc™® ' (K;, N, M, H)

Co s {0, 1}AE<(IM))

U+~ UU{(E,N)}; V<« VU{(,N,Cy, H)}
Return C}

Vre(i, N,C, H)

[f not (1 <7 <w) then return L

If ((2, N,C,H) € V) then return true
If (b =0) then return false

M + AE.Dec™™ " (K.,N,C, H)
Return (M # 1)

Multi-User Security Game
Oracles

E(L,x)

If T'(L,xz] = L then
T[L,z] «simT[L, ]
T YL, T[L,z]] + «

Return T'[L, x|

E_l(f’:y)
If T7'[L,y] = L then

7L, y] s I TI[E, |
TIL, T [L,y]] + v
Return 7! (L, y]

Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3
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Theorem 8. Let 5, A\, v > 1 be such that v < A — 2. Let H: {0, 1}* x ({0,1}* x
{0,1}*) — {0,1}* be an e-almost XOR-universal hash function, for some : N x
N — [0,1]. Let CAU = CAUIH, &, A\, v]. Let A be an adversary that makes at
most u queries to its NEW oracle, q. queries to its ENC oracle with messages of
length at most fpiy bits, gy queries to 1ts VF oracle with messages of length at
most lpi + A bits, and p queries to 1ts E and E~1 oracles. Assume furthermore

that g, < 2¥ and fyy < X227 — 2). Then

mu-in up  w(loi(ge + qu) +1)%  ulu—1
AdvER " (4) < e T (ol AT )+ 1 (QHH ) + ugy - €(Lbit, {head ),

for tpie = |loi /A + 1 and where the AFEAD headers are restricted to fhenq bits.

 Though Question: Which parameters do we expect to be large in
practice? qe, qv or p?



Theorem 8. Let 5, A\, v > 1 be such that v < A — 2. Let H: {0, 1}* x ({0,1}* x
{0,1}*) — {0,1}* be an e-almost XOR-universal hash function, for some : N x
N — [0,1]. Let CAU = CAUIH, &, A\, v]. Let A be an adversary that makes at
most u queries to its NEW oracle, q. queries to its ENC oracle with messages of
length at most fpiy bits, gy queries to 1ts VF oracle with messages of length at
most lpi + A bits, and p queries to 1ts E and E~1 oracles. Assume furthermore

that g, < 2¥ and fyy < X227 — 2). Then

mu-in up  w(loi(ge + qu) +1)%  ulu—1
AdvER " (4) < e T (ol AT )+ 1 (QHH ) + ugy - €(Lbit, {head ),

for tpie = |loi /A + 1 and where the AFEAD headers are restricted to fhenq bits.

* P: may be very large (can compute E(.,.) offline)

* ge, qVv require cooperation from a party who knows secret key



Hybrid Argument: Slowly Make Real/ldeal

Oracles |dentical
e Hybrid 0: Original Game

* Challenger Generates u independent keys K ,, ..., Ku
* Note: Itis possible that the attacker gets lucky and that K; = K; for some users i and j.

* Question: How could attacker attacker exploit this?

 Question 2: What is the probability of the bad event KCOLLISION that there exists
a key collision?

e Hybrid 1: Original game, but random keys are selected subject to the constraint
that they all are distinct .

* Question: What is the probability that an attacker can distinguish between
hybrids 0 and 17



Hybrid Argument: Slowly Make Real/ldeal
Oracles Identical

e Hybrid 0: Original Game in Real Mode (b=0):
* Challenger Generates u independent keys K ;, ..., Ku
* Note: It is possible that the attacker gets lucky and that K; = K; for some users i and j.

Qtflt_es_tiog 2: What is the probability of the bad event KCOLLISION that there exists a key
collision®

Hybrid 1: Original game, but random keys are selected subject to the constraint that they all
are distinct .

