Advanced Cryptography CS 655

Week 15:

- Quantum Random Oracle Model
- Oblivious RAM

Homework 4 Released

Course Presentations: Next Week (Schedule Announced Soon)

Recap

- Quantum Basics

- Grover Search
- Quantum Random Oracle Model
- Useful Results
- $\psi=\sum_{x, y} \alpha_{x, y}|x, y\rangle$ and $\psi^{\prime}=\sum_{x, y} \beta_{x, y}|x, y\rangle \rightarrow$ Measurement can
distinguish two states with probability at most $4 \sqrt{\sum_{x, y}\left|\alpha_{x, y}-\beta_{x, y}\right|^{2}}$
- Upper bound Euclidean distance between final states ψ and ψ^{\prime} when we use oracles H and H^{\prime} in terms of "query magnitude" on bad inputs x where $H(x) \neq H^{\prime}(x)$.

State in QROM

- Typically we write

Output Register

$$
\begin{gathered}
|\Psi\rangle=\sum_{\substack{x, y, z \\
\text { Input Register }}} \alpha_{x, y, z}|x, y, z\rangle \\
\mathrm{RO}|\Psi\rangle=\sum_{x, y, z} \alpha_{x, y, z}|x, R O(X) \oplus y, z\rangle
\end{gathered}
$$

Query Magnitude

- Let $S \subset\{0,1\}^{n}$ be a set of inputs and let $\psi=\sum_{x, y} \alpha_{x, y}|x, y\rangle$ be a quantum state. Then

$$
Q M(\psi, S):=\sum_{x \in S} \sum_{y, z} \alpha_{x, y, z}^{2}
$$

- If $A^{H(.)}(w)$ generates states $\psi_{0, H, w}, \psi_{1, H, w}, \ldots, \psi_{T, H, w}$ we can write

$$
Q M(A, H, w, S):=\sum_{i<T} Q M\left(\Psi_{i, H, w}, S\right)
$$

Theorem: If $H(x)=H^{\prime}(x)$ for all inputs $x \notin S$ then the Euclidean distance between the final states $\psi_{T, H, w}$ and $\psi_{T, H \prime, w}$ is at most T • $Q M(A, H, w, S)$

Homework Hint

- Intuition: for a random/small sets S we expect $Q M(A, H, w, S)$ to be small with high probabilty.
- If $S_{1}, \ldots S_{r} \subset\{0,1\}^{n}$ are disjoint sets of inputs then

$$
\sum_{i \leq r} Q M\left(\psi, S_{i}\right)=\sum_{i \leq r} \sum_{x \in S} \sum_{y, z} \alpha_{x, y, z}^{2} \leq \sum_{x} \sum_{y, z} \alpha_{x, y, z}^{2}=1
$$

- If $A^{H(.)}(w)$ generates states $\psi_{0, H, w}, \Psi_{1, H, w}, \ldots, \Psi_{T, H, w}$ we can write

$$
\begin{gathered}
Q M(A, H, w, S):=\sum_{i<T} Q M\left(\Psi_{i, H, w}, S\right) \\
\sum_{i \leq r} Q M\left(A, H, w, S_{i}\right) \leq T
\end{gathered}
$$

Quantum Computing: Useful Theorem

Let $\psi=\sum_{x, y} \alpha_{x, y}|x, y\rangle$ and $\psi^{\prime}=\sum_{x, y} \beta_{x, y}|x, y\rangle$

Fix a quantum measurement and let \mathfrak{D} and \mathfrak{D}^{\prime} be the distribution of outputs when we measure quantum states ψ and ψ^{\prime} respectively.

Definition: Total Variation Distance

$$
\operatorname{TVD}\left(\mathfrak{D}, \mathfrak{D}^{\prime}\right):=\sum_{w}\left|\operatorname{Pr}_{\mathfrak{D}}[w]-\operatorname{Pr}_{\mathfrak{D}^{\prime}}[w]\right|
$$

Quantum Computing: Useful Theorem

Theorem: Let $\psi=\sum_{x, y} \alpha_{x, y}|x, y\rangle$ and $\psi^{\prime}=\sum_{x, y} \beta_{x, y}|x, y\rangle$ be two quantum states. Fix any measurement and let \mathfrak{D} and \mathfrak{D}^{\prime} be the distribution of outputs when we measure quantum states ψ and ψ^{\prime} respectively. We have

$$
\operatorname{TVD}\left(\mathfrak{D}, \mathfrak{D}^{\prime}\right):=\sum_{w}\left|\operatorname{Pr}_{\mathfrak{D}}[w]-\mathfrak{D}_{[w]}^{\prime}[w]\right| \leq 4 \sqrt{\sum_{x, y}\left|\alpha_{x, y}-\beta_{x, y}\right|^{2}}
$$

