
Advanced Cryptography
CS 655

Week 15:

• Quantum Random Oracle Model

• Oblivious RAM

1Spring 2023

Homework 4 Released
Course Presentations: Next Week (Schedule Announced Soon)

Recap

• Quantum Basics

• Grover Search

• Quantum Random Oracle Model

• Useful Results
• ψ = σ𝑥,𝑦 𝛼𝑥,𝑦|𝑥, ۧ𝑦 and ψ′ = σ𝑥,𝑦 𝛽𝑥,𝑦|𝑥, ۧ𝑦 Measurement can

distinguish two states with probability at most 4 σ𝑥,𝑦 𝛼𝑥,𝑦 − 𝛽𝑥,𝑦
2

• Upper bound Euclidean distance between final states ψ and ψ′ when we use
oracles H and H’ in terms of ``query magnitude” on bad inputs x where
𝐻 𝑥 ≠ 𝐻′(𝑥).

2

State in QROM

• Typically we write

|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, ۧ𝑦, 𝑧

RO|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, 𝑅𝑂 𝑋 ⊕ ۧ𝑦, 𝑧

3

Input Register

Output Register

Auxilliary State (not associated
with current RO query)

Query Magnitude

• Let 𝑆 ⊂ {0,1}𝑛 be a set of inputs and let ψ = σ𝑥,𝑦 𝛼𝑥,𝑦|𝑥, ۧ𝑦 be a quantum
state. Then

𝑄𝑀 ψ, 𝑆 ≔෍

𝑥∈𝑆

෍

𝑦,𝑧

𝛼𝑥,𝑦,𝑧
2

• If 𝐴𝐻 . (𝑤) generates states ψ0,𝐻,𝑤, ψ1,𝐻,𝑤, … , ψ𝑇,𝐻,𝑤we can write

𝑄𝑀 𝐴,𝐻,𝑤, 𝑆 ≔෍

𝑖<𝑇

𝑄𝑀 ψ𝑖,𝐻,𝑤, 𝑆

Theorem: If 𝐻 𝑥 = 𝐻′ 𝑥 for all inputs 𝑥 ∉ 𝑆 then the Euclidean distance
between the final states ψ𝑇,𝐻,𝑤 and ψ𝑇,𝐻′,𝑤 is at most T ⋅ 𝑄𝑀 𝐴,𝐻,𝑤, 𝑆

4

Homework Hint

• Intuition: for a random/small sets S we expect 𝑄𝑀 𝐴,𝐻,𝑤, 𝑆 to be small
with high probabilty.

• If 𝑆1, … 𝑆𝑟 ⊂ {0,1}𝑛 are disjoint sets of inputs then

෍

𝑖≤𝑟

𝑄𝑀 ψ, 𝑆𝑖 =෍

𝑖≤𝑟

෍

𝑥∈𝑆

෍

𝑦,𝑧

𝛼𝑥,𝑦,𝑧
2 ≤෍

𝑥

෍

𝑦,𝑧

𝛼𝑥,𝑦,𝑧
2 = 1

• If 𝐴𝐻 . (𝑤) generates states ψ0,𝐻,𝑤, ψ1,𝐻,𝑤, … , ψ𝑇,𝐻,𝑤we can write

𝑄𝑀 𝐴,𝐻,𝑤, 𝑆 ≔෍

𝑖<𝑇

𝑄𝑀 ψ𝑖,𝐻,𝑤, 𝑆

෍

𝑖≤𝑟

𝑄𝑀 𝐴,𝐻,𝑤, 𝑆𝑖 ≤ 𝑇

5

Quantum Computing: Useful Theorem

Let ψ = σ𝑥,𝑦 𝛼𝑥,𝑦|𝑥, ۧ𝑦 and ψ′ = σ𝑥,𝑦 𝛽𝑥,𝑦|𝑥, ۧ𝑦

Fix a quantum measurement and let 𝔇 and 𝔇′ be the distribution of
outputs when we measure quantum states ψ and ψ′ respectively.

Definition: Total Variation Distance

TVD 𝔇,𝔇′ ≔෍

𝑤

Pr𝔇 𝑤 − Pr𝔇′ 𝑤

6

Quantum Computing: Useful Theorem

Theorem: Let ψ = σ𝑥,𝑦 𝛼𝑥,𝑦|𝑥, ۧ𝑦 and ψ′ = σ𝑥,𝑦 𝛽𝑥,𝑦|𝑥, ۧ𝑦 be two
quantum states. Fix any measurement and let 𝔇 and 𝔇′ be the
distribution of outputs when we measure quantum states ψ and ψ′
respectively. We have

TVD 𝔇,𝔇′ ≔෍

𝑤

Pr𝔇 𝑤 −𝔇 𝑤
′ 𝑤 ≤ 4 ෍

𝑥,𝑦

𝛼𝑥,𝑦 − 𝛽𝑥,𝑦
2

Intuition: WHP we cannot distinguish between ``close” states ψ and ψ′
with any measurement

7

Phase Oracle vs Standard Oracle

• Typically we write

|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, ۧ𝑦, 𝑧

StO|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, 𝑅𝑂 𝑥 ⊕ ۧ𝑦, 𝑧

PhO|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧 −1 𝑦⋅𝑅𝑂(𝑥)|𝑥, ۧ𝑦, 𝑧

8

Input Register

Output Register

Auxilliary State (not associated
with current RO query)

Phase Oracle

Equivalence: Phase/Standard Oracle

Let Hadout = I⨂nH⨂n I⨂|z| be a unitary transformation which applies the Hadamard transform to
response registers (y) and identity transform elsewhere. Then

HadoutPhO(Hadout|ψ〉) = StO|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, 𝑅𝑂 𝑥 ⊕ ۧ𝑦, 𝑧

9

StO|ψ〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, 𝑅𝑂 𝑥 ⊕ ۧ𝑦, 𝑧

PhO ψ = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧 −1 𝑦⋅𝑅𝑂(𝑥)|𝑥, ۧ𝑦, 𝑧