Question: What is the probability that an attacker can distinguish between hybrids 0 and 1°?
Answer: at most Pr[KCOLLISION] < 2_"(12‘)



Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

N U w( e+ )+ 1% |ulu—1

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



Hybrid Argument: Slowly Make Real/ldeal
Oracles Identical

e Hybrid 2:
* Instead of using E(K,.) in the encryption oracle the we replace E(K,.) with a
fresh random permutation f; for each user

 Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since
E(K;,.) is already a truly random permutation.

e What is the flaw in this argument?



Hybrid Argument: Slowly Make Real/ldeal
Oracles Identical

e Hybrid 2:

* Instead of using E(K;,.) in the encryption oracle the we replace E(K,.) with a fresh random permutation
f; for each user

e Tempting Argument: Hybrid 1 is indistinguishable from Hybrid 2 since E(K,.) is already a truly
random permutation.

e What is the flaw in this argument?

. A(r}gw;ar: Attacker might get lucky and query E(K; ,.), while f; is completely independent of
E i’o

 However, hybrids are indistinguishable if attacker never submits query of the form E(K; ,.). Let
BADQ be the event that the attacker submits a query to ideal cipher with key K; for some
user.

Pr|BADQ] < pu2™*



Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

mu-in . up u(gblk(QE + qt’) T 1)2 u’(u’ B 1)
AdVCAU d(A) i:: 2-"13 "I_ 2/"\‘|‘1 2!"6—|—1 —|_ UQ'ﬁ ' E(*{?bit? Ehead):

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



Hybrid Argument: Slowly Make Real/ldeal
Oracles Identical

e Hybrid 2:
* Instead of using E(K;,.) in the encryption oracle the we replace E(K,.) with a fresh random permutation
f; for each user

Hybrid 3:

e Change f; for each user to a truly random function

Hybrid 2 is statistically indistinguishable from Hybrid 2

At most g, (resp. gqg) queries to encryption/decryption oracle per user

Each query generates at most £, queries to f; per user

Hybrid 3 and 2 are equivalent unless there is a collision in one of the queries to f;
Pr[COLLISION] < u(€y(qs + ) 2721



Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

N U w( et g+ 1% ulu—1

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



Game G4 |Gs VFE(i,N,C, H)

bt {0,1}; b <9 ANEW.ENCVF If (b = 0) then return false

Return (&' = b) M « CAU.Dec™(K[i], N, C, H)
If M=+ 1 and (¢, N) ¢ V then

New() bad « true ; [return false|

ve v+l Ky« {K[1],..., K[y — 1]} Return (M #£ 1)

Enc(i, N, M, H) E(K,z)

V%VU{(i;hQ} If U[K, ] = L then

Ci « CAU.Enc®(K[i], N, M, H) UK, 2] < (0,1}

Co -+ {0,1} A0l M) Return UK, z]

Return (%

Figure 23: Between the games G4 and Gg, we change the behavior of the VF oracle to reject forgery
attempts also for b = 1.

e Hybrid 4 is equivalent to Hybrid 3 (introduces bad flag)

* Hybrid 5 returns false if nonce i has not been used for user i =» Can view f;(N) as
random A bit string that is yet to be picked. ”
v

|Pr[G4] — Pr[G5]| < 32




Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

N U w( et g+ 1% | ulu—1

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



Game Gg |G~

by {U, 1} B ANEW, Enc, VF
Return (' = &)

NEW()
vewv+1l; K<t {K[1],...,Kv—1]}

Encis, N, M, H)

G« E(K[{],0M); Y « N|{1)

J Compute C as in CAU.Enc™(K[i], N, M, H)
Oy « E(K[i],Y 4+ 0)||C

Ve VU{(3,N}, W« WU{(iN,C H)}
Cly <t {Ujl}CAU.clﬂMU

Return ¢

Vr(i, N, T|C, H)

If (b=0or (¢, N) € V) then return false

G« E(K[i],0M; Y « N|{1)

Let C/, H' such that (i, N,C', HY e W

A—ToEK[},Y+0)

If HG, H ,C"Y® H(G,H,C') = A then
bad « true ; [return false]

Return H(G, H',CY@ H(G, H,C)= A

E(K,z)

If UK, z] =1 then
UK, ] < {0,1}*
Return U K, z]

Figure 24: Game Gg i1s equivalent to Gg. The outputs of ENC are sampled differently, but VF

adapted in a consistent way.
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What is Probability Attacker wins in Hybrid 7

 What is the probability attacker wins in Hybrid 77
e Exactly %
e Why? In hybrid 7 of all oracles is identical when b=0 and b=1.



