Advanced Cryptography CS 655

Week 2:

- Authenticated Encryption with Associated Data
- Concrete (Multi-User) Security Analysis of AES-GCM
- Partitioning Oracle Attacks
- AES-GCM-SIV

Authenticated Encryption with Associated Data

- AE.KeyGen: Generates random key K
- AE.Enc(K,N,M,H)
 - Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
 - Output: ciphertext C
- AE.Dec(K,C,H)
 - Inputs: Key: K, Ciphertext: C, Header: H (associated data)
 - **Output:** message m (or "Invalid Ciphertext")

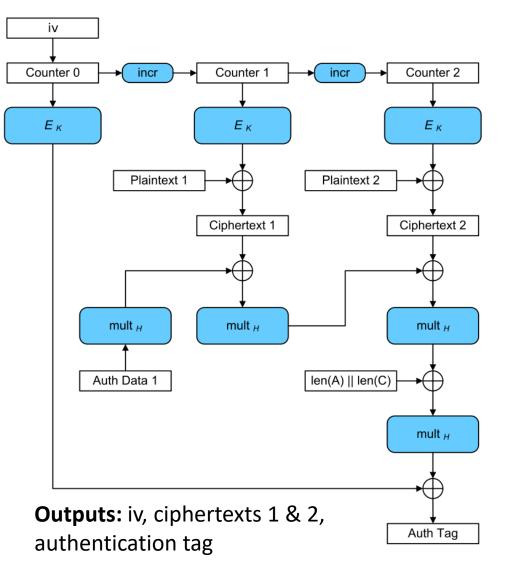
Ideal Cipher Model

- For all keys K E(K,.) is a truly random permutation with inverse $E^{-1}(K,.)$
- All parties (adversary + honest) have access to oracles E(.,.) and $E^{-1}(.,.)$
- AE.Enc(K,N,M,H)
 - Inputs: Key: K, Nonce: N, Message: M, Header: H (associated data)
 - **Output:** ciphertext C
 - Will query E(K,.) and/or $E^{-1}(K,.)$ to generate C
- AE.Dec(K,C,H)
 - Inputs: Key: K, Ciphertext: C, Header: H (associated data)
 - **Output:** message m (or "Invalid Ciphertext")
 - Will query E(K,.) and/or $E^{-1}(K,.)$ to generate C
- Attacker my query E(.,.) and $E^{-1}(.,.)$, but does not know secret key K

Galois Counter Mode (GCM)

Input: plaintexts 1 & 2

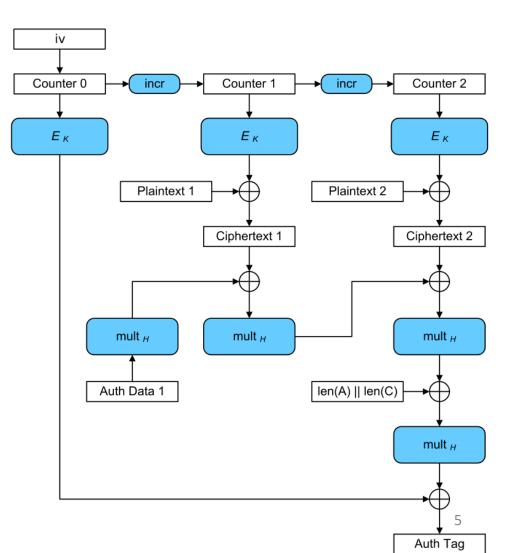
- AES-GCM
- Security Guarantee: Authentication Encryption with Associated Data
 - Message can be arbitrarily long
 - Length of message and authentication data is authenticated to avoid truncation attacks etc...
 - Public Associated Data is Authenticated
 - Source IP
 - Destination IP
 - Why can't these values be encrypted?



4

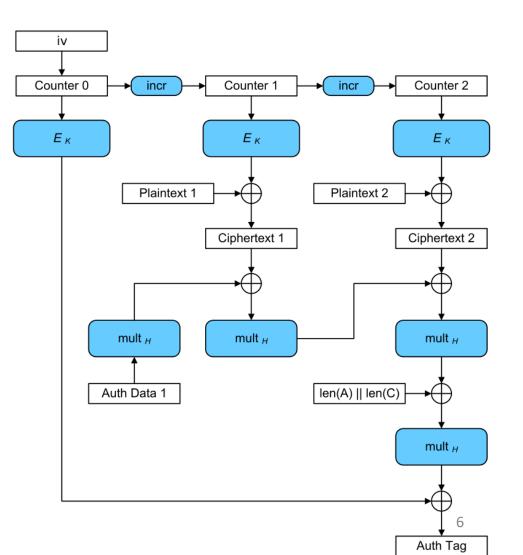
GCM: Nonce Collision

- AES-GCM
- Suppose that message m₁ is b₁ blocks long and message m₂ is b₂ block long.
- \bullet Suppose that we pick nonces N_1 and N_2
- How should we define nonce collision?
- What is the probability of this event?



GCM: Nonce Collision

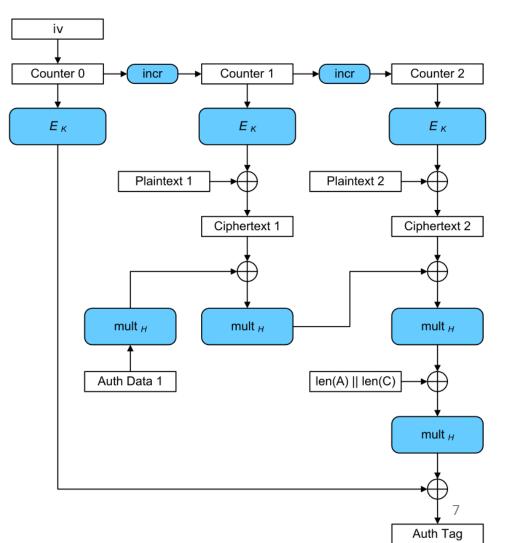
- AES-GCM
- Suppose that message m₁ is b₁ blocks long and message m₂ is b₂ block long.
- \bullet Suppose that we pick nonces N_1 and N_2
- How should we define nonce collision?
 - If interval [N₁,N₁+b₁] intersects with [N₂, N₂+b₂] then there could be problems. Why?



GCM: Nonce Collision

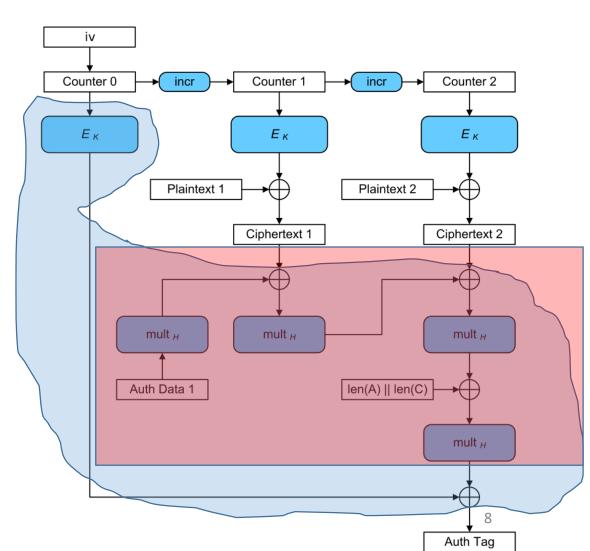
- AES-GCM
- Suppose that message m₁ is b₁ blocks long and message m₂ is b₂ block long.
- Suppose that we pick nonces N₁ and N₂
- How should we define nonce collision?
 - If interval [N₁,N₁+b₁] intersects with [N₂, N₂+b₂] then there could be problems. Why?
 - Collision if N₂ is in [N₁-b₂, N₁+b₁]
 - Probability of a collision $2^{-\lambda}(b_1 + b_2 + 1)$
- Union Bound: Probability of any nonce collision over all pairs of queries

$$2^{-\lambda} \sum_{i < j \le q_e} (bi + bj + 1)$$



Galois Counter Mode (GCM)

- AES-GCM
- Decryption?
 - Step 1: Recompute authentication tag from available data
 - $H(k, A, C, |C|, |A|) \coloneqq E_k(N) \oplus G(A, C, |C|, |A|)$
 - Nonce: N, Authentication Data: A
 - Length: |C|
 - Length: |A|
 - Ciphertext Blocks: C1,C2,
 - If authentication tag does not match then output "Invalid Ciphertext"
 - Step 2: $m_i = Ek(N + i) \oplus C_i$ for each block i



Parameters and Definitions

- κ : length of secret key (bits)
- λ : length of block (bits)

Definition: We say that a hash function H is ε -almost XOR-universal if for all distinct messages m_1 and m_2 and all strings s we have $\Pr[H(k, m_1) \bigoplus H(k, m_2) = s] \le \varepsilon$

Where the randomness is taken over the selection of the secret key k.

McGrew and Viega [24, Lemma 2] show that H has this property for $\epsilon(m, n) = (\lceil m/\lambda \rceil + \lceil n/\lambda \rceil + 1)/2^{\lambda}$.

AES-GCM: Nonces

- Option 1: Random N
 - Advantage: Stateless + simple to implement,
 - **Disadvantage:** It is possible for a nonce to collide (typical solution: generate fresh keys after 2³² messages to keep probability of a nonce collision small)

- Option 2: Both parties increment N after each message
 - Advantage: Avoids nonce collisions 😳
 - Disadvantage:
 - Requires keeping track of current value.
 - Implementation Challenges. What if packets are dropped?
 - Security issue if implementation is buggy or if counter is accidently reset (e.g., radiation)

Multi-User Security

- Suppose that u users generate independent κ bit keys K_1, \dots, K_u
- Attacker may be happy to decrypt just one ciphertext intercepted from any of these use (or just tamper with just one ciphertext for sent to any of these users)
- **General Reduction:** If the encryption scheme is (t,q,eps)-secure with respect to a single user then it provides (t,q,u*eps)-multi-user security
- Reduction? Can we do better for AES-GCM?