Views of the Quantum Random Oracle

We can view a function 𝑯: 𝟎, 𝟏 𝟐𝝀 → 𝟎, 𝟏 𝝀 as a string of length 𝝀𝟐𝟐𝝀

H(x) simply returns the 𝝀 bit string at locations 𝐱𝝀,… , 𝐱 + 𝟏 𝝀 − 𝟏

Now we can view the state as

ψ ⨂|𝐻〉 = ෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Standard oracle performs map
|𝑥, ۧ𝑦, 𝑧 ⨂ 𝐻 → |𝑥, ۧ𝑦 ⊕ 𝐻(𝑥), 𝑧 ⨂ 𝐻

Algorithm can only apply unitary transforms to first part of state |𝑥, ۧ𝑦, 𝑧

10

Views of the Quantum Random Oracle

We can view a function 𝑯: 𝟎, 𝟏 𝟐𝝀 → 𝟎, 𝟏 𝝀 as a string of length 𝝀𝟐𝟐𝝀

World 1 (StO’): Pick random function H and run algorithm with initial
state ψ0 ⨂|𝐻〉

World 2 (StO): run algorithm with initial state (uniform superposition of
all oracles)

ψ0 ໆ
1

2𝝀𝟐
𝟐𝝀
෍

𝐻

𝐻

11

Views of the Quantum Random Oracle

World 1 (StO’): Pick random function H and run algorithm with initial
state ψ0 ⨂|𝐻〉

World 2 (StO): run algorithm with initial state (uniform superposition of
all oracles)

ψ0 ໆ
1

2𝝀𝟐
𝟐𝝀
෍

𝐻

𝐻

12

Another View

World 2’: 𝐻 = 𝑥, ⊥ : 𝑥 ∈ 0,1 2𝜆 where ⊥ indicates that 𝐻(𝑥) is
not yet assigned

Run algorithm with initial state ψ0 ⨂ 𝐻

Oracle Map (Intuitions): if 𝐻 𝑥 =⊥

𝑥, 𝑦, 𝑧 ⨂ 𝐻 → 2𝜆/2෍

𝑤

𝑥, 𝑦 ⊕ 𝑤, 𝑧 ⨂ 𝐻 ∪ (𝑥, 𝑤)

Where 𝐻 ∪ (𝑥, 𝑤) replaces (𝑥, ⊥) with (𝑥, 𝑤)

Idea: measuring red state yields a list of query/output pairs!

13

Not Quite that Simple…

World 2’: 𝐻 = 𝑥, ⊥ : 𝑥 ∈ 0,1 2𝜆 where ⊥ indicates that 𝐻(𝑥) is not yet
assigned

Run algorithm with initial state ψ0 ⨂ 𝐻

Oracle Map (Intuitions): if 𝐻 𝑥 =⊥

𝑥, 𝑦, 𝑧 ⨂ 𝐻 → 2𝜆/2෍

𝑤

𝑥, 𝑦 ⊕ 𝑤, 𝑧 ⨂ 𝐻 ∪ (𝑥, 𝑤)

Where 𝐻 ∪ (𝑥, 𝑤) replaces (𝑥, ⊥) with (𝑥, 𝑤)

Idea: measuring red state yields a list of query/output pairs!

Question: What if 𝐻 𝑥 ≠⊥? How do we make sure oracle is unitary
transformation?

14

Towards Unitary Transform

World 2’: 𝐻 = 𝑥, ⊥ : 𝑥 ∈ 0,1 2𝜆 where ⊥ indicates that 𝐻(𝑥) is not yet
assigned

Run algorithm with initial state ψ0 ⨂ 𝐻

Build oracle out of unitary transforms: StdDecomp and StO′

StdOracle ≔ StdDecomp ∘ StO′ ∘ StdDecomp
PhsOracle ≔ StdDecomp ∘ PhsO′ ∘ StdDecomp

Where
StO′ 𝑥, 𝑦, 𝑧 ⨂ 𝐻 → 𝑥, 𝑦 ⊕𝐻 𝑥 , 𝑧 ⨂ 𝐻

PhsO′ 𝑥, 𝑦, 𝑧 ⨂ 𝐻 → −1 𝑦⋅𝐻(𝑥) 𝑥, 𝑦, 𝑧 ⨂ 𝐻

Note: Define 𝑦 ⊕⊥≔ 𝑦 and 𝑦 ⋅⊥≔ 0 for completeness
15

Towards Unitary Transform

Build oracle out of unitary transforms: StdDecomp and StO′

StdDecomp 𝑥, 𝑦, 𝑧 ⨂ 𝐻 → 𝑥, 𝑦, 𝑧 ⨂StdDecomp𝑥 𝐻

StdDecomp𝑥 𝐻 = 2−
𝜆
2෍

𝑤

𝐻 ∪ (𝑥, 𝑤) if 𝐻 𝑥 =⊥

Reversibility: If 𝐻′ 𝑥 =⊥ then

StdDecomp𝑥 2−
𝜆
2෍

𝑤

𝐻′ ∪ (𝑥, 𝑤) = |𝐻′〉

16

Towards Unitary Transform

Build oracle out of unitary transforms: StdDecomp and StO′

StdDecomp 𝑥, 𝑦, 𝑧 ⨂ 𝐻 → 𝑥, 𝑦, 𝑧 ⨂StdDecomp𝑥 𝐻

StdDecomp𝑥 𝐻 = 2−
𝜆
2෍

𝑤

𝐻 ∪ (𝑥,𝑤) if 𝐻 𝑥 =⊥

If 𝐻′ 𝑥 =⊥ and 𝑧 ≠ 0 then

StdDecomp𝑥 2−
𝜆
2෍

𝑤

−1 𝑧⋅𝑤 𝐻′ ∪ (𝑥, 𝑤) = 2−
𝜆
2෍

𝑤

−1 𝑧⋅𝑤 𝐻′ ∪ (𝑥, 𝑤)

Reversibility:

StdDecomp𝑥 2−
𝜆
2෍

𝑤

𝐻′ ∪ (𝑥, 𝑤) = |𝐻′〉

17

State is untouched

All pairs of the form (x,w) are removed

Compressed Oracles

World 2’: 𝐻 = 𝑥, ⊥ : 𝑥 ∈ 0,1 𝜆 where ⊥ indicates that 𝐻(𝑥) is not yet
assigned

Run algorithm with initial state ψ0 ⨂ 𝐻

Build oracle out of unitary transforms: StdDecomp and StO′

StdOracle ≔ StdDecomp ∘ StO′ ∘ StdDecomp
PhsOracle ≔ StdDecomp ∘ PhsO′ ∘ StdDecomp

Compressed Versions: CPhsO and CPhsO

Idea: If we know there are only T queries then 𝐻 will never have more than
T entries that are not ⊥ can compress representation of 𝐻 18

Compressed Oracles

Compressed Versions: CPhsO and CPhsO

Idea: If we know there are only T queries then 𝐻 will never have
more than T entries that are not ⊥ can compress representation of
𝐻

19

A Helpful Lemma

Example:
𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑥1, 𝑦 , 𝑥2, 𝑦 : 𝑥1, 𝑥2 ∈ 0,1 2𝜆 ∧ 𝑦 ∈ 0,1 𝜆

𝑝 denotes probability that A outputs a hash collision (regular QROM).