Question:

 What is the probability of distinguishing between Hybrid 6 and 77?

* For each query to verification oracle hybrids 6 and 7 are equivalent
unless we have a hash collision

PrH(G,H,CY® H(G, H ,C) =T E(K[i],Y + 0)] < e({uit, fnesa),

e Union Bound over all ug,, queries



Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

N U w( e+ )+ 1% wulu—1

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



We combine all bounds shown in the above paragraphs:

AdvERIPY(A) = 2Pr[GEL(4)] — 1 =2 Pr[Go] — 1
< 2PrCy] —1+%
< 2Pr[Gg] -1+ “(;;1) u((ge Jrggi)l Apl)”
< 2PrlGs| -1+ u(;;l) e 231)1 b +ug, - 27"
< 2Pr[Gy] -1+ u(;-h—ull) + Gt J;Ei)l Lon)” +ugy - (27 + (i, Lnoad))

which concludes the proof. |

McGrew and Viega |24, Lemma 2| show that H has this property for e(m,n) =
([m/X] + [n/X] + 1)/27.



Multi-User Security Game for AEAD

* Challenger picks a random bit b and Generates u independent keys K, ..., Ku
* Real Mode: b=1
e Ideal Mode: b=0

e Attacker Goal: guess b

e Attacker Oracles:
* Ideal Cipher
* Encryption oracle (Takes as input an individual i < u, nonce N, message M, header H) :
e Qutputs: “Invalid” if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
e Real Mode: Encrypts message using key K; and outputs ciphertext
* Ideal Mode: Returns random string instead of ciphertext
» Verification Oracle: (Takes as input individual i < u, nonce N, ciphertext M, header H):

. Olfqtputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header;
otherwise

* Ideal Mode: Output O
* Real Mode: Attempt to decrypt using key K;; output O if decryption fails and 1 otherwise

Source: Bellare, Tackmann, Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3



Reminder: Last Class

Theorem 8. Let k, A\, v > 1 be such that v < XA — 2. Let H: {0, 1} x ({0, 1}* x
{0,1}%) — {0,1}* be an e-almost XOR-universal hash function, for some e N x
N — [0,1]. Let CAU = CAUH, &, A, v]. Let A be an adversary that makes ot
most u queries to tts NEW oracle, q. queries to its KNC oracle with messages of
length al most fpir bils, g, queries to i1ts VF oracle with messages of length at

most lpi + A bits, and p queries to its B and E~1 oracles. Assume furthermore
that g < 2Y and fpiy < A2V — 2). Then

i U w(lon(ge + g5) + D2 wlu—1

for tpie = o /A + 1 and where the AEAD headers are restricted to {penq bits.



GHASH In AES-GCM

GHASH(H, A, C) = X,

Where ‘ Cou:tero I—»( incr )—»l Cou:ter1 }—b( incr H Cou:ter2 |

 Xo= 0, s I e N e
* (§1,...,8t) =A oColen(4) o len(C) and (oot o) [(Pamenz D
Xi = (S;i®X;—1) - H e Ve

AES-GCM: H = Eg(0%) (secret value) C) =N
Authentication Tag: Ex(N)®GHASH(H, 4, C) [ ota 1 ] en® en(©) |

GHASH(H, 4, C) mJD

AuthTag |

3|



GHASH In AES-GCM

GHASH(H, 4,C) = X;,4

Where
e XO: O,
* (S4,..,8)=A oColen(A)olen(C) and

Xi = (5;®X;-1)-H

Xers = ) §i-HIHH1

I<t

I Cou:tero I—»( incr )—»l Counter 1 I—»( incr H Counter 2 |

(=)

)

A

=]

A

A

Auth Data 1

| Ciphertext 1
h
o
N
h

4
)
L/
v

[ J—

GHASH(H, 4, C)