Multi-User Security Game for AEAD

- Challenger picks a random bit b and Generates u independent keys K_1, \dots, Ku
 - Real Mode: b=1
 - Ideal Mode: b=0
- Attacker Goal: guess b
- Attacker Oracles:
 - Ideal Cipher
 - Encryption oracle (Takes as input an individual $i \leq u$, nonce N, message M, header H) :
 - Outputs: "Invalid" if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
 - **Real Mode:** Encrypts message using key K_i and outputs ciphertext
 - Ideal Mode: Returns random string instead of ciphertext
 - Verification Oracle: (Takes as input individual $i \le u$, nonce N, ciphertext M, header H):
 - Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header; otherwise
 - Ideal Mode: Output 0
 - **Real Mode:** Attempt to decrypt using key K_i ; output 0 if decryption fails and 1 otherwise

Game $\mathbf{G}_{AE}^{\mathrm{mu-ind}}(A)$	$\mathrm{E}(L,x)$
$b \leftarrow $ $\{0,1\}$; $b' \leftarrow $ $A^{ ext{New,Enc,VF,E,E^{-1}}}$	If $T[L, x] = \bot$ then
Return $(b' = b)$	$T[L, x] \leftarrow m T[L, \cdot]$
Now()	$T^{-1}[L, T[L, x]] \leftarrow x$
$\underline{New()}$	Return $T[L, x]$
$v \leftarrow v + 1 \; ; \; K_v \leftarrow \$ \; \{0,1\}^{AE.kl}$	$\mathrm{E}^{-1}(L,y)$
$\mathrm{Enc}(i,N,M,H)$	If $T^{-1}[L, y] = \bot$ then
If not $(1 \leq i \leq v)$ then return \perp	$T^{-1}[L, y] \leftarrow \ \ \overline{\operatorname{im} T^{-1}[L, \cdot]}$
If $((i, N) \in U)$ then return \perp	$T[L, T^{-1}[L, y]] \leftarrow y$
$C_1 \leftarrow AE.Enc^{\mathrm{E},\mathrm{E}^{-1}}(K_i,N,M,H)$	Return $T^{-1}[L, y]$
$C_0 \leftarrow \$ \{0,1\}^{AE.cl(M)}$	
$U \leftarrow U \cup \{(i, N)\} ; V \leftarrow V \cup \{(i, N, C_b, H)\}$	
Return C_b	
$\mathrm{VF}(i,N,C,H)$	
If not $(1 \leq i \leq v)$ then return \perp	
If $((i, N, C, H) \in V)$ then return true	
If $(b = 0)$ then return false	
$M \leftarrow AE.Dec^{\mathrm{E},\mathrm{E}^{-1}}(K_i,N,C,H)$	
Return $(M \neq \bot)$	

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its E and E^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda+1}} + \frac{u(u-1)}{2^{\kappa+1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

for $\ell_{\text{blk}} = \lceil \ell_{\text{bit}} / \lambda \rceil + 1$ and where the AEAD headers are restricted to ℓ_{head} bits.

• **Though Question:** Which parameters do we expect to be large in practice? qe, qv or p?

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda+1}} + \frac{u(u-1)}{2^{\kappa+1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

- P: may be very large (can compute E(.,.) offline)
- qe, qv require cooperation from a party who knows secret key

Hybrid Argument: Slowly Make Real/Ideal Oracles Identical

- Hybrid 0: Original Game
 - Challenger Generates u <u>independent</u> keys K_1, \dots, Ku
 - Note: It is possible that the attacker gets lucky and that $K_i = K_j$ for some users i and j.
- **Question:** How could attacker attacker exploit this?
- Question 2: What is the probability of the bad event KCOLLISION that there exists a key collision?
- **Hybrid 1:** Original game, but random keys are selected subject to the constraint that they all are distinct .
- **Question:** What is the probability that an attacker can distinguish between hybrids 0 and 1?

Hybrid Argument: Slowly Make Real/Ideal Oracles Identical

- Hybrid 0: Original Game in Real Mode (b=0):
 - Challenger Generates u independent keys $K_1, ..., Ku$
 - Note: It is possible that the attacker gets lucky and that $K_i = K_j$ for some users i and j.
- Question 2: What is the probability of the bad event KCOLLISION that there exists a key collision?
- Hybrid 1: Original game, but random keys are selected subject to the constraint that they all are distinct .
- Question: What is the probability that an attacker can distinguish between hybrids 0 and 1?
- Answer: at most $\Pr[\text{KCOLLISION}] \le 2^{-\kappa} \binom{u}{2}$

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0,1\}^{\lambda} \times (\{0,1\}^* \times \{0,1\}^*) \rightarrow \{0,1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0,1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda + 1}} + \frac{u(u - 1)}{2^{\kappa + 1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

Hybrid Argument: Slowly Make Real/Ideal Oracles Identical

• Hybrid 2:

- Instead of using $E(K_i, .)$ in the encryption oracle the we replace $E(K_i, .)$ with a fresh random permutation f_i for each user
- **Tempting Argument:** Hybrid 1 is indistinguishable from Hybrid 2 since $E(K_i, .)$ is already a truly random permutation.
- What is the flaw in this argument?

Hybrid Argument: Slowly Make Real/Ideal Oracles Identical

- Hybrid 2:
 - Instead of using $E(K_i, .)$ in the encryption oracle the we replace $E(K_i, .)$ with a fresh random permutation f_i for each user
- **Tempting Argument:** Hybrid 1 is indistinguishable from Hybrid 2 since $E(K_i, .)$ is already a truly random permutation.
- What is the flaw in this argument?
- Answer: Attacker might get lucky and query $E(K_i, .)$, while f_i is completely independent of $E(K_i, .)$
- However, hybrids are indistinguishable if attacker never submits query of the form $E(K_i, .)$. Let BADQ be the event that the attacker submits a query to ideal cipher with key K_i for some user.

 $\Pr[BADQ] \le pu2^{-\kappa}$

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda+1}} + \frac{u(u-1)}{2^{\kappa+1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

Hybrid Argument: Slowly Make Real/Ideal Oracles Identical

- Hybrid 2:
 - Instead of using $E(K_i, .)$ in the encryption oracle the we replace $E(K_i, .)$ with a fresh random permutation f_i for each user
- Hybrid 3:
 - Change f_i for each user to a truly random function
- Hybrid 2 is statistically indistinguishable from Hybrid 2
- At most q_v (resp. q_E) queries to encryption/decryption oracle per user
- Each query generates at most ℓ_{blk} queries to f_i per user
- Hybrid 3 and 2 are equivalent unless there is a collision in one of the queries to f_i $\Pr[COLLISION] \le u (\ell_{blk}(q_E + q_v))^2 2^{-\lambda - 1}$

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \left| \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda + 1}} \right| + \frac{u(u - 1)}{2^{\kappa + 1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

$Game G_4 G_5$	VF(i, N, C, H)
$b \leftarrow $ $\{0,1\}$; $b' \leftarrow $ $A^{ ext{New, Enc, VF}}$	If $(b = 0)$ then return false
Return $(b' = b)$	$M \leftarrow CAU.Dec^{\mathrm{E}}(K[i], N, C, H)$
$rac{\mathrm{NEW}()}{v \leftarrow v+1} ext{ ; } K[v] \leftarrow rac{1}{\{K[1], \ldots, K[v-1]\}}$	$\begin{array}{l l} \text{If } M \neq \bot \text{ and } (i,N) \notin V \text{ then} \\ \text{bad} \leftarrow \texttt{true} \text{ ; } \overline{\texttt{return false}} \\ \text{Return } (M \neq \bot) \end{array}$
$ \frac{\text{ENC}(i, N, M, H)}{V \leftarrow V \cup \{(i, N)\}} \\ C_1 \leftarrow \text{CAU}.\text{Enc}^{\text{E}}(K[i], N, M, H) $	$egin{aligned} rac{\mathrm{E}(K,x)}{\mathrm{If} U[K,x] = ot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$C_0 \leftarrow \{0,1\}^{CAU.cl(\tilde{M})}$ Return C_b	Return $U[K, x]$

Figure 23: Between the games G_4 and G_5 , we change the behavior of the VF oracle to reject forgery attempts also for b = 1.

- Hybrid 4 is equivalent to Hybrid 3 (introduces bad flag)
- Hybrid 5 returns false if nonce i has not been used for user i \rightarrow Can view $f_i(N)$ as random λ bit string that is yet to be picked.

$$|\Pr[G4] - \Pr[G5]| \le \frac{uq_v}{2^{\lambda}}$$

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda + 1}} + \frac{u(u - 1)}{2^{\kappa + 1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

$Game G_6 G_7$	$\underline{\mathrm{VF}(i,N,T\ C,H)}$
$b \leftarrow \{0,1\}; b' \leftarrow A^{\operatorname{New, Enc, VF}}$	If $(b = 0 \text{ or } (i, N) \notin V)$ then return false
Return $(b' = b)$	$G \leftarrow \mathrm{E}(K[i], 0^{\lambda}) \ ; \ Y \leftarrow N \ \langle 1 \rangle$
$egin{array}{c} \displaystyle rac{\mathrm{NEW}()}{v \leftarrow v+1} \ ; \ K[v] \leftarrow rac{1}{\{K[1], \ldots, K[v-1]\}} \end{array}$	$\begin{array}{l} \text{Let } C', H' \text{ such that } (i, N, C', H') \in W \\ \Delta \leftarrow T \oplus \mathcal{E}(K[i], Y + 0) \\ \text{If } H(G, H', C') \oplus H(G, H, C) = \Delta \text{ then} \end{array}$
$\frac{\operatorname{Enc}(i, N, M, H)}{G \leftarrow \operatorname{E}(K[i], 0^{\lambda})}; Y \leftarrow N \ \langle 1 \rangle$	bad \leftarrow true ; <u>return false</u> Return $H(G, H', C') \oplus H(G, H, C) = \Delta$
$ \begin{array}{ c c } & /\!\!/ \text{ Compute } C \text{ as in CAU.Enc}^{\mathbb{E}}(K[i], N, M, H) \\ & C_1 \leftarrow \mathbb{E}(K[i], Y + 0) \ C \\ & V \leftarrow V \cup \{(i, N)\}; \ W \leftarrow W \cup \{(i, N, C, H)\} \end{array} $	$rac{\mathrm{E}(K,x)}{\mathrm{If}\ U[K,x]} = \perp ext{ then }$
$C_0 \leftarrow \{0,1\}^{C_{AU.cl}(M)}$ Return C_b	$U[K,x] \leftarrow rak{0,1}^{\lambda} \ ext{Return } U[K,x]$

Figure 24: Game G_6 is equivalent to G_5 . The outputs of ENC are sampled differently, but VF is adapted in a consistent way.