Intuition: WHP we cannot distinguish between "close" states ψ and ψ^{\prime} with any measurement

Phase Oracle vs Standard Oracle

- Typically we write

Output Register

$$
|\Psi\rangle=\sum_{x, y, z} \alpha_{x, y, z}|x, y, z\rangle
$$

Input Register
Auxilliary State (not associated with current RO query)

$$
\mathrm{StO}|\Psi\rangle=\sum_{x, y, z} \alpha_{x, y, z}|x, R O(x) \oplus y, z\rangle
$$

Phase Oracle

$$
\operatorname{PhO}|\Psi\rangle=\sum_{x, y, z} \alpha_{x, y, z}(-1)^{y \cdot R O(x)}|x, y, z\rangle
$$

Equivalence: Phase/Standard Oracle

Lemma 3. For any adversary A making queries to StO , let B be the adversary that is identical to A, except it performs the Hadamard transformation $\mathrm{H}^{\otimes n}$ to the response registers before and after each query. Then $\operatorname{Pr}\left[A^{\mathrm{StO}}()=1\right]=$ $\operatorname{Pr}\left[B^{\mathrm{PhO}}()=1\right]$

$$
\begin{aligned}
\text { StO| }|\psi\rangle & =\sum_{x, y, z} \alpha_{x, y, z}|x, R O(x) \oplus y, z\rangle \\
\text { Pho }|\psi\rangle & =\sum_{x, y, z} \alpha_{x, y, z}(-1)^{y \cdot R o(x)}|x, y, z\rangle
\end{aligned}
$$

Let $\operatorname{Had}_{\text {out }}=I^{\otimes n} H^{\otimes n} I^{\otimes|z|}$ be a unitary transformation which applies the Hadamard transform to response registers (y) and identity transform elsewhere. Then

$$
\operatorname{Had}_{\mathrm{out}} \operatorname{PhO}\left(\operatorname{Had}_{\mathrm{out}}|\Psi\rangle\right)=\mathrm{StO}|\psi\rangle=\sum_{x, y, z} \alpha_{x, y, z}|x, R O(x) \oplus y, z\rangle
$$

Views of the Quantum Random Oracle

We can view a function $\boldsymbol{H}:\{\mathbf{0}, \mathbf{1}\}^{2 \lambda} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{\lambda}$ as a string of length $\lambda \mathbf{2}^{2 \lambda}$
$H(x)$ simply returns the λ bit string at locations $\mathbf{x} \lambda, \ldots,(x+\mathbf{1}) \lambda-\mathbf{1}$
Now we can view the state as

$$
|\psi\rangle \otimes|H\rangle=\sum_{x, y, z} \alpha_{x, y, z}|x, y, z\rangle \otimes|H\rangle
$$

Standard oracle performs map

$$
|x, y, z\rangle \otimes|H\rangle \rightarrow|x, y \oplus H(x), z\rangle \otimes|H\rangle
$$

Algorithm can only apply unitary transforms to first part of state $|x, y, z\rangle$

Views of the Quantum Random Oracle

We can view a function $\boldsymbol{H}:\{\mathbf{0}, \mathbf{1}\}^{2 \lambda} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{\lambda}$ as a string of length $\lambda 2^{2 \lambda}$

World 1 (StO'): Pick random function H and run algorithm with initial state $\left|\psi_{0}\right\rangle \otimes|H\rangle$

World 2 (StO): run algorithm with initial state (uniform superposition of all oracles)

$$
\left|\psi_{0}\right\rangle \bigotimes\left(\frac{1}{\sqrt{2^{\lambda 2^{2 \lambda}}}} \sum_{H}|H\rangle\right)
$$

Views of the Quantum Random Oracle

World 1 (StO'): Pick random function H and run algorithm with initial state $\left|\psi_{0}\right\rangle \otimes|H\rangle$