-+ !/“‘\4
N

| ALIt|"I Tag |




Back to the Nonces

* Prior Security Analysis Assumes no Nonce Collisions

e If nonces are randomized in {0,1}* we need to add a term

274 Y icq (Bi + bj + 1) <27 (%) (28, + 1)



Back to the Nonces: AES GCM

* In AES-GCM A = 128, but the nonce is typically 96-bits

Counter0 = No 03101

Constraint: plaintext/associated is at most 23% — 1 blocks long
=>If all nonces are unique then all counters are unique

Pr[Exists Nonce Collision] < 27° (Clze) — 2-96 (qze)

22 N (hisbitt 2_,5(%)52? !
L T o\2




Back to the Nonces: AES GCM

e In AES-GCM A = 128, but the nonce is typically 96-bits
Counter0 = No 03101

Constraint: plaintext/associated is at most 23% — 1 blocks long

=>If all nonces are unique then all counters are unique

Pr[Exists Nonce Collision] < 277 (qze) — 2-96 (qze)

Practice: Pick fresh key once q, = 232



Nonce-Misuse Resistance
 Recall Encryption Scheme Enc(K, m) = (r, F;,(r)®m)

o If attacker intercepts two ciphertexts with repeated nonce
c =(r,s = F,(r)®m)and c’ = (r,s' = F,(r)®m’)

Attacker can obtain s®s’' = m@®m' which often reveals both m and m'’

AES-GCM suffers similar weaknesses



Nonce-Misuse Resistance

Generally, for any encryption scheme Enc(K,N,m) if the nonces are
repeated for messages m and m’ then the attacker will learn whether
or not m = m’' (Assume that N is the only randomness)

ldeally this is the only thing the attacker should learn!



Game GAE Keycen, 17 (A) NEw (aux)

sto +— ;v 4+ 0; b+s {0,1} vv+1

B g ANEW.ENG,VEPRIM (K,,st,) <5 KeyGen(st,_1, aux)

Return (0" = b)

VF(E’}N} C}A) ENC(E:,N:. M} A)

If¢ ¢ {1,...,v} then return L If+¢41,...,v} then return L

If (i, N,C, A) € V[i] then return true |1 (2, N, M, i?me Ulé] then return |

If 5 = 0 then return false Cy+ AELE" (K, N, M, A)

M +— AE.DF™ (K, N,C, A) Co <5 {0,137

Return (M £ 1) Ule] = Ul UL, N, M, A)}
Vi <= VUL N, Gy, A)}
Return

Attacker is allowed to repeat nonce N for same user i as long as the
message M (or authentication headers A) are different.



Game GRERE%, 7 (A) NEW (aux)

sto +— ;v 4+ 0; b+s {0,1} v v+ 1
B g ANEW.ENG,VEPRIM (K,,st,) <5 KeyGen(st,_1, aux)

Return (0" = b)

VF(E’}N} C}A) ENC(E:,N:. M} A)

If¢ ¢ {1,...,v} then return L If:¢41,...,v} then refurn L

If (i, N,C, A) € V[i] then return true [If (2, NV, M, i?me Ulé] then return |

If 5 =0 then return false Ci1+ AEE"(K;, N, M, A)

M +— AE.DF™ (K, N,C, A) Co <5 {0,137

Return (M £ 1) Ule] = Ul UL, N, M, A)}
Vi <= V[i] U{{%, N, Gy, A) }
Return

Attacker is allowed to repeat nonce N for same user i as long as the
message M (or authentication headers A) are different.