𝑝′ denotes probability that we measure a database with some colliding pair

(when using compressed oracle CStO)

20

A Helpful Lemma

Example:
𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑥1, 𝑦 , 𝑥2, 𝑦 : 𝑥1, 𝑥2 ∈ 0,1 2𝜆 ∧ 𝑦 ∈ 0,1 𝜆

𝑝 denotes probability that A outputs a hash collision (regular QROM).

𝑝′ denotes probability that we measure a database with some colliding pair

Typically, much easier to upper bound 𝑝′ upper bound for 𝑝 (quantity we want to upper bound)

21

Grover Search Revisited

Proof: Define 𝑅0 = 𝑥, 0 : 𝑥 ∈ 0,1 2𝜆
 Let 𝑝 denote probability outputs x, y = 0 ∈ 𝑅0 with

H x = y = 0 i.e., found a pre-image

Theorem 1 shows that 𝑝′ = 𝑂
𝑞2

2𝜆
. Now applying Lemma 5 we have

𝑝 ≤ 𝑂
𝑞2

2𝜆
+ 2−

𝜆
2 = 𝑂

𝑞

2𝜆
⇒ 𝑝 = 𝑂

𝑞2

2𝜆

22

Hash Collisions

Proof: 𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑥1, 𝑦 , 𝑥2, 𝑦 : 𝑥1, 𝑥2 ∈ 0,1 2𝜆 ∧ 𝑦 ∈ 0,1 𝜆
 Let 𝑝 denote probability

attacker outputs 𝑥1, 𝑦 , 𝑥2, 𝑦 ∈ 𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 with H x1 = H x2 = y i.e., found a collision

Theorem 1 shows that 𝑝′ = 𝑂
𝑞3

2𝜆
. Now applying Lemma 5 we have

𝑝 ≤ 𝑂
𝑞3

2𝜆
+ 𝑂

1

2𝜆
= 𝑂

𝑞 𝑞

2𝜆
⇒ 𝑝 = 𝑂

𝑞3

2𝜆

23

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 + 𝑆 = 𝐼

𝑃 projects onto random oracles that contain a collision

Consider the state

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑃 𝜓 ≔ ෍

𝐻∈𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

෍

𝑥,𝑦,𝑧

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Where
Collision = 𝐻: ∃𝑥1, 𝑥2 𝑠. 𝑡. 𝐻 𝑥1 = 𝐻 𝑥2 ≠⊥

24

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 + 𝑆 = 𝐼

𝑄 projects onto states that do contain a collision such that 𝑦 ≠ 0 and 𝐻 𝑥 =⊥

Consider the state

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑄 𝜓 ≔ ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Where
Collision = 𝐻: ∃𝑥1, 𝑥2 𝑠. 𝑡. 𝐻 𝑥1 = 𝐻 𝑥2 ≠⊥

25

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 + 𝑆 = 𝐼

𝑅 projects onto states that do contain a collision such that 𝑦 ≠ 0 and 𝐻 𝑥 ≠⊥

Consider the state

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑅 𝜓 ≔ ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 ≠⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Where
Collision = 𝐻: ∃𝑥1, 𝑥2 𝑠. 𝑡. 𝐻 𝑥1 = 𝐻 𝑥2 ≠⊥

26

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 + 𝑆 = 𝐼

𝑆 projects onto states that do contain a collision such that 𝑦 = 0

Consider the state

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑅 𝜓 ≔ ෍

𝑥,𝑦=0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Where
Collision = 𝐻: ∃𝑥1, 𝑥2 𝑠. 𝑡. 𝐻 𝑥1 = 𝐻 𝑥2 ≠⊥

27

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 +
𝑆 = 𝐼

𝑆 projects onto states that do contain a collision such that 𝑦 = 0

We want to bound P ∘ CPhsO ∘ 𝜓 (Euclidean norm of
“bad/collision state”) after each random oracle query.

CPhsO 𝜓 = CPhsO 𝑃 𝜓 + 𝑄 𝜓 + 𝑅 𝜓 + 𝑆 𝜓

28

Proof of Theorem 2

Proof: We first define projections 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 + 𝑄 + 𝑅 + 𝑆 = 𝐼

𝑆 projects onto states that do contain a collision such that 𝑦 = 0

P ∘ CPhsO ∘ 𝜓 ≤ P ∘ CPhsO ∘ 𝑃 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑄 ∘ 𝜓
+ R ∘ CPhsO ∘ 𝑅 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑆 ∘ 𝜓

29

Proof of Theorem 2

Proof:

P ∘ CPhsO ∘ 𝜓 ≤ P ∘ CPhsO ∘ 𝑃 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑄 ∘ 𝜓
+ R ∘ CPhsO ∘ 𝑅 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑆 ∘ 𝜓

Fact 1: P ∘ CPhsO ∘ 𝑃 ∘ 𝜓 ≤ CPhsO ∘ 𝑃 ∘ 𝜓 = 𝑃 ∘ 𝜓

30CPhsO is unitary  preserves normsProjection can only decrease norm

Old Projection before RO query

Proof of Theorem 2

Proof:

P ∘ CPhsO ∘ 𝜓 ≤ 𝑃 ∘ 𝜓 + P ∘ CPhsO ∘ 𝑄 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑅 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑆 ∘ 𝜓

Fact 2: P ∘ CPhsO ∘ 𝑆 ∘ 𝜓 ≤ P ∘ 𝑆 ∘ 𝜓 = 0

31

States in projection S do no have collision!CPhsO does not modify states in projection 𝑆 ∘ 𝜓 !
 CPhsO ∘ 𝑆 ∘ 𝜓 = 𝑆 ∘ 𝜓