World 2 (StO): run algorithm with initial state (uniform superposition of all oracles)

$$
\left|\psi_{0}\right\rangle \bigotimes\left(\frac{1}{\sqrt{2^{\lambda 2^{2 \lambda}}}} \sum_{H}|H\rangle\right)
$$

Lemma 2. StO and StO^{\prime} are perfectly indistinguishable. That is, for any adversary A making oracle queries, let $A^{\mathrm{StO}}()$ and $A^{\mathrm{StO}^{\prime}}()$ denote the algorithm interfacing with StO and StO^{\prime}, respectively. Then $\operatorname{Pr}\left[A^{\mathrm{StO}}()=1\right]=\operatorname{Pr}\left[A^{\mathrm{SOO}^{\prime}}()=1\right]$

Another View

World $2^{\prime}:|H\rangle=\left\{(x, \perp): x \in\{0,1\}^{2 \lambda}\right\}$ where \perp indicates that $H(x)$ is not yet assigned
Run algorithm with initial state $\left|\psi_{0}\right\rangle \otimes|H\rangle$
Oracle Map (Intuitions): if $H(x)=\perp$

$$
|x, y, z\rangle \otimes|H\rangle \rightarrow 2^{\lambda / 2} \sum_{w}|x, y \oplus w, z\rangle \otimes|H \cup(x, w)\rangle
$$

Where $H \cup(x, w)$ replaces (x, \perp) with (x, w)
Idea: measuring red state yields a list of query/output pairs!

Not Quite that Simple...

World $2^{\prime}:|H\rangle=\left\{(x, \perp): x \in\{0,1\}^{2 \lambda}\right\}$ where \perp indicates that $H(x)$ is not yet assigned
Run algorithm with initial state $\left|\Psi_{0}\right\rangle \otimes|H\rangle$
Oracle Map (Intuitions): if $H(x)=\perp$

$$
|x, y, z\rangle \otimes|H\rangle \rightarrow 2^{\lambda / 2} \sum_{w}|x, y \oplus w, z\rangle \otimes|H \cup(x, w)\rangle
$$

Where $H \cup(x, w)$ replaces (x, \perp) with (x, w)
Idea: measuring red state yields a list of query/output pairs!
Question: What if $H(x) \neq \perp$? How do we make sure oracle is unitary transformation?

Towards Unitary Transform

World $2^{\prime}:|H\rangle=\left\{(x, \perp): x \in\{0,1\}^{2 \lambda}\right\}$ where \perp indicates that $H(x)$ is not yet assigned
Run algorithm with initial state $\left|\Psi_{0}\right\rangle \otimes|H\rangle$

Build oracle out of unitary transforms: StdDecomp and StO'
StdOracle := StdDecomp o St0' \circ StdDecomp
PhsOracle $:=$ StdDecomp $\circ \mathrm{PhsO}^{\prime} \circ$ StdDecomp
Where

$$
\begin{aligned}
\mathrm{StO}^{\prime}|x, y, z\rangle \otimes|H\rangle & \rightarrow|x, y \oplus H(x), z\rangle \otimes|H\rangle \\
\mathrm{PhsO}^{\prime}|x, y, z\rangle \otimes|H\rangle & \rightarrow(-1)^{y \cdot H(x)}|x, y, z\rangle \otimes|H\rangle
\end{aligned}
$$

Note: Define $y \oplus \perp:=y$ and $y \cdot \perp:=0$ for completeness

Towards Unitary Transform

Build oracle out of unitary transforms: StdDecomp and StO'
StdDecomp $|x, y, z\rangle \otimes|H\rangle \rightarrow|x, y, z\rangle \otimes \operatorname{StdDecomp}_{x}|H\rangle$

$$
\operatorname{StdDecomp}_{x}|H\rangle=2^{-\frac{\lambda}{2}} \sum_{w}|H \cup(x, w)\rangle \text { if } H(x)=\perp
$$

Reversibility: If $H^{\prime}(x)=\perp$ then

$$
\operatorname{StdDecomp}_{x}\left(2^{-\frac{\lambda}{2}} \sum_{w}\left|H^{\prime} \cup(x, w)\right\rangle\right)=\left|H^{\prime}\right\rangle
$$

Towards Unitary Transform

Build oracle out of unitary transforms: StdDecomp and StO'

$$
\operatorname{StdDecomp}|x, y, z\rangle \otimes|H\rangle \rightarrow|x, y, z\rangle \otimes \operatorname{StdDecomp}_{x}|H\rangle
$$

$$
\operatorname{StdDecomp}_{x}|H\rangle=2^{-\frac{\lambda}{2}} \sum_{w}|H \cup(x, w)\rangle \text { if } H(x)=\perp
$$