What is Probability Attacker wins in Hybrid 7

- What is the probability attacker wins in Hybrid 7?
- Exactly 1/2
- Why? In hybrid 7 of all oracles is identical when b=0 and b=1.

Question:

- What is the probability of distinguishing between Hybrid 6 and 7?
- For each query to verification oracle hybrids 6 and 7 are equivalent unless we have a hash collision

 $\Pr\left[\mathsf{H}(G,H,C) \oplus \mathsf{H}(G,H',C') = T \oplus \mathsf{E}(K[i],Y+0)\right] \le \epsilon(\ell_{\mathsf{bit}},\ell_{\mathsf{head}}),$

• Union Bound over all uq_v queries

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its \mathbb{E} and \mathbb{E}^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\text{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^2 \cdot}{2^{\lambda+1}} + \frac{u(u-1)}{2^{\kappa+1}} + \frac{uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

We combine all bounds shown in the above paragraphs:

$$\begin{aligned} \mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{nu-ind}}(A) &= 2 \Pr[\mathbf{G}_{\mathsf{CAU}}^{\mathsf{nu-ind}}(A)] - 1 = 2 \Pr[\mathbf{G}_0] - 1 \\ &\leq 2 \Pr[\mathbf{G}_1] - 1 + \frac{u(u-1)}{2^{\kappa+1}} \\ &\leq 2 \Pr[\mathbf{G}_3] - 1 + \frac{u(u-1)}{2^{\kappa+1}} + \frac{u((q_e + q_v) \cdot \ell_{\mathrm{blk}})^2}{2^{\lambda+1}} \\ &\leq 2 \Pr[\mathbf{G}_5] - 1 + \frac{u(u-1)}{2^{\kappa+1}} + \frac{u((q_e + q_v) \cdot \ell_{\mathrm{blk}})^2}{2^{\lambda+1}} + uq_v \cdot 2^{-\lambda} \\ &\leq 2 \Pr[\mathbf{G}_7] - 1 + \frac{u(u-1)}{2^{\kappa+1}} + \frac{u((q_e + q_v) \cdot \ell_{\mathrm{blk}})^2}{2^{\lambda+1}} + uq_v \cdot (2^{-\lambda} + \epsilon(\ell_{\mathrm{bit}}, \ell_{\mathrm{head}})) \;, \end{aligned}$$
which concludes the proof.

McGrew and Viega [24, Lemma 2] show that H has this property for $\epsilon(m, n) = (\lceil m/\lambda \rceil + \lceil n/\lambda \rceil + 1)/2^{\lambda}$.

Multi-User Security Game for AEAD

- Challenger picks a random bit b and Generates u independent keys K_1, \dots, Ku
 - Real Mode: b=1
 - Ideal Mode: b=0
- Attacker Goal: guess b
- Attacker Oracles:
 - Ideal Cipher
 - Encryption oracle (Takes as input an individual $i \leq u$, nonce N, message M, header H) :
 - Outputs: "Invalid" if pair (i,N) is repeated (Attacker not allowed to repeat nonce for individual user)
 - **Real Mode:** Encrypts message using key K_i and outputs ciphertext
 - Ideal Mode: Returns random string instead of ciphertext
 - Verification Oracle: (Takes as input individual $i \le u$, nonce N, ciphertext M, header H):
 - Outputs 1 if this ciphertext was generated via a query to the encryption oracle with same user/nonce/header; otherwise
 - Ideal Mode: Output 0
 - **Real Mode:** Attempt to decrypt using key K_i ; output 0 if decryption fails and 1 otherwise

Reminder: Last Class

Theorem 8. Let $\kappa, \lambda, \nu \geq 1$ be such that $\nu \leq \lambda - 2$. Let $H: \{0, 1\}^{\lambda} \times (\{0, 1\}^* \times \{0, 1\}^*) \rightarrow \{0, 1\}^{\lambda}$ be an ϵ -almost XOR-universal hash function, for some $\epsilon: \mathbb{N} \times \mathbb{N} \rightarrow [0, 1]$. Let $\mathsf{CAU} = \mathsf{CAU}[\mathsf{H}, \kappa, \lambda, \nu]$. Let A be an adversary that makes at most u queries to its NEW oracle, q_e queries to its ENC oracle with messages of length at most ℓ_{bit} bits, q_v queries to its VF oracle with messages of length at most $\ell_{\text{bit}} + \lambda$ bits, and p queries to its E and E^{-1} oracles. Assume furthermore that $q_e \leq 2^{\nu}$ and $\ell_{\text{bit}} \leq \lambda(2^{\lambda-\nu}-2)$. Then

$$\mathsf{Adv}_{\mathsf{CAU}}^{\mathsf{mu-ind}}(A) \leq \frac{up}{2^{\kappa}} + \frac{u(\ell_{\mathsf{blk}}(q_e + q_v) + 1)^{2} \cdot}{2^{\lambda+1}} + \frac{u(u-1)}{2^{\kappa+1}} + uq_v \cdot \epsilon(\ell_{\mathsf{bit}}, \ell_{\mathsf{head}}),$$

GHASH in AES-GCM

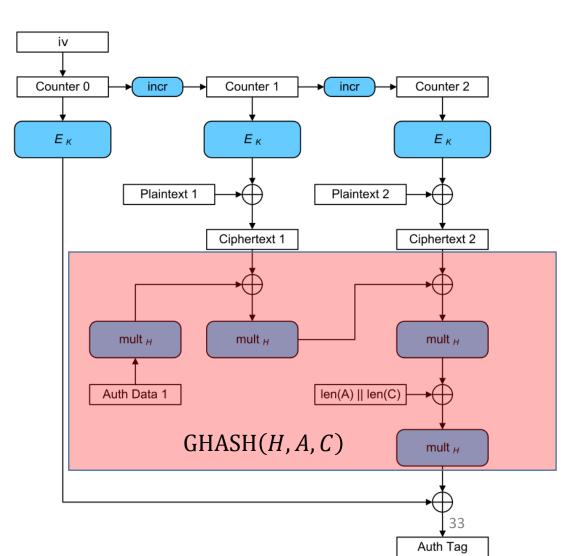
 $GHASH(H, A, C) = X_{t+1}$

Where

- $X_0 = 0$,
- $(S_1, \dots, S_t) = A \circ C \circ len(A) \circ len(C)$ and

 $X_i = (S_i \oplus X_{i-1}) \cdot H$

AES-GCM: $H = E_K(0^{\lambda})$ (secret value) **Authentication Tag:** $E_K(N) \oplus GHASH(H, A, C)$



GHASH in AES-GCM

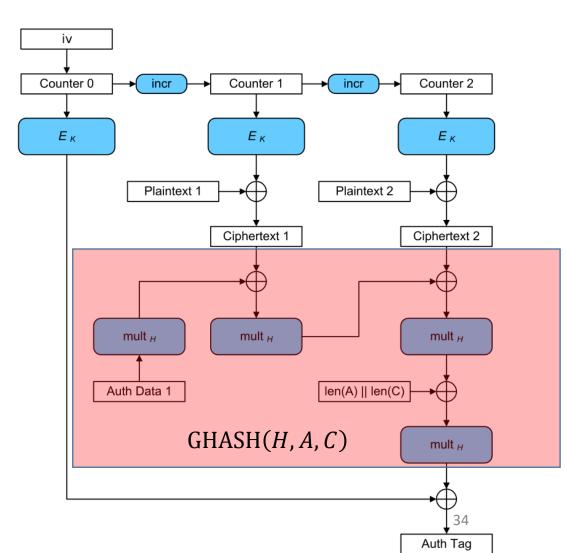
 $GHASH(H, A, C) = X_{t+1}$

Where

- $X_0 = 0$,
- $(S_1, \dots, S_t) = A \circ C \circ len(A) \circ len(C)$ and

 $X_i = (S_i \oplus X_{i-1}) \cdot H$

$$X_{t+1} = \sum_{i \le t} S_i \cdot H^{t-i+1}$$



Back to the Nonces

- Prior Security Analysis Assumes no Nonce Collisions
- If nonces are randomized in $\{0,1\}^{\lambda}$ we need to add a term

•
$$2^{-\lambda} \sum_{i < j \le q_e} (bi + bj + 1) \le 2^{-\lambda} {q_e \choose 2} (2\ell_{blk} + 1)$$