Proof of Theorem 2

Proof:

P ∘ CPhsO ∘ 𝜓 ≤ 𝑃 ∘ 𝜓 + P ∘ CPhsO ∘ 𝑄 ∘ 𝜓
+ P ∘ CPhsO ∘ 𝑅 ∘ 𝜓 + 0

Fact 3: P ∘ (CPhsO ∘ 𝑅 ∘ 𝜓) ≤
𝑞

2𝜆
𝑅 ∘ 𝜓

Proof: Skipped (similar to Fact 4)

32

Proof of Theorem 2

Proof:

P ∘ CPhsO ∘ 𝜓 ≤ 𝑃 ∘ 𝜓 +
𝑞

2𝜆
𝑅 ∘ 𝜓 + P ∘ CPhsO ∘ 𝑄 ∘ 𝜓

Fact 4: P ∘ (CPhsO ∘ 𝑄 ∘ 𝜓) ≤
𝑞

2𝜆
𝑄 ∘ 𝜓

33

Proof of Theorem 2

Proof:

P ∘ CPhsO ∘ 𝜓 ≤ 𝑃 ∘ 𝜓 +
𝑞

2𝜆
𝑅 ∘ 𝜓 +

𝑞

2𝜆
𝑄 ∘ 𝜓

≤ 𝑃 ∘ 𝜓 +
𝑞

2𝜆

 Norm of 𝑃 ∘ 𝜓 increase by at most
𝑞

2𝜆
after each query

Norm on bad states after q queries is at most q
𝑞

2𝜆
=

𝑞3

2𝜆

measuring final state yields bad database (containing collision) with probability at most
𝑞3

2𝜆

34

Proof of Theorem 2

Fact 4: P ∘ (CPhsO ∘ 𝑄 ∘ 𝜓) ≤
𝑞

2𝜆
𝑄 ∘ 𝜓

Recall the projection Q

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑄 𝜓 ≔ ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Thus,

CPhsO ∘ 𝑄 ∘ 𝜓 = ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂෍

𝑤

2−𝜆/2|𝐻 ∪ (𝑥, 𝑤)〉

35

Proof of Theorem 2

Fact 4: P ∘ (CPhsO ∘ 𝑄 ∘ 𝜓) ≤
𝑞

2𝜆
𝑄 ∘ 𝜓

Recall the projection Q

𝜓 = ෍

𝑥,𝑦,𝑧,𝐻

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉 ⇒ 𝑄 𝜓 ≔ ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂|𝐻〉

Thus,

P ∘ CPhsO ∘ 𝑄 ∘ 𝜓 = ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂ ෍

𝑤∈𝐵𝑎𝑑(𝐻)

2−𝜆/2|𝐻 ∪ (𝑥, 𝑤)〉

Where 𝐵𝑎𝑑(𝐻) is the set of ouputs already recorded in H.  𝐵𝑎𝑑 𝐻 ≤ 𝑞

36

Proof of Theorem 2

Fact 4: P ∘ (CPhsO ∘ 𝑄 ∘ 𝜓) ≤
𝑞

2𝜆
𝑄 ∘ 𝜓

Thus,

P ∘ CPhsO ∘ 𝑄 ∘ 𝜓 = ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻|𝑥, ۧ𝑦, 𝑧 ⨂ ෍

𝑤∈𝐵𝑎𝑑(𝐻)

2−𝜆/2|𝐻 ∪ (𝑥, 𝑤)〉

Where 𝐵𝑎𝑑(𝐻) is the set of outputs already recorded in H.  𝐵𝑎𝑑 𝐻 ≤ 𝐻 ≤ 𝑞

P ∘ (CPhsO ∘ 𝑄 ∘ 𝜓) 2 = ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

෍

𝑤∈𝐵𝑎𝑑(𝐻)

2−𝜆𝛼𝑥,𝑦,𝑧,𝐻
2 ≤ 𝑞2−𝜆 ෍

𝑥,𝑦≠0,𝑧

෍
𝐻∉𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝐻 𝑥 =⊥

𝛼𝑥,𝑦,𝑧,𝐻
2

= 𝑞2−𝜆 𝑄 ∘ 𝜓 2

37

Course Evaluation

• I would appreciate if you take the time to fill out your course
evaluation.

• What did you like about the course? What could be improved? Let me
know!

• Your feedback is anonymous and will not impact grades.

38

Final Project Presentation (Next Week)

Tuesday, April 25th Thursday, April 27th

Albert Yu (3:00-3:18 PM) Blake and Xiuyu (3:00-3:28 PM)

Nicolas Harrell (3:18-3:36 PM) Adithya and Jacob (3:28-3:56 PM)

Hongoa Wang (3:36-3:54 PM) Jimmy Hwang (3:56-4:14 PM)

Zhongtang Luo (3:54-4:12 PM)

39

Individuals: 14 minute presentation + 3 minute Q&A + 1 minute transition

Groups: 24 minute presentation + 3 minute Q&A + 1 minute transition
• It is expected that both team members will give part of the presentation
• You may choose how to divide the presentation

E-mail slides to Hassan at least one hour before class on the day of your presentation (CC me)

Format: PDF/PPT

Final Exam and Project Report

• Final Exam (Take Home):
• Released Thursday, April 27th at 5PM
• Due: Friday, April 28th at 5PM on Gradescope
• Should take ≈ 2 hours

• Project Report
• 8-12 pages

• Introduce/Motivate the Problem, Define the Problem Clearly, Summarize Related Work et…
• Results

• Note: This can include failed approaches if you clearly describe what you tried and explain why this approach did
not work.

• Future Work: If you were to continue working on this problem what would you do?
• Official Due Date: Friday, April 28th @ 11:59PM
• E-mail me a PDF and CC Hassan
• I won’t penalize late solutions submitted before Thursday, May 4th at 11:59PM 

40

Side Channel: Memory Access Pattern

Program 1: secret value x

if (x < 5)

z = A[0]

A[1] = z*z

else

z = A[100]

A[101] = z*z

Suppose Attacker Learns Memory Access pattern was (100, 101).

What can attacker conclude?