If $H^{\prime}(x)=\perp$ and $z \neq 0$ then

$$
\operatorname{StdDecomp}_{x}\left(2^{-\frac{\lambda}{2}} \sum_{w}(-1)^{z \cdot w}\left|H^{\prime} \cup(x, w)\right\rangle\right)=2^{-\frac{\lambda}{2}} \sum_{w}(-1)^{z \cdot w}\left|H^{\prime} \cup(x, w)\right\rangle
$$

Reversibility:

$$
\operatorname{StdDecomp}_{x}\left(2^{-\frac{\lambda}{2}} \sum_{w}\left|H^{\prime} \cup(x, w)\right\rangle\right)=\left|H^{\prime}\right\rangle
$$

All pairs of the form (x, w) are removed

Compressed Oracles

World 2': $|H\rangle=\left\{(x, \perp): x \in\{0,1\}^{\lambda}\right\}$ where \perp indicates that $H(x)$ is not yet assigned
Run algorithm with initial state $\left|\psi_{0}\right\rangle \otimes|H\rangle$

Build oracle out of unitary transforms: StdDecomp and StO' StdOracle := StdDecomp \circ StO' \circ StdDecomp
PhsOracle $:=$ StdDecomp $\circ \mathrm{PhsO}^{\prime} \circ$ StdDecomp

Compressed Versions: CPhsO and CPhsO
Idea: If we know there are only T queries then $|H\rangle$ will never have more than T entries that are not $\perp \rightarrow$ can compress representation of $|H\rangle$

Compressed Oracles

Compressed Versions: CPhsO and CPhsO

Idea: If we know there are only T queries then $|H\rangle$ will never have more than T entries that are not $\perp \boldsymbol{\rightarrow}$ can compress representation of $|H\rangle$

```
Lemma 4. CStO and StO are perfectly indistinguishable. CPhsO and PhO are
perfectly indistinguishable. That is, for any adversary \(A\), we have \(\operatorname{Pr}\left[A^{\mathrm{CstO}}()=\right.\)
\(1]=\operatorname{Pr}\left[A^{\text {StO }}()=1\right]\), and for any adversary \(B\), we have \(\operatorname{Pr}\left[B^{\mathrm{CPhsO}}()=1\right]=\)
\(\operatorname{Pr}\left[A^{\mathrm{PhO}}()=1\right]\).
```


A Helpful Lemma

Lemma 5. Consider a quantum algorithm A making queries to a pandom oracle H and outputting tuples $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z\right)$. Let R be a collection of such tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in R and (2) $H\left(x_{i}\right)=y_{i}$ for all i. Now consider running A with the oracle CStO , and suppose the database D is measured after A produces its output. Let p^{\prime} be the probability that (1) the tuple is in R, and (2) $D\left(x_{i}\right)=y_{i}$ for all i (and in particular $\left.D\left(x_{i}\right) \neq \perp\right)$. Then $\sqrt{p} \leq \sqrt{p^{\prime}}+\sqrt{k / 2^{n}}$

Example:

$$
R_{\text {collision }}=\left\{\left(x_{1}, y\right),\left(x_{2}, y\right): x_{1}, x_{2} \in\{0,1\}^{2 \lambda} \wedge y \in\{0,1\}^{\lambda}\right\}
$$

p denotes probability that A outputs a hash collision (regular QROM). p^{\prime} denotes probability that we measure a database with some colliding pair (when using compressed oracle CStO)

A Helpful Lemma

Lemma 5. Consider a quantum algorithm A making queries to a random oracle H and outputting tuples $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z\right)$. Let R be a collection of such tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in R and (2) $H\left(x_{i}\right)=y_{i}$ for all i. Now consider running A with the oracle CStO , and suppose the database D is measured after A produces its output. Let p^{\prime} be the probability that (1) the tuple is in R, and (2) $D\left(x_{i}\right)=y_{i}$ for all i (and in particular $\left.D\left(x_{i}\right) \neq \perp\right)$. Then $\sqrt{p} \leq \sqrt{p^{\prime}}+\sqrt{k / 2^{n}}$

Example:

$$
R_{\text {collision }}=\left\{\left(x_{1}, y\right),\left(x_{2}, y\right): x_{1}, x_{2} \in\{0,1\}^{2 \lambda} \wedge y \in\{0,1\}^{\lambda}\right\}
$$

p denotes probability that A outputs a hash collision (regular QROM).
p^{\prime} denotes probability that we measure a database with some colliding pair Typically, much easier to upper bound $p^{\prime} \rightarrow$ upper bound for p (quantity we want to upper bound)

Grover Search Revisited

Theorem 1. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the probability it contains a pair of the form $\left(x, 0^{n}\right)$ is at most $O\left(q^{2} / 2^{n}\right)$.