Back to the Nonces: AES GCM

• In AES-GCM $\lambda = 128$, but the nonce is typically 96-bits

 $Counter 0 = N \circ 0^{31} \circ 1$

Constraint: plaintext/associated is at most $2^{32} - 1$ blocks long \rightarrow If all nonces are unique then all counters are unique

$$\Pr[\text{Exists Nonce Collision}] \leq 2^{-96} \binom{q_e}{2} = 2^{-96} \binom{q_e}{2}$$
$$\frac{2^{-\lambda}}{\sum_{i < j \leq q_e} (bi + bj + 1) \leq 2^{-\lambda} \binom{q_e}{2} (2\ell_{blk} + 1)}{2}$$

Back to the Nonces: AES GCM

• In AES-GCM $\lambda = 128$, but the nonce is typically 96-bits

 $Counter 0 = N \circ 0^{31} \circ 1$

Constraint: plaintext/associated is at most $2^{32} - 1$ blocks long \rightarrow If all nonces are unique then all counters are unique

$$\Pr[\text{Exists Nonce Collision}] \le 2^{-96} \binom{q_e}{2} = 2^{-96} \binom{q_e}{2}$$

Practice: Pick fresh key once $q_e = 2^{32}$

Nonce-Misuse Resistance

- Recall Encryption Scheme $Enc(K, m) = \langle r, F_k(r) \oplus m \rangle$
- If attacker intercepts two ciphertexts with repeated nonce $c = \langle r, s = F_k(r) \oplus m \rangle$ and $c' = \langle r, s' = F_k(r) \oplus m' \rangle$

Attacker can obtain $s \oplus s' = m \oplus m'$ which often reveals both m and m'

AES-GCM suffers similar weaknesses

Nonce-Misuse Resistance

Generally, for any encryption scheme Enc(K,N,m) if the nonces are repeated for messages m and m' then the attacker will learn whether or not m = m' (Assume that N is the only randomness)

Ideally this is the only thing the attacker should learn!

Game $\mathbf{G}_{AE,KeyGen,\Pi}^{mu-mrae}(\mathcal{A})$	New(aux)
$st_0 \leftarrow \varepsilon; v \leftarrow 0; b \leftarrow \{0, 1\}$	$v \leftarrow v + 1$
$b' \leftarrow \mathcal{A}^{\text{New,Enc,VF,Prim}}$	$(K_v, st_v) \leftarrow KeyGen(st_{v-1}, aux)$
Return $(b' = b)$	
VF(i, N, C, A)	$\underline{\operatorname{Enc}(i, N, M, A)}$
If $i \notin \{1, \ldots, v\}$ then return \perp	If $i \notin \{1, \ldots, v\}$ then return \perp
If $(i, N, C, A) \in V[i]$ then return true	If $(i, N, M, A) \in U[i]$ then return \perp
If $b = 0$ then return false	$C_1 \leftarrow AE.E^{PRIM}(K_i, N, M, A)$
$M \leftarrow AE.D^{PRIM}(K_i, N, C, A)$	$C_0 \leftarrow \{0,1\}^{ C_1 }$
Return $(M \neq \bot)$	$ U[i] \leftarrow U[i] \cup \{(i, N, M, A)\}$
	$V[i] \leftarrow V[i] \cup \{(i, N, C_b, A)\}$
	Return C_b

Attacker is allowed to repeat nonce N for same user i as long as the message M (or authentication headers A) are different.

Game $\mathbf{G}_{AE,KeyGen,\Pi}^{mu-mrae}(\mathcal{A})$	NEW(aux)
$ \begin{vmatrix} st_0 \leftarrow \varepsilon; v \leftarrow 0; b \leftarrow s \{0, 1\} \\ b' \leftarrow s \mathcal{A}^{New, Enc, VF, Prim} \end{vmatrix} $	$\begin{vmatrix} v \leftarrow v + 1 \\ (K_v, st_v) \leftarrow KeyGen(st_{v-1}, aux) \end{vmatrix}$
Return $(b' = b)$	
$\underline{\mathrm{VF}(i, N, C, A)}$	Enc(i, N, M, A)
If $i \notin \{1, \ldots, v\}$ then return \perp	If $i \notin \{1, \ldots, v\}$ then return \perp
If $(i, N, C, A) \in V[i]$ then return true	If $(i, N, M, A) \in U[i]$ then return \perp
If $b = 0$ then return false	$C_1 \leftarrow AE.E^{PRIM}(K_i, N, M, A)$
$M \leftarrow AE.D^{PRIM}(K_i, N, C, A)$	$C_0 \leftarrow \{0,1\}^{ C_1 }$
Return $(M \neq \bot)$	$U[i] \leftarrow U[i] \cup \{(i, N, M, A)\}$
	$V[i] \leftarrow V[i] \cup \{(i, N, C_b, A)\}$
	Return C_b

Attacker is allowed to repeat nonce N for same user i as long as the message M (or authentication headers A) are different.

Generic Attack

- Fix nonce N, message $|M| > \kappa + 4$ and associated data A.
- Attacker queries C_i=Enc(i,N,M,A) for q different users.
- Output 1 If we find a collision C_i=C_i; otherwise 0;
- Analysis:
 - **Real World:** two users will have the same key with probability at least $\frac{q(q-1)}{2^{\kappa+2}}$
 - Ideal World: two users will have the same ciphertext with probability at most $\frac{q(q-1)}{2^{|M|+1}} \leq \frac{q(q-1)}{2^{\kappa+5}}$
 - Advantage: at least $\frac{q(q-1)}{2^{\kappa+2}} \frac{q(q-1)}{2^{\kappa+5}} > \frac{q(q-1)}{2^{\kappa+3}}$

AES-GCM-SIV

- Key Ideas:
 - Pick two keys K_1 and K_2
 - Final authentication TAG derived using K_2 based on nonce and hash T which in turn derived from A, M and K_1
 - *Counter*₀ is derived from TAG
 - Note: If we repeat the same nonce, but message M and or authentication data A changes then so will the counter *Counter_i*

GCM-SIV⁺ (encryption-keylength, K1, K2, N, AAD, MSG)

-	
1.	Context: encryption-keylength (= 128 or 256)
	$0 \le m \le 32$ such that MSG length is at most 2^m-1 blocks.
2.	Keys: K1 (128 bits), K2 (128 or 256 bits)
3.	If encryption-keylength = 128, AES = AES128, else AES = AES256
4.	Input: AAD, MSG, N (96 bits)
5.	Padding:
6.	A = Zero pad AAD to the next 16 bytes boundary (d blocks)
7.	M = Zero pad MSG to the next 16 bytes boundary (v blocks)
8.	(denote M by blocks as: MO, M1,, M(v-1).)
9.	Encrypting and Authenticating:
10.	L1 = (bytelen(AAD)*8); L2 = (bytelen(MSG)*8)
11.	LENBLK = IntToString64(L1) IntToString64(L2)
12*.	T = POLYVAL (K1, A M LENBLK)
13.	TAG = AES (K2, 0 (T XOR N) [126:0])
14.	for $i = 0, 1, \ldots, v-1$ do
15*.	Low32(i) = (StringToInt32(TAG[31:0]) + i) mod 2^{32}
16*.	CTRBLK_i = 1 TAG[126:32] IntToString32(Low32(i))
17.	CTi = AES (K2, CTRBLK_i) XOR Mi
18.	end do
19.	Set $C = CT0$, $CT1$,, $CT(v-1)$
20.	if length(MSG) != length(CT)
21.	Chop off lsbytes of $CT(v-1)$ to make lengths equal
22.	Output: $C = (CTO, CT1, \ldots, CT(v-1))$, TAG
	GCM-SIV
12*.	GCM-SIV used GHASH instead of POLYVAL
15-10	S*. GCM-SIV set CTRBLK_i = 1 TAG[126:k] IntToString32(i)

Fig. 1. Specification of GCM-SIV⁺. The differences between GCM-SIV⁺ and GCM-SIV are in Steps 12^{*}, 15^{*} and 16^{*}.

Security Bounds

$$\begin{split} \mathsf{Adv}_{\mathsf{AE},\mathsf{KeyGen},E}^{\mathsf{mu-mrae}}(\mathcal{A}) &\leq \frac{1}{2^{n/2}} + \frac{\beta ap}{2^k} + \frac{(3\beta c + 7\beta)L^2 + 4\beta cLp}{2^{n+k}} \\ &+ \frac{(4c\beta + 0.5\beta + 6.5)LB}{2^n} + \frac{dp + (2d+a)L}{2^k}, \end{split}$$

n – blocksize; k – key length; B – blocks encrypted per user, $\beta, c, a = O(1)$ are constants d – upper bound on the number of users re-using a given nonce $p < 2^{(0.9)n}$ (num queries to ideal cipher) $L < 2^{(0.9)n}$ (total #block encrypted)

Nonce Multi-Collisions (d)

• Suppose we sample q nonces $N_1, \ldots, N_q \le 2^{\lambda}$. What is the probability that some nonce N appears d time?

Pr[exists d collision]
$$\leq \binom{q}{d} 2^{-(d-1)\lambda} \leq q^d 2^{-(d-1)\lambda}$$

If
$$q < 2^{\lambda(1-\varepsilon)}$$
 and $d = \frac{2}{\varepsilon}$ then
Pr[exists d collision] $\leq 2^{\lambda(1-\varepsilon)d} 2^{-(d-1)\lambda} = 2^{\lambda(1-\varepsilon d)} = 2^{\lambda}$

Point: We can safely assume d is a small constant.