41

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 1: User is storing (encrypted) array on an untrusted server

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

42

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

43

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

CacheRAM

CPU
Load A[100]

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

44

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

A[100]

B[100]

CacheRAM

CPU
Load A[100]

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

45

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

A[100]

B[100]

CacheRAM

CPU
Load A[101]

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

46

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

… …

… …

A[100] A[101]

B[100] B[101]

… …

… …

CacheRAM

CPU
Load A[101]

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

47

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

… …

… …

A[100] A[101]

B[100] B[101]

… …

… …

CacheRAM

CPU
Load B[100]

Executing P2

In-Cache Already 
Quick response

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as
program 2 (untrusted)

• Operating System ensures that program 2 cannot access program 1’s
memory. What is the problem?

48

A[0] A[1] … A[100] A[101] Y …

B[0] B[1] … B[100] B[101] Z

… …

… …

A[100] A[101]

B[100] B[101]

… …

… …

CacheRAM

CPU
Load B[1]

Executing P2

Not in Cache 
Slow response

ORAM

Slides: Adapted from TCC 2022 Test of Time Talk

“A Walk in the ORAM Forest: About oblivious RAMs and something
about trees” (Jesper Buus Nielsen)

49

S
e

rv
e

r M
e

m
o

ry

A
rra

y

(write, p, V)

(read, p)

Client side Server side

x

42

(write, 8, 1) (write, 8,)

(read, 7) (read, 7)

(V7 = 42) (V7 =)

Definition: ORAM = ObliviousArray

• An ORAM implements an array of N

words of log(N) bits

• Operations on array: operations

• Operations on server memory: probes

• o = o1, o2, …, on

• oi ∊ { (read, p), (write, p, v) }

• A(oi) = list of server positions probed

• A(o) = (A(o1), A(o2), …,A(on))

• Oblivious: |o1|=|o2| ⇒ ∆(A(o1),A(o2)) ≤ ε

• Perfect: ε=0

• Statistical: ε=negl.

• Computational: |∆|=poly

• Online: Simulate one operation at a time

• Offline: Gets o up front and can plan

• Amortised overhead: limn |A(o)|/|o|

• Worst-case overhead: maxi |A(oi)|

Client

MemoryConstant size today

Oh!

Genesis

• Oded Goldreich: Towards a Theory of Software Protection and Simulation by Oblivious

RAMs. STOC 1987

• “We show how to implement n fetch instructions to a [RAM] memory of size m by making

less than n·mε actual accesses, for every fixed ε>0.”

• Rafail Ostrovsky: An Efficient Software Protection Scheme. CRYPTO 1989

• Poly-logarithmic overhead

• Oded Goldreich, Rafail Ostrovsky: Software Protection and Simulation on Oblivious

RAMs. J. ACM 43(3). 1996
• Logarithmic lower bound in balls-in-bins model

1 The rest is footnotes

Trivial ORAM

M
e

m
o

ry

A
rra

y

• Probe entire memory

on each operation
(write, p, v)

• Perfect

• Overhead = N

(read, p)

M
e
m

o
ry

M
e

m
o

ry
M

e
m

o
ry

Client side Server side

Trivial ORAM

• Alice sends 𝑐1 = EncK 𝑥1 , … . , 𝑐𝑛 = EncK(𝑥𝑛) to Bob for storage

• When Alice wants to load/write 𝑥𝑖 she requests for Bob to send all
ciphertexts.

• Subtle problem for write operations:
• What if Alice sends back (𝑐1

′ = EncK 𝑥1′ , 𝑐2, … 𝑐𝑛)?
 Bob learns that Alice was writing to location 1.

• Solution: Alice generates fresh ciphertexts 𝑐𝑖
′ = EncK 𝑥𝑖′ for every

(even if 𝑥𝑖
′ = 𝑥𝑖 is unchanged)

53

Trivial ORAM

• Alice sends 𝑐1 = EncK 𝑥1 , … . , 𝑐𝑛 = EncK(𝑥𝑛) to Bob for storage

• In remainder of this lecture we will assume that items are encrypted
and that Alice always remembers to re-encrypt files every time it is
touched.

• We can now focus only on the memory access pattern (i.e., probes).

• Memory Access Pattern: o = o1, o2, …, on

• oi ∊ { (read, p), (write, p, v) }

• Length of access pattern |o| = n

54

Trivial ORAM

• Memory Access Pattern: o = o1, o2, …, on

• oi ∊ { (read, p), (write, p, v) }

• Length of access pattern |o| = n

• A(o) memory access pattern (probes) induced by ORAM compiler
• Note: A(o) is a random variable

• Trivial ORAM:
• A(oi)=(1,…,n)

• A(o) = (A(o1),…, A(on)) = ((1,…,n),…, (1,…,n))

55

S
e

rv
e

r M
e

m
o

ry

A
rra

y

(write, p, V)

(read, p)

Client side Server side

x

42

(write, 8, 1) (write, 8,)

(read, 7) (read, 7)

(V7 = 42) (V7 =)

Definition: ORAM = ObliviousArray

• An ORAM implements an array of N

words of log(N) bits

• Operations on array: operations

• Operations on server memory: probes

• o = o1, o2, …, on

• oi ∊ { (read, p), (write, p, v) }

• A(oi) = list of server positions probed

• A(o) = (A(o1), A(o2), …,A(on))

• Oblivious: |o1|=|o2| ⇒ ∆(A(o1),A(o2)) ≤ ε

• Perfect: ε=0

• Statistical: ε=negl.

• Computational: |∆|=poly

• Online: Simulate one operation at a time

• Offline: Gets o up front and can plan

• Amortised overhead: limn |A(o)|/|o|

• Worst-case overhead: maxi |A(oi)|

Client

MemoryConstant size today

Oh!

ORAM Security/Limitation

• Memory Access Pattern: o = o1, o2, …, on

• oi ∊ { (read, p), (write, p, v) }

• Length of access pattern |o| = n

• Security Guarantee: For any two access patterns |o1|=|o2| of the same
length an attacker cannot distinguish between A(o1) and A(o2)

• Identical Distributions/Statistically Close/Computationally Indistinguishable

• Limitation: If |o1|>|o2| there are no guarantees.
• Can append |o2| with dummy operations
• Must append to maximum running time
• Efficiency bottleneck.