Corollary 1. After making q quantum queries to a random oracle, the probability of finding a pre-image of 0^{n} is at most $O\left(q^{2} / 2^{n}\right)$.

Proof: Define $R_{0}=\left\{(x, 0): x \in\{0,1\}^{2 \lambda}\right\} \rightarrow$ Let p denote probability outputs $(\mathrm{x}, \mathrm{y}=0) \in R_{0}$ with $\mathrm{H}(\mathrm{x})=\mathrm{y}=0$ i.e., found a pre-image
Theorem 1 shows that $p^{\prime}=O\left(\frac{q^{2}}{2^{\lambda}}\right)$. Now applying Lemma 5 we have

$$
\sqrt{p} \leq O\left(\sqrt{\frac{q^{2}}{2^{\lambda}}}\right)+2^{-\frac{\lambda}{2}}=O\left(\frac{q}{\sqrt{2^{\lambda}}}\right) \Rightarrow p=O\left(\frac{q^{2}}{2^{\lambda}}\right)
$$

Hash Collisions

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Corollary 2. After making q quantum queries to a random oracle, the probability of finding a collision is at most $O\left(q^{3} / 2^{n}\right)$.

Proof: $R_{\text {collision }}=\left\{\left(x_{1}, y\right),\left(x_{2}, y\right): x_{1}, x_{2} \in\{0,1\}^{2 \lambda} \wedge y \in\{0,1\}^{\lambda}\right\} \rightarrow$ Let p denote probability attacker outputs $\left(x_{1}, y\right),\left(x_{2}, y\right) \in R_{\text {collision }}$ with $\mathrm{H}\left(\mathrm{x}_{1}\right)=\mathrm{H}\left(\mathrm{x}_{2}\right)=\mathrm{y}$ i.e., found a collision
Theorem 1 shows that $p^{\prime}=O\left(\frac{q^{3}}{2^{\lambda}}\right)$. Now applying Lemma 5 we have

$$
\sqrt{p} \leq O\left(\sqrt{\frac{q^{3}}{2^{\lambda}}}\right)+O\left(\frac{1}{\sqrt{2^{\lambda}}}\right)=O\left(\frac{q \sqrt{q}}{\sqrt{2^{\lambda}}}\right) \Rightarrow p=O\left(\frac{q^{3}}{2^{\lambda}}\right)
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+S=I$
P projects onto random oracles that contain a collision
Consider the state

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow P|\psi\rangle:=\sum_{H \in \text { Collision }} \sum_{x, y, z} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Where

$$
\text { Collision }=\left\{H: \exists x_{1}, x_{2} \text { s.t. } H\left(x_{1}\right)=H\left(x_{2}\right) \neq \perp\right\}
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+S=I$ Q projects onto states that do contain a collision such that $y \neq 0$ and $H(x)=\perp$ Consider the state

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow Q|\psi\rangle:=\sum_{\substack{x, y \neq 0, z}} \sum_{\substack{H \notin \text { Collision, } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Where

$$
\text { Collision }=\left\{H: \exists x_{1}, x_{2} \text { s.t. } H\left(x_{1}\right)=H\left(x_{2}\right) \neq \perp\right\}
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+S=I$
R projects onto states that do contain a collision such that $y \neq 0$ and $H(x) \neq \perp$ Consider the state

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow R|\psi\rangle:=\sum_{\substack{x, y \neq 0, z}} \sum_{\substack{H \notin \text { Collision, } \\ H(x) \neq \perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Where

$$
\text { Collision }=\left\{H: \exists x_{1}, x_{2} \text { s.t. } H\left(x_{1}\right)=H\left(x_{2}\right) \neq \perp\right\}
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+S=I$
S projects onto states that do contain a collision such that $y=0$
Consider the state