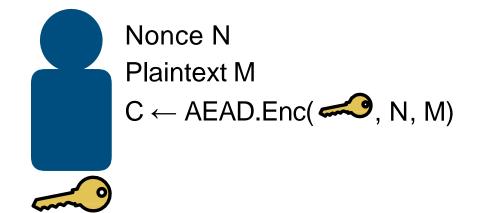
Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

USENIX Security 2021

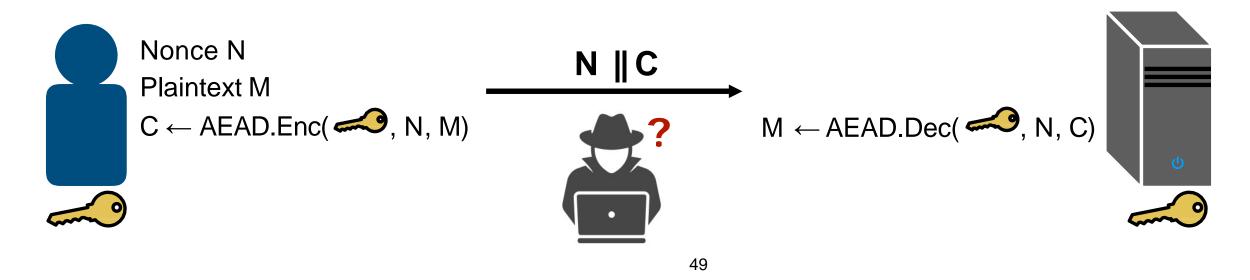
Authenticated Encryption

For simplicity, we ignore associated data in this presentation

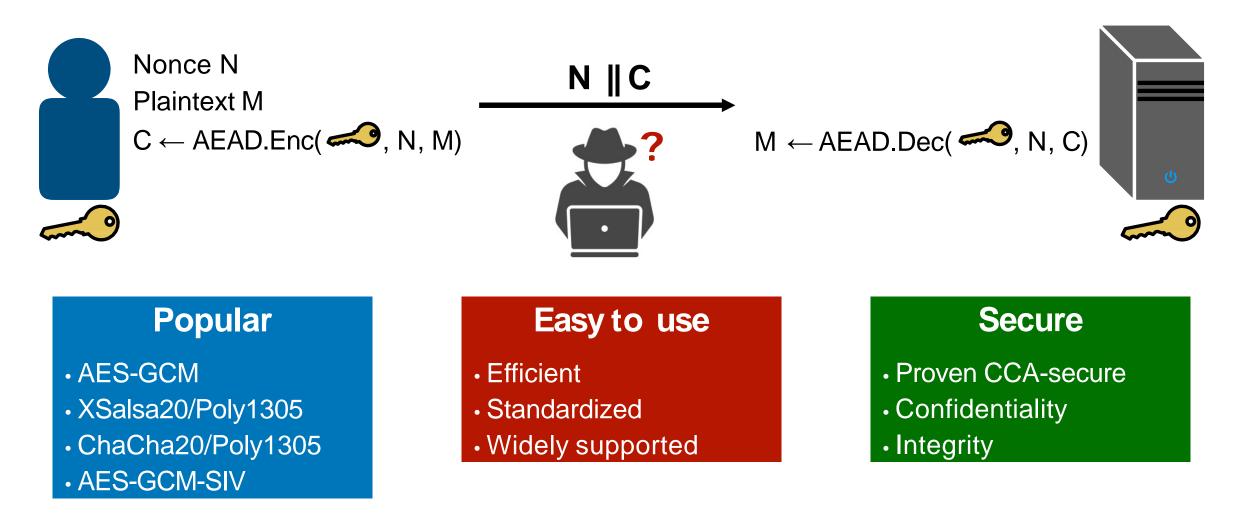


48

Authenticated Encryption

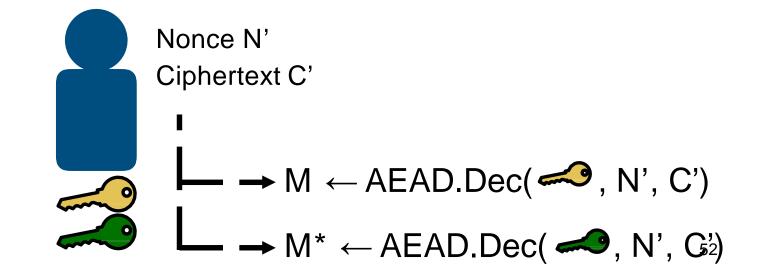


5 0

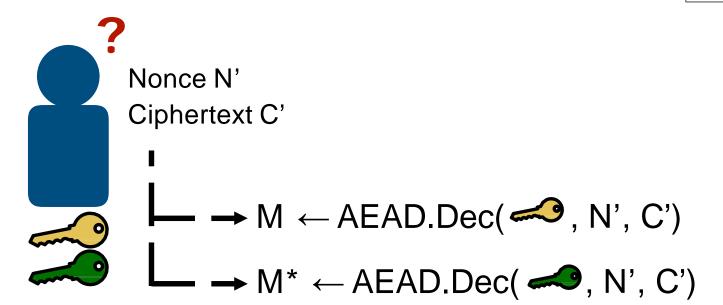




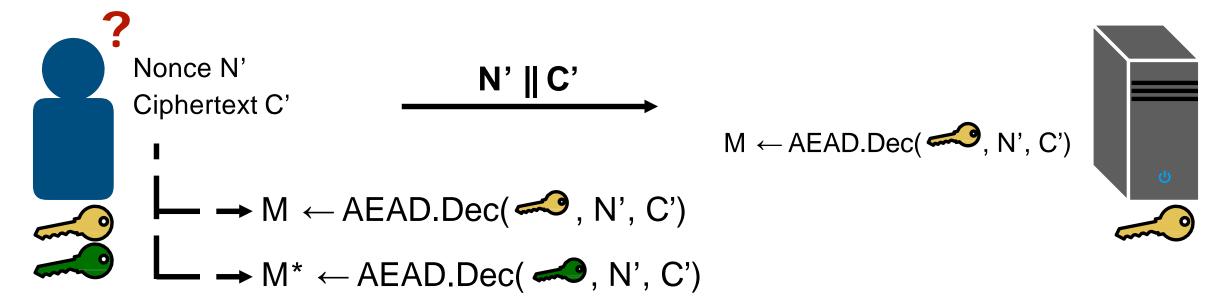
(Non-) Committing AEAD

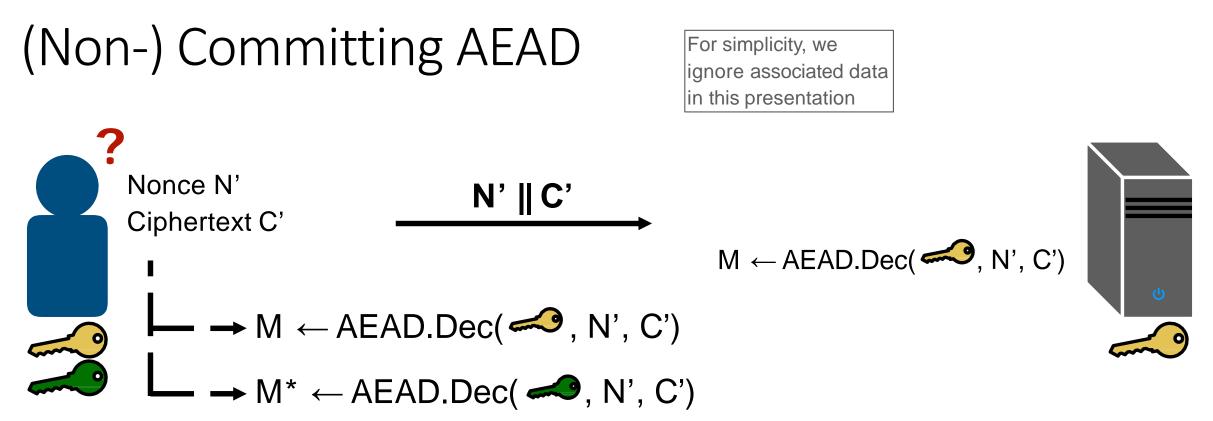