Generic Attack

e Fix nonce N, message |M|> k 4+ 4 and associated data A.
* Attacker queries C=Enc(i,N,M,A) for q different users.
e Output 1 If we find a collision C=C; otherwise O;

e Analysis:
e Real World: two users will have the same key with probability at least a(a—1)
2K+2

* |deal World: two users will have the same ciphertext with probability at most
a(q-1) - 9(q-1)
2|M|+1 — 2k+5

e Advantage: at |least

q(q-1) q(qg-1) > q(q-1)
2K+2 2K+5 2K+3




AES-GCM-SIV

e Key Ideas:
e Pick two keys K; and K,

e Final authentication TAG derived using K, based on nonce and hash T which
in turn derived from A, M and K;

e Countery is derived from TAG

* Note: If we repeat the same nonce, but message M and or authentication
data A changes then so will the counter Counter;



GCM-SIV™" (encryption-keylength, K1, K2, N, AAD, MSG)

1. Context: encryption-keylength (= 128 or 258)

0 <= m <= 32 such that MSG length is at most 2"m-1 blocks.
2 Keys: K1 (128 bits), K2 (128 or 256 bits)
3 If encryption-keylength = 128, AES = AES128, else AES = AES2L6
4. Input: AAD, MSG, N (96 bits)
5. Padding:
6
7
8

A = Zero pad AAD to the mnext 16 bytes boundary (d blocks)
M = Zero pad MSG to the mext 16 bytes boundary (v blocks)
(denote M by blocks as: MO, M1, ..., M(v-1).)

9. Encrypting and Authenticating:

10. L1 = (bytelen(44D)*8); L2 = (bytelen(MSG)*8)

11. LENBLK = IntToString64(L1) || IntToString64(L2)

12¢#. T = POLYVAL (K1, A4 [| M || LENBLK)

13. TAG = AES (K2, 0 || (T XOR N) [126:0])

14. for 1 =0, 1, ., v1 do

154, Low32(i) = (StringToInt32(TAG[31:0]) + i) mod 27{32}
16% . CTRBLK_i =1 || TAG[126:32] || IntToString32(Low32(1i))
17. CTi = AES (K2, CTRBLK_i) XOR Mi

18. end do

19. Set ¢ = CT0, CTL, ..., CT(v-1)

20. if length(MSG) != length(CT)

21. Chop off lsbytes of CT(v-1) to make lengths equal

22. Output: C = (CTO, CT1, ..., CT(v-1)), TAG

———————————— GCM-8IV-———————————

12% . GCM-SIV used GHASH instead of POLYVAL

15-16+. GCM-SIV set CTRBLK_i = 1 || TAG[126:k] || IntToString32(i)

Fig. 1. Specification of GCM-SIV ™. The differences between GCM-SIV+and GCM-SIV are in Steps 12%, 15% and 16%



Security Bounds

_ 1 Bap (38c+TE)L° +48cly
— 9wnfl | ke | Ot

(4ef+ 058+ 65)LB  dp+(2d+a)l
| o | ZILJ 3

MU -mrae
AdUﬂE}HEyGEn}E(‘A}

n — blocksize; k —key length; B — blocks encrypted per user,
f,c,a = 0(1) are constants

d — upper bound on the number of users re-using a given nonce
p < 2097 (qum queries to ideal cipher)
L < 20097 (total #block encrypted)

Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation and Better Bounds [BHT18]



Nonce Multi-Collisions (d)

* Suppose we sample g nonces Ny, ..., N, < 24 . What is the probability that
some nonce N appears d time?

q) 2~(@-DA < gdp—(d-1)]

Pr[exists d collision] < ( p

If g < 22(=8) and d = %then
Pr[exists d collision] < 24(1-8)dp-(d-DA _ 7A(1-&d) _ 4

Point: We can safely assume d is a small constant.
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Authenticated Encryption  [forsmeici we

Ignore associated data
In this presentation

Nonce N
Plaintext M
C « AEAD.Enc(e9, N, M)

=L

48



Authenticated Encryption  [forsmeici we

Ignore associated data
In this presentation

N

Nonce N
Plaintext M

N [|C
—)
C — AEAD.Enc(=3, N, M) gy M — AEAD.Dec( =, N, C)
=9 |- =9
49
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Authenticated Encryption For simplicy, we

Ignore associated data
In this presentation

Nonce N
| N || C
C — AEAD.Enc(==9, N, M) gp M — AEAD.Dec( =, N, C)