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, y, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow R|\psi\rangle:=\sum_{x, y=0, z} \sum_{H \notin \text { collision, }} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Where

$$
\text { Collision }=\left\{H: \exists x_{1}, x_{2} \text { s.t. } H\left(x_{1}\right)=H\left(x_{2}\right) \neq \perp\right\}
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+$ $S=I$
S projects onto states that do contain a collision such that $y=0$ We want to bound $\| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle \|$ (Euclidean norm of "bad/collision state") after each random oracle query.

$$
\operatorname{CPhsO}|\psi\rangle=\operatorname{CPhsO}(P|\psi\rangle+Q|\psi\rangle+R|\psi\rangle+S|\psi\rangle)
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof: We first define projections P, Q, R, S such that $P+Q+R+S=I$
S projects onto states that do contain a collision such that $y=0$

$$
\begin{aligned}
& \| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle\|\leq\| \mathrm{P} \circ \mathrm{CPhsO} \circ P \circ|\psi\rangle \| \\
&+\| \mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle \| \\
&+\| \mathrm{R} \circ \mathrm{CPhsO} \circ R \circ|\psi\rangle \| \\
&+\| \mathrm{P} \circ \mathrm{CPhsO} \circ S \circ|\psi\rangle \|
\end{aligned}
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof:

$\| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle\|\leq\| \mathrm{P} \circ \mathrm{CPhsO} \circ \mathrm{P} \circ|\psi\rangle \|$ $+\| \mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle \|$ $+\| \mathrm{R} \circ \mathrm{CPhsO} \circ \mathrm{R} \circ|\psi\rangle \|$
$+\| \mathrm{P} \circ \mathrm{CPhsO} \circ S \circ|\psi\rangle \| \quad$ Old Projection before Ro query

Fact 1: $\| \mathrm{P} \circ \mathrm{CPhsO} \circ P \circ|\psi\rangle\|\leq\| \mathrm{CPhsO} \circ P \circ|\psi\rangle\|=\| P \circ|\psi\rangle \|$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof:

$$
\begin{aligned}
\| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle \| \leq & \| P \circ|\psi\rangle\|+\| \mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle \| \\
& +\| \mathrm{P} \circ \mathrm{CPhsO} \circ R \circ|\psi\rangle \| \\
& +\| \mathrm{P} \circ \mathrm{CPhsO} \circ S \circ|\psi\rangle \|
\end{aligned}
$$

Fact 2: $\| \mathrm{P} \circ(\mathrm{CPhsO} \circ S \circ|\psi\rangle)\|\leq\| \mathrm{P} \circ S \circ|\psi\rangle \|=0$
CPhsO does not modify states in projection $S \circ|\psi\rangle$! States in projection S do no have collision!
$\rightarrow \mathrm{CPhsO} \circ S \circ|\psi\rangle=S \circ|\psi\rangle$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof:

$$
\begin{aligned}
\| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle \| \leq & \| P \circ|\psi\rangle\|+\| \mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle \| \\
& +\| \mathrm{P} \circ \mathrm{CPhsO} \circ R \circ|\psi\rangle \|+0
\end{aligned}
$$

Fact 3: $\| \mathrm{P} \circ(\mathrm{CPhsO} \circ R \circ|\psi\rangle)\left\|\leq \sqrt{\frac{q}{2^{\lambda}}}\right\| R \circ|\psi\rangle \|$
Proof: Skipped (similar to Fact 4)

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof:

$$
\| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle\|\leq\| P \circ|\psi\rangle\left\|+\sqrt{\frac{q}{2^{\lambda}}}\right\| R \circ|\psi\rangle\|+\| \mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle \|
$$

Fact 4: $\| \mathrm{P} \circ(\mathrm{CPhsO} \circ Q \circ|\psi\rangle)\left\|\leq \sqrt{\frac{q}{2^{\lambda}}}\right\| Q \circ|\psi\rangle \|$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Proof:

$$
\begin{aligned}
& \| \mathrm{P} \circ \mathrm{CPhsO} \circ|\psi\rangle\|\leq\| P \circ|\psi\rangle\left\|+\sqrt{\frac{q}{2^{2}}}\right\| R \circ|\psi\rangle\left\|+\sqrt{\frac{q}{2^{\lambda}}}\right\| Q \circ|\psi\rangle \| \\
& \leq \| P \circ|\psi\rangle \|+\sqrt{\frac{q}{2^{\lambda}}}
\end{aligned}
$$