(Non-) Committing AEAD



(Non-) Committing AEAD

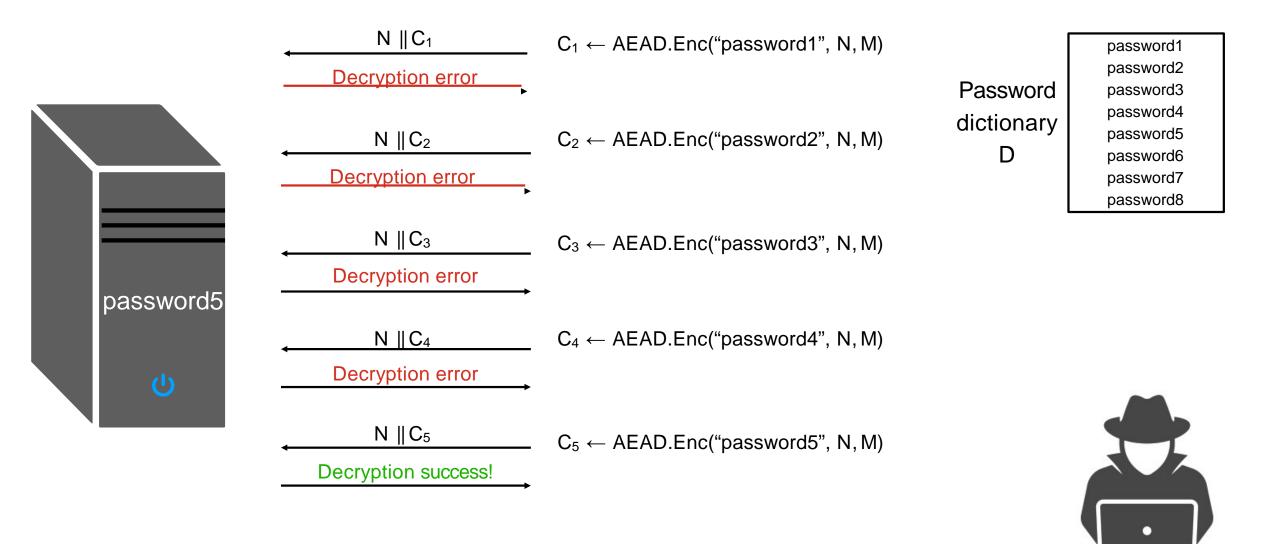




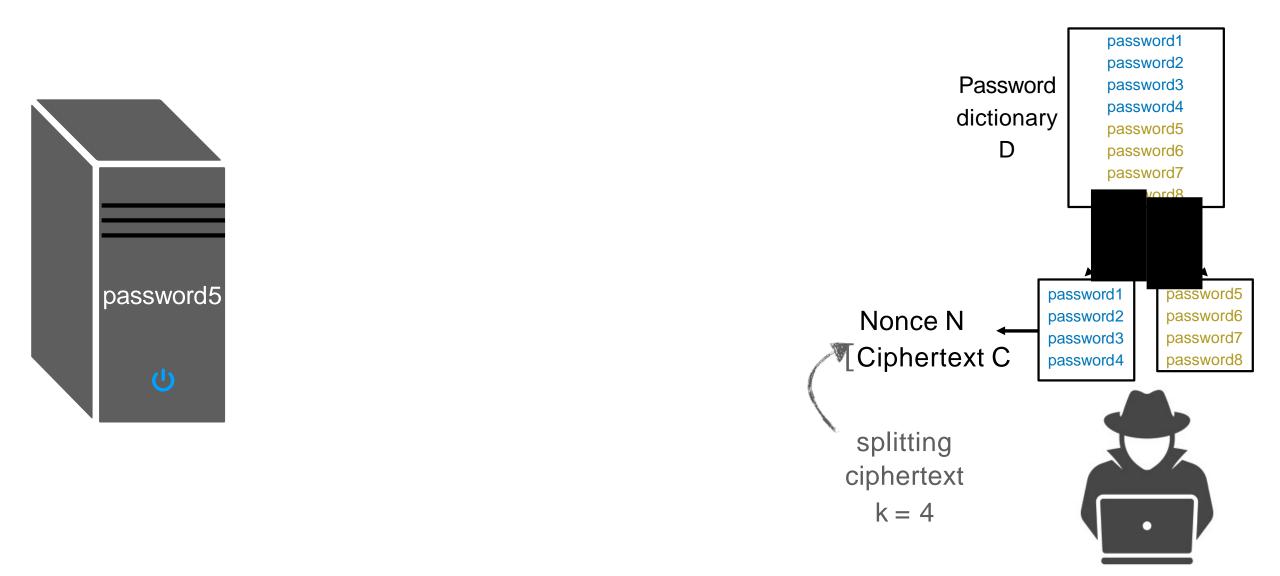
No guarantee the sender actually knows the <u>exact</u>key the recipient will use to decrypt! Not considered an essential security goal, except in moderation settings [GLR CRYPTO'17], [DGRW CRYPTO'18]

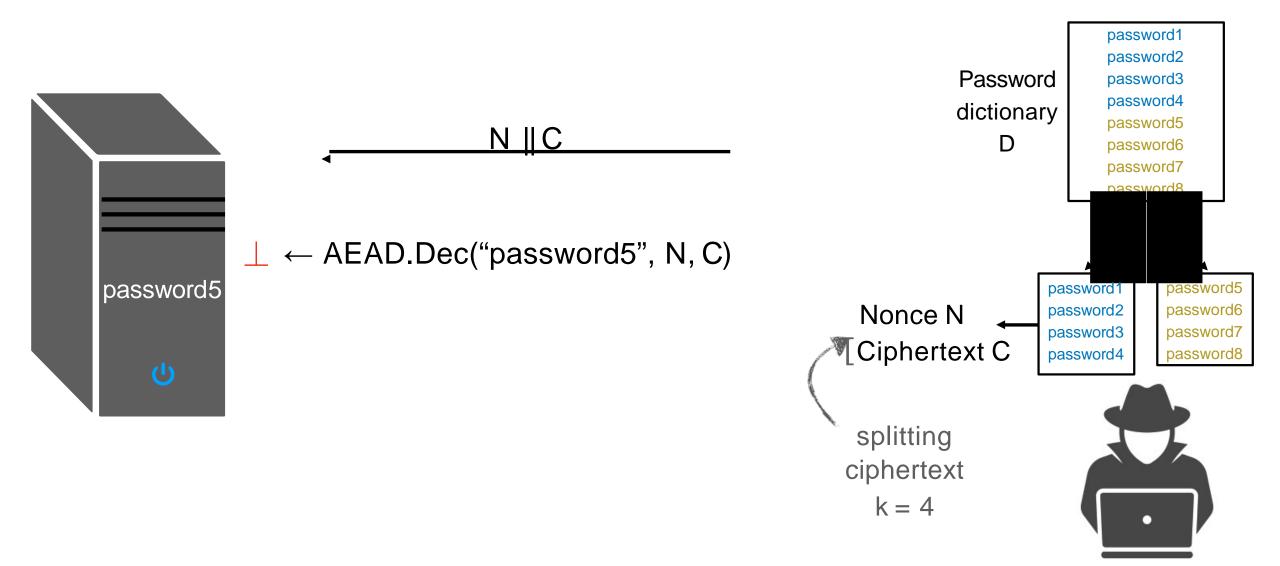
	password1
	password2
Password	password3
dictionary	password4
	password5
D	password6
	password7
	password8