Popular Easy to use Secure

. AES-GCM . Efficient . Proven CCA-secure

- XSalsa20/Poly1305 . Standardized . Confidentiality

. ChaCha20/Poly1305 - Widely supported . Integrity
- AES-GCM-SIV




Authenticated Encryption For simpliciy, we

ignore associated data
In this presentation

Nonce N
Plaintext M

C — AEAD.Enc(=3, N, M) ; M — AEAD.Dec( =, N, C)

But don’t target robustness, also called committing AEAD, as a security goal
[ABN TCC’10], [FLPQ PKC’13] for PKE, [FOR FSE'17]for AEAD

- AES-GCM . Efficient . Proven CCA-secure
- XSalsa20/Poly1305 . Standardized . Confidentiality

. ChaCha20/Poly1305 - Widely supported . Integrity
- AES-GCM-SIV




(Non-) Committing AEAD  [forsmiciv we

ignore associated data
In this presentation

Nonce N’
Ciphertext C’

|
O I— - |\ eAEAD.DeC(&, N’, C)
=<9 |_ — M* «— AEAD.Dec(«=®, N’, G)




(Non-) Committing AEAD  [forsmiciv we

ignore associated data
In this presentation

?
Nonce N’
Ciphertext C’

|
O I— - |\ eAEAD.DeC(&, N’, C')
=<9 |_ — M* «— AEAD.Dec(«=®, N’, C)




(Non-) Committing AEAD  [forsmiciv we

ignore associated data
In this presentation

? N
Nonce N’

. N || C
Ciphertext C’
: M « AEAD.Dec(&<, N, C)

O I— - |\ eAEAD.DeC(&, N’, C)
=<9 |_ — M* «— AEAD.Dec(«=®, N’, C)

—

54



(Non-) Committing AEAD ~ [forsmteis. e

Ignore associated data
In this presentation

?

N

Nonce N’ N’ ” C’
Ciphertext C’ ————————————-

: M « AEAD.Dec(&<, N, C)

Y — AEAD.Dec(=99, N’, C)

=<9

—
=3

L — M* «— AEAD.Dec(«=®, N’, C))

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO’17], [DGRW CRYPTQO'18]
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password5

Password
dictionary
D

passwordl
password?2
password3
password4
password5
password6
password?
password8
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Brute-force Dictionary Attack

N

password5

N ||Cy

Decryption error

N || C2

Decryption error

N || Cs

Decryption error

N ||C4

Decryption error

N ||Cs

Decryption success!

C1 «— AEAD.Enc(*passwordl”, N, M)

C, «— AEAD.Enc(*password2”, N, M)

Cs «— AEAD.Enc(*password3”, N, M)

Cs «— AEAD.Enc(“password4”, N, M)

Cs «— AEAD.Enc(“password5”, N, M)

Password
dictionary
D

passwordl
password?2
password3
password4
password5
password6
password?
password8
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Partitioning Oracle Attack

A high level overview of our attack

passwordl

password?2

Password password3
dictionar password4
IC y password5
D password6
password?7

password5 passwor passwords
password?2 password6
password3 password?7
password4 password3
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Partitioning Oracle Attack

A high level overview of our attack

passwordl
password?2
Password password3
. password4
‘ dictionary eanords
D password6
password?7
password5 pa—;v!w:r?
N once N — password?2 password6
. . password3 password?7
fW[Clphertext C password4 password8

splitting
ciphertext
k=4

=




()]

Partitioning Oracle Attack

A high level overview of our attack

N

password5

N [|C

| « AEAD.Dec(“password5”, N, C)

Password password3
dictionary

D

Nonce N __

¥ Ciphertext C

passwordl
password2

password4
password5
password6
password?7

passwor password5

password?2 password6
password3 password7
password4 password3

splitting
ciphertext
k=4




Partitioning Oracle Attack

A high level overview of our attack

N

password5

N [|C

| « AEAD.Dec(“password5”, N, C)

Decryption error

Password password3
dictionary

D

Nonce N __

¥ Ciphertext C

passwordl
password2

password4
password5
password6
password?7

passwor password5

password?2 password6
password3 password7
password4 password3

splitting
ciphertext
k=4
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Partitioning Oracle Attack