\rightarrow Norm of $\| P \circ|\psi\rangle \|$ increase by at most $\sqrt{\frac{q}{2^{\lambda}}}$ after each query
\rightarrow Norm on bad states after q queries is at most $q \sqrt{\frac{q}{2^{\lambda}}}=\sqrt{\frac{q^{3}}{2^{\lambda}}}$
\rightarrow measuring final state yields bad database (containing collision) with probability at most $\frac{q^{3}}{2^{\lambda}}$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Fact 4: $\| \mathrm{P} \circ(\mathrm{CPhsO} \circ Q \circ|\psi\rangle)\left\|\leq \sqrt{\frac{q}{2^{\lambda}}}\right\| Q \circ|\psi\rangle \|$
Recall the projection Q

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow Q|\psi\rangle:=\sum_{x, y \neq 0, z} \sum_{\substack{H \notin \text { Collision } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Thus,

$$
\mathrm{CPhsO} \circ Q \circ|\psi\rangle=\sum_{x, y \neq 0, z} \sum_{\substack{H \notin \text { Collision, } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes \sum_{w} 2^{-\lambda / 2}|H \cup(x, w)\rangle
$$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Fact 4: $\| \mathrm{P} \circ(\mathrm{CPhsO} \circ Q \circ|\psi\rangle)\left\|\leq \sqrt{\frac{q}{2^{\lambda}}}\right\| Q \circ|\psi\rangle \|$
Recall the projection Q

$$
|\psi\rangle=\sum_{x, y, z, H} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle \Rightarrow Q|\psi\rangle:=\sum_{\substack{x, y \neq 0, z}} \sum_{\substack{H \not C \text { collision } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes|H\rangle
$$

Thus,

$$
\mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle=\sum_{\substack{x, y \neq 0, z}} \sum_{\substack{H \not C \text { Collision, } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes \sum_{w \in \operatorname{Bad}(H)} 2^{-\lambda / 2}|H \cup(x, w)\rangle
$$

Where $\operatorname{Bad}(H)$ is the set of ouputs already recorded in $\mathrm{H} . \rightarrow|\operatorname{Bad}(H)| \leq q$

Proof of Theorem 2

Theorem 2. For any adversary making q queries to CStO or CPhsO and an arbitrary number of database read queries, if the database D is measured after the q queries, the resulting database will contain a collision with probability at most $O\left(q^{3} / 2^{n}\right)$

Fact $4: \| \mathrm{P} \circ(\mathrm{CPhsO} \circ Q \circ|\psi\rangle)\left\|\leq \sqrt{\frac{q}{2^{\lambda}}}\right\| Q \circ|\psi\rangle \|$
Thus,

$$
\mathrm{P} \circ \mathrm{CPhsO} \circ Q \circ|\psi\rangle=\sum_{x, y \neq 0, z} \sum_{\substack{H \notin \text { Collision, } \\ H(x)=\perp}} \alpha_{x, y, z, H}|x, y, z\rangle \otimes \sum_{w \in \operatorname{Bad}(H)} 2^{-\lambda / 2}|H \cup(x, w)\rangle
$$

Where $\operatorname{Bad}(H)$ is the set of outputs already recorded in $\mathrm{H} . \rightarrow|\operatorname{Bad}(H)| \leq|H| \leq q$

$$
\begin{aligned}
& \| \mathrm{P} \circ(\mathrm{CPhsO} \circ Q \circ|\psi\rangle) \|^{2}=\sum_{x, y \neq 0, z} \sum_{\substack{H \notin \text { Collision, } \\
H(x)=\perp}} \sum_{w \in \operatorname{Bad}(H)} 2^{-\lambda} \alpha_{x, y, z, H}^{2} \leq q 2^{-\lambda} \sum_{x, y \neq 0, z} \sum_{\substack{H \notin \text { Collision, } \\
H(x)=\perp}} \alpha_{x, y, z, H}^{2} \\
& =q 2^{-\lambda} \| Q \circ|\psi\rangle \|^{2}
\end{aligned}
$$

Course Evaluation

- I would appreciate if you take the time to fill out your course evaluation.
- What did you like about the course? What could be improved? Let me know!
- Your feedback is anonymous and will not impact grades.