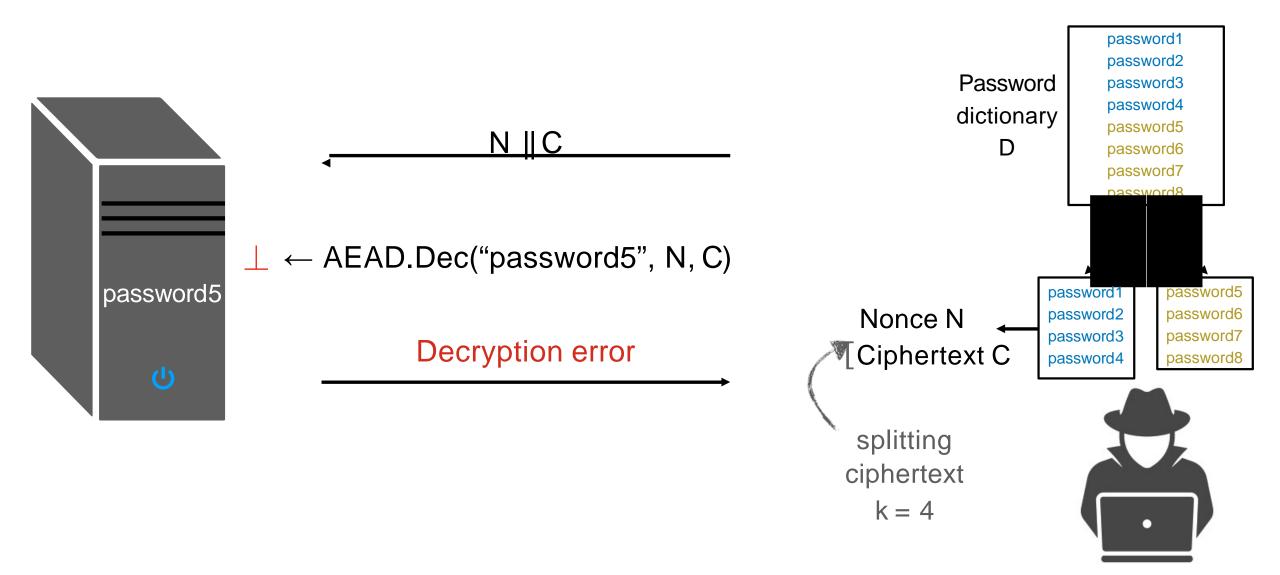
Brute-force Dictionary Attack

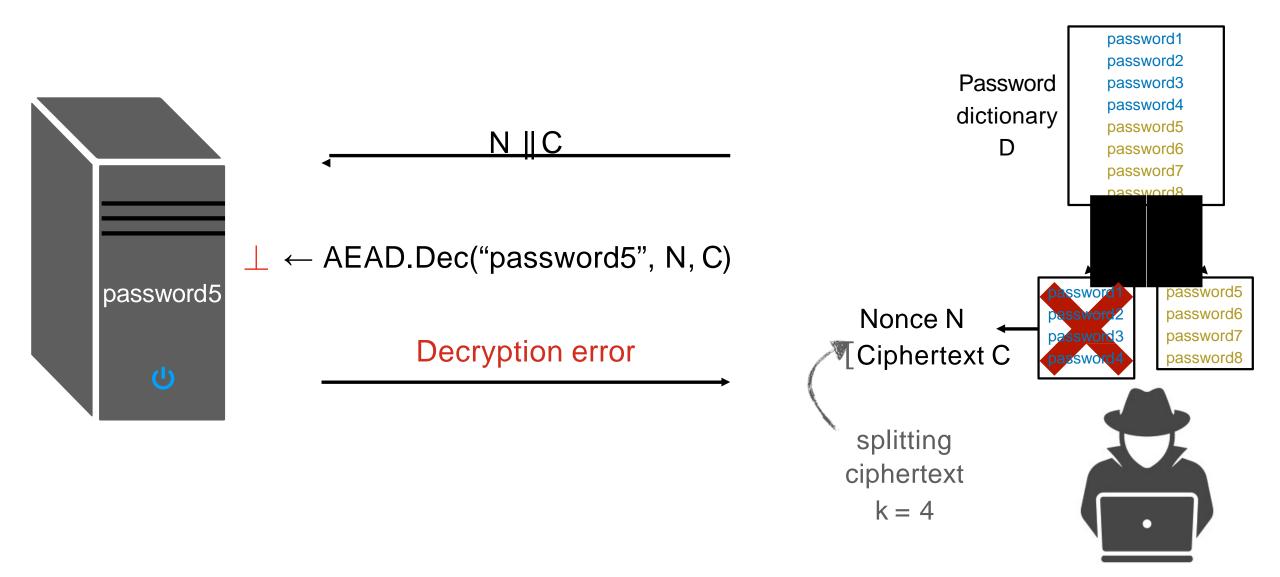


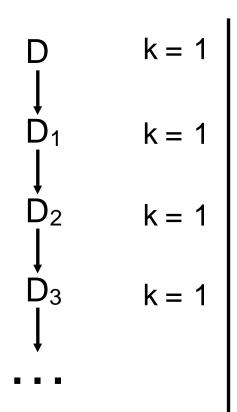






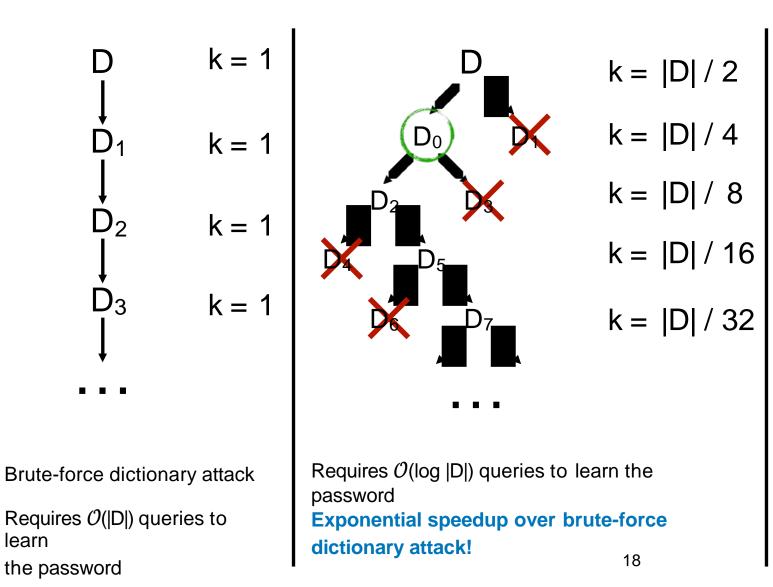


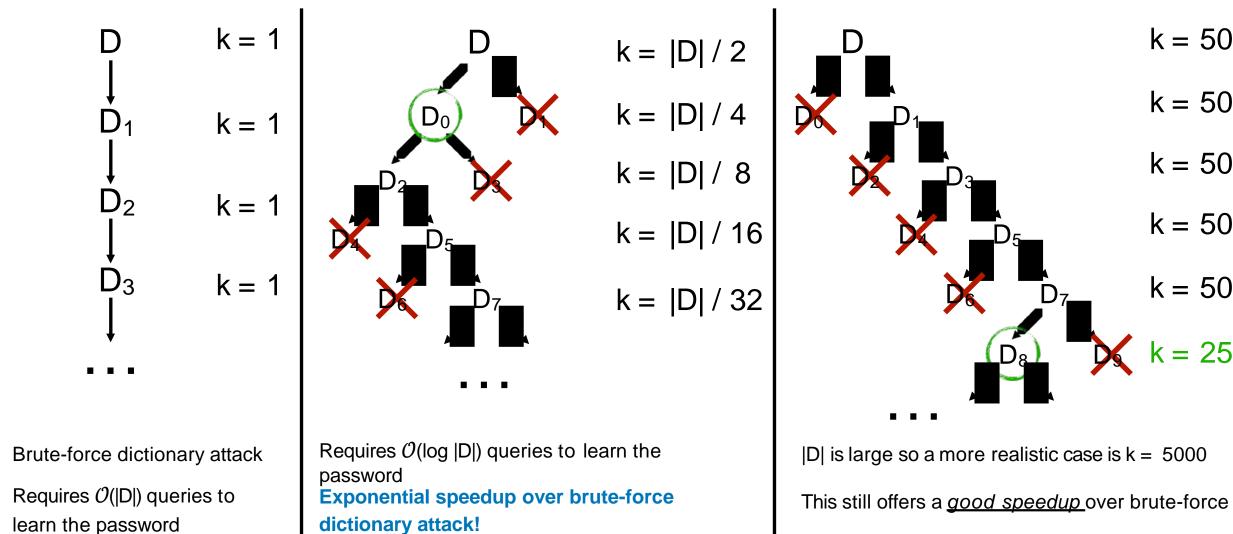




Brute-force dictionary attack

Requires $\mathcal{O}(|\mathsf{D}|)$ queries to learn the password





k = 5000

2500

Partitioning oracle attacks rely on:

6 6

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

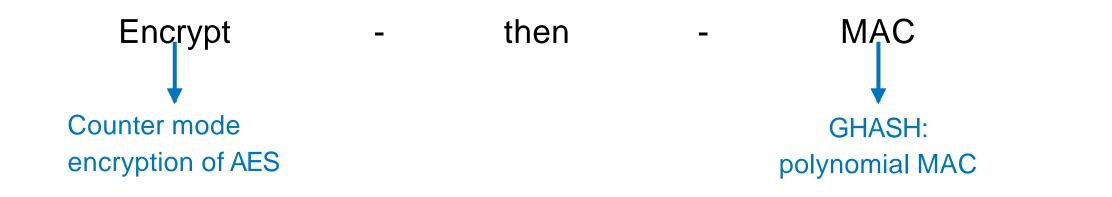
6 7

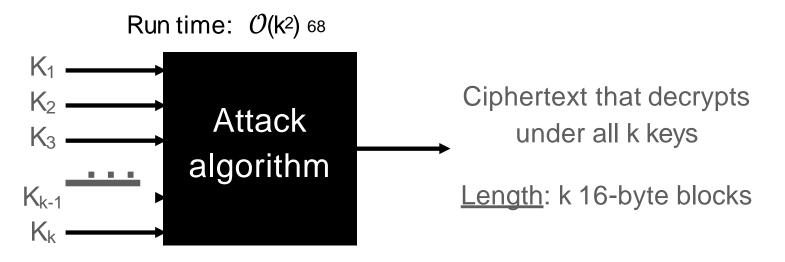
1. Building splitting ciphertexts that can decrypt under k > 1 different keys Key Multi-collision Attacks

[GLR CRYPTO'17] first showed an attack against AES-GCM for k = 2

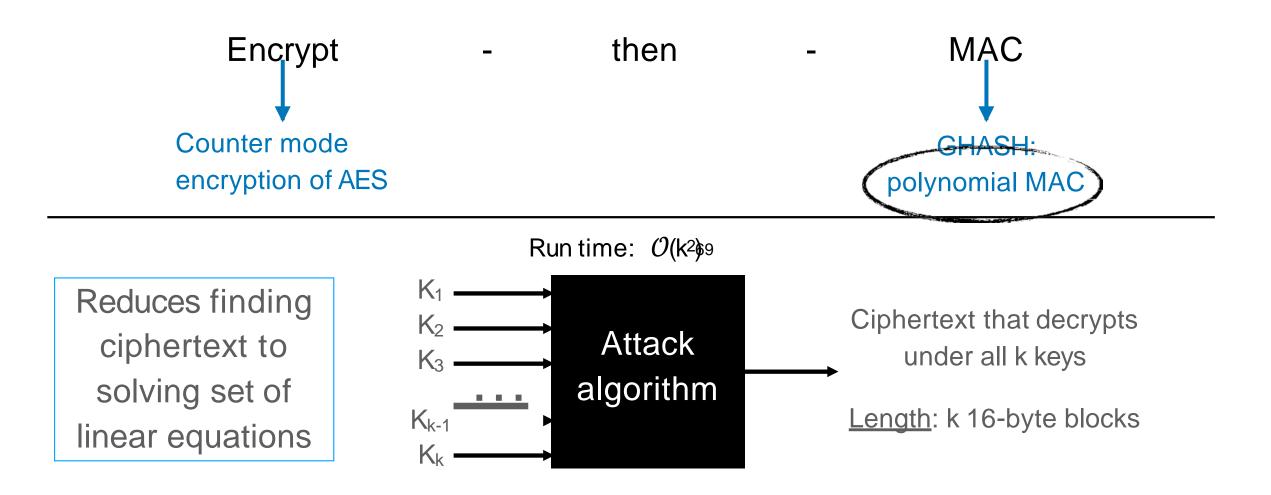
2. Access to a partitioning oracle

Computing Key Multi-Collisions: AES-GCM





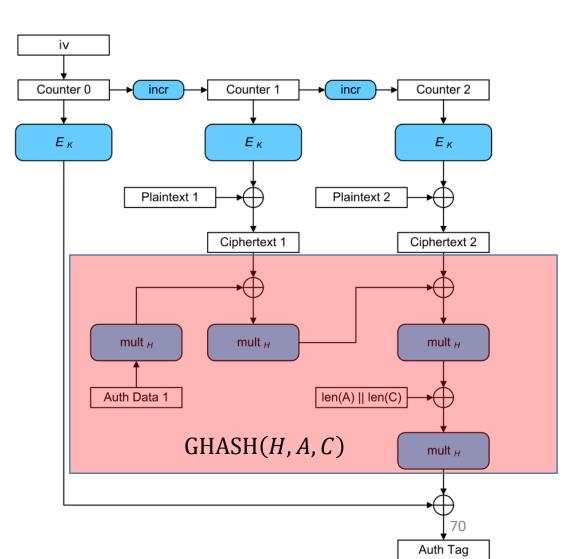
Computing Key Multi-Collisions: AES-GCM



GHASH in AES-GCM GHASH(H, A, C) = X_{t+1}

Where

$$T = X_{t+1} = \sum_{i \le t} C_i \cdot H^{t-i+1}$$



Multi-Collision

Goal: Find $C = (C_1, C_3, C_3)$ and K_1, K_2, K_3 such that

 $T = GHASH(H_1, C) = GHASH(H_2, C) = GHASH(H_3, C) = T$ Where $H_j = E_{K_j}(0^{\lambda})$