A high level overview of our attack

N

password5

N [|C

| « AEAD.Dec(“password5”, N, C)

Decryption error

Passwo

dictionary

D

Nonce N __

passwordl
password2
rd password3
password4
password5
password6
password?7

password5
password6
password?7
password3

¥ Ciphertext C

splitting
ciphertext
k=4




Partitioning Oracle Attack

O«—0O
[

~ ~
I I
= =

9,
N
=~
I

O «
w
=~
I
H

Brute-force dictionary attack

Requires O(|D|) queries to
learn the password

17



Partitioning Oracle Attack

D k=1 D k= |D|/2
D1 k=1 o k= |D|/ 4
' k= |D|/ 8
D> k=1
k= |D|/ 16
D3 =
l k=1 k= |D|/ 32
Brute-force dictionary attack Requires O(log |D|) queries to learn the
password
Requires O(|D|) queries to Exponential speedup over brute-force
learn dictionary attack! 18

the password




Partitioning Oracle Attack

b]_ k=1 O k= IDI|/ 4 k = 5000
| <= DI/ 8 k = 5000
D> k=1
k= IDI/ 16 k = 5000
D =
13 k=1 DE = 1Dl / 32 k = 5000
o %( k = 2500
Brute-force dictionary attack Requires O(log |D|) queries to learn the ID| is large so a more realistic case is k = 5000
password
Requires O(D|) queries to Exponential speedup over brute-force This still offers a good speedup over brute-force
learn the password dictionary attack! s
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Partitioning oracle attacks rely
on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle
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Partitioning oracle attacks rely
on:

1. Building splitting ciphertexts that can decrypt under k > 1 differentkeys
Key Multi-collision Attacks

[GLR CRYPTO’17] first showed an attack against AES-GCM for k =2

2. Access to a partitioning oracle



Computing Key Multi-
Collisions: AES-GCM

Enclrypt - then - MTC
Counter mode GHASH:
encryption of AES polynomial MAC

Runtime: O(k?) es

Ciphertext that decrypts

Attack under all k keys

algorithm

Length: k 16-byte blocks




Computing Key Multi-
Collisions: AES-GCM

Encrypt - then

l

Counter mode
encryption of AES

SN, =

olynomial MAC\)

Runtime: O(k2o

Reduces finding
ciphertext to Attack
solving set of B algorithm

linear equations

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks



GHASH In AES-GCM

Where

GHASH(H,4,C) = X, 1

T = Xt+1 — Z Ci . Ht—i+1

I<t

I Cou:tero I—»( incr )—bl Counter 1 I—b( incr H Counter 2 |

(=)

)

y

=]

4

A

Auth Data 1

| Ciphertext 1
h
o
N
h

4
)
L/
v

[ J—

GHASH(H, 4, C)

v
M

| ALIt|"I




Multi-Collision
Goal: Find C = (C; ,C5 ,C5; ) and K4, K5, K5 such that

T = GHASH(H,,C) = GHASH(H,,C) = GHASH(H;,C) =T
WhereH; = EK.(OA)
j

Linear Constraints

2 C: - Hlt—i+1 — z C: - Hg—i+1 — z Ci . H3t—i+1
l l
i L L



Multi-Collision
Goal: Find € = (¢, ,C, ,C3 ),N; ,N, ,N; and K3, K,, K5 such that
where H; = EK].(OA)

Three Linear Constraints: For eachj = 1,2,3

T=Cy -H'®Cy -H’® C3-Hf oL -H ®Eg(N; )
Three Unknowns: C4, C, and C4



~

Computing Key Multi-Collisions: AES-GCM

Input: Let nonce N, authentication tag T,and keys Ki, Kz, Kz be arbitrary
Goal: Compute ciphertext C that decrypts under all 3 keys

Pre-compute: H;= AES;(0128), P, = AESki(N || 0311), L= |C]|
H14‘C1 ® H13‘C2 ® H12°C3 ® Hi-L® Pi=T