57

Oblivious Shuffling

• Initial Array: A[0],…,A[n-1]

• Shuffled Array: 𝐴[𝜋 0], … , 𝐴[𝜋 𝑛 − 1]

• Security Goals:
• 𝜋 is random permutation

• Attacker who observes memory access pattern during shuffling cannot
distinguish between 𝜋 and 𝜋′ (random unrelated permutation)

• Can do this using ෨𝑂(𝑁) probes

58

Oblivious Shuffling

• Initial Array: A[0],…,A[n-1]

• Shuffled Array: 𝐴[𝜋 0], … , 𝐴[𝜋 𝑛 − 1]

• Shuffle via Merge Sort?

• Suppose we have obliviously shuffled L = 𝐴[0], … , 𝐴
𝑛

2
− 1 and R =

𝐴
𝑛

2
, … , 𝐴[𝑛 − 1]

• Obtained 𝜋𝐿(L) = 𝐴[𝜋𝐿 0], … , 𝐴[𝜋𝐿 𝑛 − 1] and 𝜋𝑅 𝑅 =
𝐴 𝜋𝑅

𝑛

2
, … , 𝐴[𝜋𝑅(𝑛 − 1)]

• Merge with ෨𝑂(𝑁) probes?
• Trickier than it seems…

59

Oblivious Merge (Attempt 1)

Merge 𝑖, 𝐴 𝜋𝐿 0 ,… , 𝐴 𝜋𝐿 𝑛 − 1 , 𝑗, 𝐴 𝜋𝑅
𝑛

2
, … , 𝐴 𝜋𝑅 𝑛 − 1

Set 𝑏 = ቐ
0 𝑤. 𝑝

𝐿 −𝑖

𝐿 −𝑖+ 𝑅 −𝑗

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
and 𝑌 = ቐ

𝐴 𝜋𝐿 𝑖 𝑖𝑓 𝑏 = 0

𝐴 𝜋𝑅
𝑛

2
+ 𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Z:= Merge 𝑖 + 1 − 𝑏, 𝐴 𝜋𝐿 0 , … , 𝐴 𝜋𝐿 𝑛 − 1 , 𝑅 − 𝑏, 𝐴 𝜋𝑅
𝑛

2
,… , 𝐴 𝜋𝑅 𝑛 − 1

Return Y ∘ Z

Initial Run with i=0, j=0. Problem?

60

Oblivious Merge (Attempt 1)

Merge 𝑖, 𝐴 𝜋𝐿 0 ,… , 𝐴 𝜋𝐿 𝑛 − 1 , 𝑗, 𝐴 𝜋𝑅
𝑛

2
, … , 𝐴 𝜋𝑅 𝑛 − 1

Set 𝑏 = ቐ
0 𝑤. 𝑝

𝐿 −𝑖

𝐿 −𝑖+ 𝑅 −𝑗

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
and 𝑌 = ቐ

𝐴 𝜋𝐿 𝑖 𝑖𝑓 𝑏 = 0

𝐴 𝜋𝑅
𝑛

2
+ 𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Z:= Merge 𝑖 + 1 − 𝑏, 𝐴 𝜋𝐿 0 ,… , 𝐴 𝜋𝐿 𝑛 − 1 , 𝑅 − 𝑏, 𝐴 𝜋𝑅
𝑛

2
,… , 𝐴 𝜋𝑅 𝑛 − 1

Return Y ∘ Z

Initial Run with i=0, j=0. Problem? Red probes leak information about the final
permutation!

61

62

63

64

65

66

67

68

69

March 2010: Information
TheoreticSolutions

• Ivan Damgård, Sigurd Meldgaard, Jesper Buus Nielsen: Perfectly Secure Oblivious RAM without

Random Oracles. TCC 2011

• Posted on IACR ePrint on 2 March 2010

• AOH: log(N)3

• Perfect security

• Also:

• Method for ORAM in MPC

• N log(N) lower bound on amount of randomness ORAM must store

• Milkós Ajtai. Oblivious RAMs without cryptographic assumptions. STOC 2010

• Posted on ECCC on 6 March 2010

• STOC had deadline November 5 2009

• Poly-logarithmic overhead, constant in exponent not explicitly given

• Statistical error for t operations: t-log(t)

2011: Worst-Case Poly-Log OH

• Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, Mingfei Li: Oblivious RAM with O((log N)3) Worst-Case Cost. ASIACRYPT 2011

• Worst case log(N)3

• Amortised overhead log(N)2 when using DMN’11 as a tool: ORAM on small internal buckets

• Statistical

• Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, Roberto Tamassia: Oblivious RAM simulation with efficient worst-

case access overhead. CCSW 2011

• Worst case N1/2log(N)2

• Worst case log(N)2 with large client memory.

• Computational

• Eyal Kushilevitz, Steve Lu, Rafail Ostrovsky: On the (in)security of hash-based oblivious RAM and a new balancing

scheme. SODA 2012

• IACR ePrint August 2011

• Worst case log(N)2 / log(log(N))

• Computational

• The last two paper uses “deamortisation”:

• Have two hash maps on each level

• Shuffle one while using the other and swap when the shuffling is done

2011-2013: Path ORAM

• Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, Mingfei Li: Oblivious RAM withO((log

N)3) Worst-Case Cost. ASIACRYPT 2011

•Worst case overhead log(N)3

• Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling

Ren, Xiangyao Yu, Srinivas Devadas: Path ORAM: an extremely simple oblivious

RAM protocol. CCS 2013

•Worst case overhead log(N)2

•PathORAM Idea:

•Fix the tree (do not shuffle the levels as Ajtai and DMN’11)

• Store Vp on path to uniformly random leaf Lp

•Use smaller ORAM L with size N’ = N/2 and word size w = 2 log(N)

•For all p’ = p div 2 store (L2p+0, L2p+1) in L[p]

73

74

2016-2018: What About that
LowerBound?!

• Elette Boyle, Moni Naor: Is There an Oblivious RAM Lower Bound? ITCS 2016

• Points out the following about the Goldreich-Ostrovsky lower bound:

• It only applies to “balls-in-bins” algorithms, i.e., algorithms where the ORAM may only

shuffle stored values around and not apply any sophisticated encoding of the data
• It only applies to computationally unbounded adversaries

• But it applies even to off-line algorithms and improving it will involve switching to considering

on-line or proving unconditional lower bounds of circuits for sorting

• Kasper Green Larsen, Jesper Buus Nielsen: Yes, There is an Oblivious RAM Lower

Bound! CRYPTO 2018

• Applies to all types of on-line algorithms

• Applies also to computationally bounded adversaries

2016-2018: What About that
LowerBound?!