Linear Constraints

$$\sum_{i} C_{i} \cdot H_{1}^{t-i+1} = \sum_{i} C_{i} \cdot H_{2}^{t-i+1} = \sum_{i} C_{i} \cdot H_{3}^{t-i+1}$$

Multi-Collision Goal: Find $C = (C_1, C_2, C_3), N_1, N_2, N_3$ and K_1, K_2, K_3 such that $T = GHASH(H_1, C) \oplus E_K(N_1) = GHASH(H_2, C) \oplus E_K(N_2)$ $= GHASH(H_3, C) \oplus E_K(N_3)$ where $H_j = E_{K_j}(0^{\lambda})$

Three Linear Constraints: *For each* j = 1,2,3

$$T = C_1 \cdot H_j^4 \oplus C_2 \cdot H_j^3 \oplus C_3 \cdot H_j^2 \oplus L \cdot H_j^1 \oplus E_K(N_j)$$

Three Unknowns: C_1 , C_2 and C_3

Input: Let nonce N, authentication tag T, and keys K₁, K₂, K₃ be arbitrary

<u>Goal</u>: Compute ciphertext C that decrypts under all 3 keys

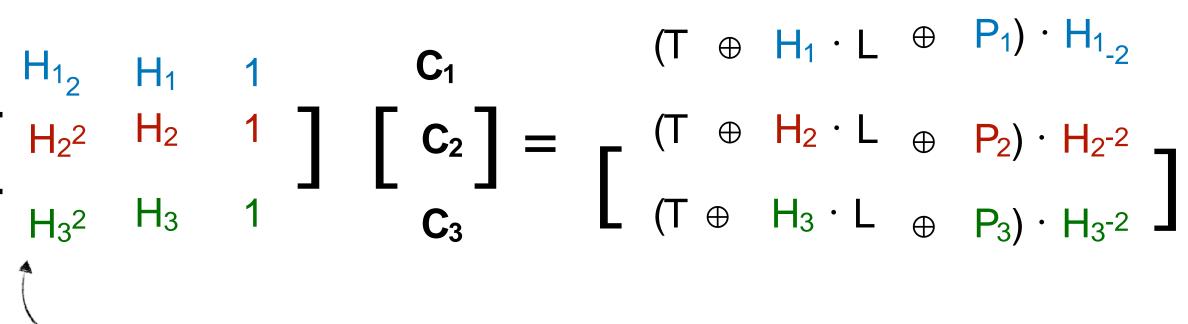
<u>Pre-compute</u>: $H_i = AES_{Ki}(0^{128}), P_i = AES_{Ki}(N \parallel 0^{311}), L = |C|$

Input: Let nonce N, authentication tag T, and keys K₁, K₂, K₃ be arbitrary

<u>Goal</u>: Compute ciphertext C that decrypts under all 3 keys

<u>Pre-compute</u>: $H_i = AES_{Ki}(0^{128}), P_i = AES_{Ki}(N \parallel 0^{311}), L = |C|$

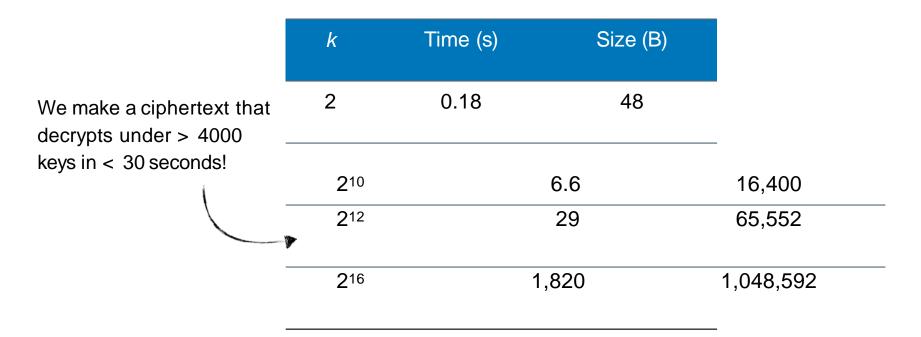
4



- Vandermonde matrix: we can use polynomial interpolation!

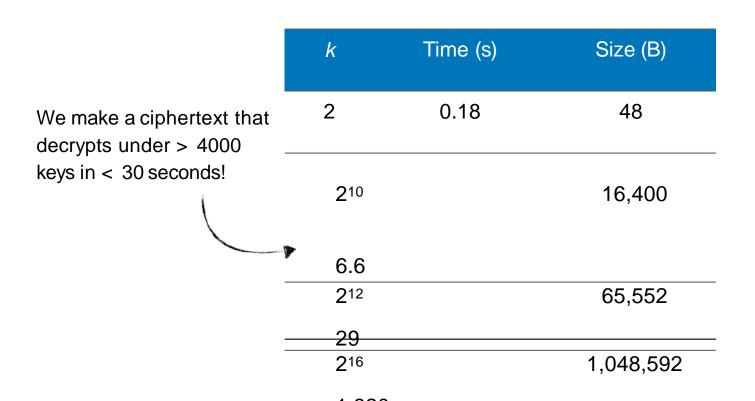
7 5

- Implemented Multi-Collide-GCM using SageMath and Magma computational algebra system
- Timing experiments performed on desktop with Intel Core i9 processor and 128 GB RAM, running Linux x86-64



6

- Implemented Multi-Collide-GCM using SageMath and Magma computational algebra system
- Timing experiments performed on desktop with Intel Core i9 processor and 128 GB RAM, running Linux x86-64



There exists an algorithm that does polynomial interpolation in $O(k \log^2 k)$ using FFTs, so it's possible to create multi-collisions much faster [BM '74]

Computing Key Multi-Collisions

XSalsa20/Poly1305

ChaCha20/Poly1305

AES-GCM-SIV

Also vulnerable to key multi-collision attacks!

Attacks are more complex and less scalable than those for AES-GCM

Partitioning oracle attacks rely on:

Building splitting ciphertexts that can decrypt under k > 1 different keys Key Multi-collision Attacks

[GLR CRYPTO'17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle

8

Partitioning oracle attacks rely on:

Building splitting ciphertexts that can decrypt under k > 1 different keys Key Multi-collision Attacks

[GLR CRYPTO'17] first showed an attack against AES-GCM for k = 2

2. Access to a partitioning oracle

9

Where do partitioning oracles arise?

Partitioning Oracles

8 0

Schemes we looked at in depth

- Shadowsocks proxy servers for UDP
 - Popular Internet censorship evasion tool
 - Partitioning oracle attacks enable an attacker to efficiently recover a password from a Shadowsocks server

Partitioning Oracles

Schemes we looked at in depth

- Shadowsocks proxy servers for UDP
 - Popular Internet censorship evasion tool
 - Partitioning oracle attacks enable an attacker to efficiently recover a password from a Shadowsocks server
- Early implementations of the OPAQUE asymmetric PAKE protocol
 - Selected by the IETF CFRG for standardization
 - Many early implementations went against protocol specification to use a noncommitting AEAD scheme
 - These schemes are vulnerable to partitioning oracle attacks

Partitioning Oracles

Schemes we looked at in depth

- Shadowsocks proxy servers for UDP
 - Popular Internet censorship evasion tool
 - Partitioning oracle attacks enable an attacker to efficiently recover a password from a Shadowsocks server
- Early implementations of the OPAQUE asymmetric PAKE protocol
 - Selected by the IETF CFRG for standardization
 - Many early implementations went against protocol specification to use a noncommitting AEAD scheme
 - These schemes are vulnerable to partitioning oracle attacks

Possible partitioning oracles

- Hybrid encryption: Hybrid Public-Key Encryption (HPKE)
- Age file encryption tool
- Kemeros drafts (not adopted)
- JavaScript Object Signing and Encryption (JOSE)
- Anonymity systems: use partitioning oracles to learn which public key a recipient is using from a set of public keys

What do we do?

8 3

- Our paper is the latest in a growing body of evidence that non-committing AEAD can lead to vulnerabilities*
- So which committing AEAD scheme do we use?
 - None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS '20] also discussed the importance of committing AEAD

Conclusion

Contact: jlen@cs.cornell.edu

Full version: https://eprint.iacr.org/2020/1491.pdf

- Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets
- Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305, and AES-GCM-SIV, are <u>not</u> committing
- Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers and incorrect implementations of OPAQUE
- **Recommendation**: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew, Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

References

- **[ABN TCC'10]** Michel Abdalla, Mihir Bellare, Gregory Neven. Robust Encryption. TCC, 2010.
- **[FLPQ PKC'13]** Pooya Farshim, Benoît Libert, Kenneth Paterson, Elizabeth Quaglia. Robust encryption, revisited. PKC, 2013.
- [FOR FSE'17] Pooya Farshim, Claudio

Orlandi, Răzvan Roșie. Security of

AES-GCM SIV

$AE.E(K_{in} \parallel K_{out}, N, M, A)$	$\mathbf{AE}.D(K_{in} \parallel K_{out}, N, C, A)$
$IV \leftarrow F(K_{in} \parallel K_{out}, N, M, A)$	$IV \parallel C' \leftarrow C; M \leftarrow SE.D^E(K_{out}, C)$
$C \leftarrow SE.E^E(K_{out}, M; IV)$	$T \leftarrow F^E(K_{in} \parallel K_{out}, N, M, A)$
Return C	If $T \neq IV$ then return \perp else return M

Fig. 4: The SIV construction (with key reuse) AE = SIV[F, SE] that is built on top of an ideal cipher E.