H24'C1€B H23'C2€B H22'C3€B Ho-L & P>=T1

H34‘C169 H33‘C269 H32‘C3€B H: - L & Ps=T
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Computing Key Multi-Collisions: AES-GCM

lnput: Let nonce N, authentication tag T,and keys K1, Ko, Ksbe arbitrary
Goal: Compute ciphertext C that decrypts under all 3 keys

Pre-compute: H;= AES;(0128), P, = AESki(N || 0311), L= |C]|

o Hi-L © Pi)-H
H12 H]_ (T ! B

[H22 H> ] [Cz] [(I'GBHZL@F)Z) H,-2

H42 Hs ®@ Hiz-L D p3) - Hz2

4

{

\ Vandermonde matrix: we can use polynomial interpolation!

|



Computing Key Multi-Collisions: AES-GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

Kk

We make a ciphertext that 2 0.18 48

decrypts under > 4000
keys in < 30 seconds!
210 6.6 16,400

K 212 29 65,552
— P

216 1,820 1,048,592
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Computing Key Multi-Collisions: AES-
GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

There exists an algorithm that

k
does polynomial
We make a ciphertext that 2 0.18 48 interpolation in Ok log2k)
decrypts under > 4000 using FFTs, so it's possible to
keys in < 30 seconds! : ..
| 210 16.400 create multi-collisions much
K faster [BM '74]
— P
6.6
212 65,552

216 1,048,592
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Computing Key Multi-Collisions

XSalsa20/Poly1305 Also vulnerable to key

multi-collision attacks!

ChaCha20/Poly1305 D incke are more

complex and less
scalable than those
for AES-GCM

AES-GCM-SIV
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Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 differentkeys
Key Multi-collision Attacks

[GLR CRYPTO’17] first showed an attack against AES-GCM for k =2

2. Access to a partitioning oracle
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Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 differentkeys
Key Multi-collision Attacks

[GLR CRYPTO’17] first showed an attack against AES-GCM for k =2

2. Access to a partitioning oracle
Where do partitioning oracles arise?
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Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers for UDP

Popular Internet censorship evasion tool
Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server




Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers for UDP

Popular Internet censorship evasion tool

Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

> Early implementations of the
OPAQUE asymmetric PAKE protocol

Selected by the IETF CFRG for standardization

Many early implementations went against
protocol specification to use a non-
committing AEAD scheme

These schemes are vulnerable to partitioning
oracle attacks




Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers for UDP

Popular Internet censorship evasion tool

Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

> Early implementations of the
OPAQUE asymmetric PAKE protocol

Selected by the IETF CFRG for standardization

Many early implementations went against
protocol specification to use a non-
committing AEAD scheme

These schemes are vulnerable to partitioning
oracle attacks

Possible partitioning oracles

Hybrid encryption: Hybrid Public-Key
Encryption (HPKE)

Age file encryption tool

Keeeros drafts (not adopted)

JavaScript Object Signing and Encryption
(JOSE)

Anonymity systems: use partitioning oracles
to learn which public key a recipient is using
from a set of public keys
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What do we do?

» Our paper is the latest in a growing body of evidence that non-committing
AEAD can lead to vulnerabilities*

» So which committing AEAD scheme do we use?
- None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS '20] also discussed the importance of committing AEAD
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Conclusion

Contact: [len@cs.cornell.edu

Full version: https://eprint.iacr.org/2020/1491 .pdf

» Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

» Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV, are not committing

» Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers
and incorrect implementations of OPAQUE

» Recommendation: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!


mailto:jlen@cs.cornell.edu
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AES-GCM SIV

AE+E(K|H H Kgutj, N:, M:, A) AE+D(K"'| H j;{-.gq_”::I N:, C} A)

IV < F(Kin || Kou, N, M, A) IV || ¢ < C; M < SE.D¥ (Kout, C)

C — SE+EE(Kmut} M; IV) T — FE (Kin H KDUII:- N} M? A)

Return C If 7" IV then return | else return M

Fig.4: The SIV construction (with key reuse) AE = SIV[F, SE] that is built on
top of an ideal cipher E.
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