• Kasper Green Larsen, Jesper Buus Nielsen: Yes, There is an Oblivious RAM Lower

Bound! CRYPTO 2018

• Applies to all types of on-line algorithms

• Applies also to computationally bounded adversaries

• Mihai Patrascu, Erik D. Demaine: Logarithmic Lower Bounds in the Cell-Probe Model. SIAM

J. Comput. 35(4) 2006

• Introduced the “Information transfer” technique

• On-line algorithms turns time into location by putting events on a time-line

• Reasoning about how information moves around in space is much, much easier than

reasoning about computational complexity
• Put a binary tree on top to reason about how information is moved

• LN’18: The “Information transfer” technique normally does not apply to array maintenance but

when combined with obliviousness suddenly it does

• E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:

An Extremely Simple Oblivious RAM Protocol. In CCS ’13. 2013.

• Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM with Logarithmic

Overhead. FOCS 2018

• Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM with Logarithmic Overhead. FOCS 2018
Efficient, Oblivious Data Structures for MPC. Marcel Keller and Peter Scholl. ASIACRYPT (2) 2014:.

• Efficient, Oblivious Data Structures for MPC. Marcel Keller and Peter Scholl. ASIACRYPT (2) 2014:.

• MPC AS WE PROPOSED IT

• F

MPC as we proposed in

• Ddd

PanORAMa

After the Cuckoo:

Lookup is log(N)

Amortised OH is log(N)2 because of having to shuffle the levels

Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM

with Logarithmic Overhead. FOCS 2018

Amortised Overhead: log(N) log(log (N))

No need to shuffle merged levels:

The remaining, untouched elements are already randomly permuted!

Extract the untouched elements

One can do this in O(N log(log(N)))

Sorting small buckets of size O(log(N))

Randomly merge the permuted untouched elements

Only has to add O(N) randomness but suffers log(log(N)) to do it obliviously

• E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:

An Extremely Simple Oblivious RAM Protocol. In CCS ’13. 2013.

• Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM with Logarithmic

Overhead. FOCS 2018

• Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM with Logarithmic Overhead. FOCS 2018
Efficient, Oblivious Data Structures for MPC. Marcel Keller and Peter Scholl. ASIACRYPT (2) 2014:.

• Efficient, Oblivious Data Structures for MPC. Marcel Keller and Peter Scholl. ASIACRYPT (2) 2014:.

• MPC AS WE PROPOSED IT

• F

MPC as we proposed in

• Ddd

OptORAMa

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, Elaine Shi:

OptORAMa: Optimal Oblivious RAM. EUROCRYPT 2020

Amortised Overhead: O(log N)

Has O(N) oblivious, deterministic tight compaction algorithm!

Tight compactions: Sort elements marked 0 or 1 such that all marked 0 appear first

Circumvents 0-1 lower bound by doing non-comparison operations

Extract the unused elements using tight compaction

Merge-shuffle: Just a “reverse tight compaction” which is O(N)

Paper is 73 pages so I must have simplified somewhere :-)

All at Once!?!?!

• Perfect, worst-case, OH = log(N) ?

• Michael A. Raskin, Mark Simkin: Perfectly Secure Oblivious RAM with Sublinear

Bandwidth Overhead. ASIACRYPT 2019

• Worst case OH = √ N

• Computational, worst-case, OH = log(N) ?

• Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Elaine Shi: Oblivious RAM with

Worst-Case Logarithmic Overhead. CRYPTO 2021

• New deamortisation technique compatible with merge-shuffle and compaction

• Perfect, amortised, OH = log(N) ?

• T.-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, Kartik Nayak: Perfectly Oblivious

(Parallel) RAM Revisited, and Improved Constructions. ITC 2021

• AOH = O(log(N)3/log(log(N)))

• Perfect, worst-case, OH = log(N) ?

• Statistical, worst-case, OH = log(N)

• Path ORAM for word-size log(N)2

♫ ♫ ♫

I’m still standing after

all this time..

♫ ♫ ♫

• ORAMs good for MPC

• Marcel Keller, Peter Scholl: Efficient, Oblivious Data Structures for MPC. ASIACRYPT 2014

• Xiao Wang, T.-H. Hubert Chan, Elaine Shi: Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower

Bound. CCS 2015

• Parallel ORAM

• Elette Boyle, Kai-Min Chung, Rafael Pass: Oblivious Parallel RAM and Applications. TCC 2016

• Round Complexity

• David Cash, Andrew Drucker, Alexander Hoover: A Lower Bound for One-Round Oblivious RAM. TCC 2020

• √N Overhead

• Oh a √ again!?

• Random-index ORAM

• Shai Halevi, Eyal Kushilevitz: Random-Index Oblivious RAM. TCC Yesterday.

• This one is One-Round…

• …

ORAMs with SpecialProperties

Other Oblivious Data Structures
• Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov, Yan Huang: Oblivious

Data Structures. CCS 2014

• Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen: Lower Bounds for Oblivious Data Structures. SODA 2019

• Ω(log N) lower bounds for oblivious stacks, queues, deques, priority queues and search trees

• Giuseppe Persiano, Kevin Yeo: Lower Bounds for Differentially Private RAMs. EUROCRYPT 2019

• Constant DP security of a single operation implies Ω(log N) OH

• Information transfer does not work here, introduces chronogram technique to ORAM

• Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. STOC 1989

• Kasper Green Larsen, Mark Simkin, Kevin Yeo: Lower Bounds for Multi-server Oblivious RAMs. TCC 2020

• K servers of which the adversary can see the access pattern to only one

• If better than approx 1/K security then OH Ω(log N)

• Zahra Jafargholi, Kasper Green Larsen, Mark Simkin: Optimal Oblivious Priority Queues. SODA 2021

• OH = 10 log(N)

• Ilan Komargodski, Elaine Shi: Differentially Oblivious Turing Machines. ITCS 2021

• OH O(log log N)

• Differentially private stack can be done with OH O(log log N).

$

82

Thanks for Listening

83

How to Record Quantum Queries
and Applications to Quantum Indifferentiability

Mark Zhandry

Princeton University & NTT Research

This talk xy
∑αxωN

Cryptosystem

hash
function

The (Classical) Random Oracle
Model (ROM)

[Bellare-Rogaway’93]

Cryptosystem

H

The (Classical) Random Oracle
Model (ROM)

[Bellare-Rogaway’93]

Typical ROM Proof: On-the-fly Simulation

H

Input Output

x1 y1

x 2 y2

x 3 y3

x 4 y4

Query(x, D):

If (x,y)∈D:
Ret ur n(y,D)

Else:
y ß $ Y
D’ = D+(x,y)
Return(y,D’)

Typical ROM Proof: On-the-fly Simulation

Allows us to:

• Know the inputs adversary cares about ✓

• Know the corresponding outputs ✓

• (Adaptively) program the outputs ✓

• Easy analysis of bad events (e.g. collisions) ✓

The Quantum Random Oracle Model
(QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z’11]

H

Now standard in post-quantum crypto

Input Output

x1 y1

x 2 y2

x 3 y3

x 4 y4

Problem with Classical Proofs in QROM

How do we record
the x values?

Problem with Classical Proofs in QROM

Observer Effect:
Learning anything about quantum system disturbs it

Reduction must answer obliviously, too?

H answers obliviously, so no disturbance

Typical QROM Proof

H H

H fixed once and for all at beginning

Limitations

Allows us to:
• Know the inputs adversary cares about?

• Know the corresponding outputs?

• (Adaptively) program the outputs?

• Easy analysis of bad events (e.g. collisions)?

Limitations

Allows us to:

• Know the inputs adversary cares about? ✘

• Know the corresponding outputs? ✘

• (Adaptively) program the outputs? ✓/✘

• Easy analysis of bad events (e.g. collisions)?✘

Limitations

Good News: Numerous positive results (30+ papers)

Bad News: Still some major holdouts

Indifferentiable
domain extension

Fiat-Shamir

Luby-Rackoff

ROM è ICM

Example: Domain Extension for Random Oracles

h h h h

Q: Does Merkle-Damgård preserve random oracle-ness?

I V

x 1 x 2 x 3 x 4

MD
h

H
MD Sim

Example: Domain Extension for Random Oracles

A: Yes(ish) [Coron-Dodis-Malinaud-Puniya’05]

How? Indifferentiability [Maurer-Renner-Holenstein’04]

Real World Ideal World

Thm [Ristenpart-Shacham-Shrimpton’11]:
Indifferentiability ⇒ as good as RO for “single stage games”

h

≈

HhMD

Real World

S im

Ideal World

Quantum Indifferentiability?
Concurrently considered by [Carstens-Ebrahimi-Tabia-Unruh’18]

Quantum Indifferentiability?

•AEraseyThwm:e
• Stateless simulation for domain extension is impossible,tcloassaicasllty o?rquantumly

[Carstens-Ebrahimi-Tabia-Unruh’18]:
Proof idea: ComprCeosnsjetcrtuurtehyetsable of random H

This Work:

On-the-fly simulation of
quantum random oracles

(aka Compressed Oracles)

Step 1: Quantum-ify (aka Purify)

• Quantum-ifying (aka purifying) random oracle:
• + now single quantum system

• H

• H

Reminiscent of old impossibilities for unconditional
quantum protocols [Lo’97,Lo-Chau’97,Mayers’97,Nayak’99]

Step 1: Superposition of Oracles

H
Initial oracle state: H

Quer y(x , y, H): y = y⊕H(x)

Adversary’s query
Oracle’s state

Step 2: Look at Fourier Domain

H
Ĥ

Step 2: Look at Fourier Domain

Px,y(x ’) =
y if x=x’
0 else

Initial oracle state: Z(x) = 0

Quer y(x , y, Ĥ): Ĥ = Ĥ⊕Px,y

Ĥ

Proof: A
Fourier

Transform A -T

Step 3: Compress

Ĥ

Observation:
After q queries, Ĥ is non-zero on at most q points

D̂

Step 3: Compress

Initial oracle state: {}

Query(x, y, D̂):

(1) If ∄(x,y’)∈^D: D̂ = D̂+(x,0)

(2) Replace (x,y’)∈^D
with (x,y’⊕y)

(3) If (x,0)∈^D: remove it

D̂

Step 4: Revert back to Primal Domain

D̂D

Input Output

x1 y1

x 2 y2

x 3 y3

x 4 y4

Step 4: Revert back to Primal Domain

Points adversary cares about ≈Corresponding outputs

D
Roughly analogous
to classical on-the-
fly simulation

Compressed Oracles

Allows us to:

• Know the inputs adversary cares about? ✓

• Know the corresponding outputs? ✓

• (Adaptively) program the outputs? ✘
Fixed by [Don-Fehr-Majenz-Schaffner’19,Liu-Z’19], later this session!

• Easy analysis of bad events (e.g. collisions)?✓

So, what happened?

Recall…

Observer Effect:
Learning anything about quantum system disturbs it

gets disturbedH

Hlearns about through queries

Compressed oracles decode such disturbance

Caveats

Outputs in database ≠0 in Fourier domain
y values aren’t exactly query outputs

Examining x,y values perturbs state
Still must be careful about how we use them

But, still good enough for many applications…

Applications In This Work

Quantum Indiff. of
Merkle-Damgård

Easily re-prove quantum lower bounds:
Ω(N1/2) queries needed for Grover search
Ω(N1/3) queries needed for collision finding
Ω(N1/(k+1)) queries needed for k-SUM

CCA-security of plain
Fujisaki-Okamoto

Further Applications

[Alagic-Majenz-Russell-Song’18]:
Quantum-secure signature separation

[Liu-Z’19a]: Tight bounds
for multi-collision problem

[Liu-Z’19b]: Fiat-Shamir
([Don-Fehr-Majenz-Schaffner’19]: direct proof)

[Czajkowski-Majenz-Schaffner-Zur’19]:
Indifferentiability of Sponge

[Hosoyamada-Iwata’19]:
4-round Luby-Rackoff

[Bindel-Hamburg-Hülsing-Persichetti’19]:
Tighter CCA security proofs

[Chiesa-Manohar-Spooner’19]:
zk-SNARKs

Lessons Learned

Always purify your oracles!