Final Project Presentation (Next Week)

Tuesday, April 25	Thursday, April $27^{\text {th }}$
Albert Yu (3:00-3:18 PM)	Blake and Xiuyu (3:00-3:28 PM)
Nicolas Harrell (3:18-3:36 PM)	Adithya and Jacob (3:28-3:56 PM)
Hongoa Wang (3:36-3:54 PM)	Jimmy Hwang (3:56-4:14 PM)
Zhongtang Luo (3:54-4:12 PM)	

Individuals: 14 minute presentation +3 minute $Q \& A+1$ minute transition
Groups: 24 minute presentation +3 minute $Q \& A+1$ minute transition

- It is expected that both team members will give part of the presentation
- You may choose how to divide the presentation

E-mail slides to Hassan at least one hour before class on the day of your presentation (CC me)

Final Exam and Project Report

- Final Exam (Take Home):
- Released Thursday, April $27^{\text {th }}$ at 5PM
- Due: Friday, April $28^{\text {th }}$ at 5PM on Gradescope
- Should take ≈ 2 hours
- Project Report
- 8-12 pages
- Introduce/Motivate the Problem, Define the Problem Clearly, Summarize Related Work et...
- Results
- Note: This can include failed approaches if you clearly describe what you tried and explain why this approach did not work.
- Future Work: If you were to continue working on this problem what would you do?
- Official Due Date: Friday, April $28^{\text {th }} @ 11: 59 P M$
- E-mail me a PDF and CC Hassan
- I won't penalize late solutions submitted before Thursday, May $4^{\text {th }}$ at 11:59PM \odot

Side Channel: Memory Access Pattern

```
Program 1: secret value \(x\)
if \((x<5)\)
    \(z=A[0]\)
    \(\mathrm{A}[1]=\mathrm{z}^{*} \mathrm{z}\)
else
    \(\mathrm{z}=\mathrm{A}[100]\)
    \(\mathrm{A}[101]=\mathrm{z}^{*} \mathrm{z}\)
```

Suppose Attacker Learns Memory Access pattern was (100, 101).

What can attacker conclude?

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 1: User is storing (encrypted) array on an untrusted server

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

RAM

$A[0]$	$A[1]$	\ldots	$A[100]$	$A[101]$	Y	\ldots
$B[0]$	$B[1]$	\ldots	$B[100]$	$B[101]$	Z	

Cache

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

RAM

$A[0]$	$A[1]$	\ldots.	$A[100]$	$A[101]$	Y	\ldots
$B[0]$	$B[1]$	\ldots.	$B[100]$	$B[101]$	Z	

Cache

		Load A[101]
$A[100]$		
$B[100]$		

Executing P1

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

RAM

$A[0]$	$A[1]$	\ldots.	$A[100]$	$A[101]$	Y	\ldots
$B[0]$	$B[1]$	\ldots	$B[100]$	$B[101]$	Z	
			\ldots	\ldots		
			\ldots	\ldots		
			\ldots			

Cache

Executing P1

CPU

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

RAM

$A[0]$	$A[1]$	\ldots.	$A[100]$	$A[101]$	Y	\ldots
$B[0]$	$B[1]$	\ldots.	$B[100]$	$B[101]$	Z	
			\ldots	\ldots		
			\ldots	\ldots		
			\ldots			

Cache

$A[101]$		Load $B[100]$	
$A[100]$	$A P U$		
$B[100]$	$B[101]$	$\xrightarrow{\text { In-Cache Already } \rightarrow}$Quick response	
\ldots	\ldots		

Side Channel: Memory Access Pattern

When could attacker learn memory access pattern?

Scenario 2: Program 1 (trusted) is running on the same machine as program 2 (untrusted)

- Operating System ensures that program 2 cannot access program 1's memory. What is the problem?

RAM

$A[0]$	$A[1]$	\ldots.	$A[100]$	$A[101]$	Y	\ldots
$B[0]$	$B[1]$	\ldots.	$B[100]$	$B[101]$	Z	
			\ldots	\ldots		
			\ldots	\ldots		
			\ldots			

Cache

ORAM

Slides: Adapted from TCC 2022 Test of Time Talk
"A Walk in the ORAM Forest: About oblivious RAMs and something about trees" (Jesper Buus Nielsen)

Definition: ORAM = ObliviousArray

- An ORAM implements an array of N words of $\log (N)$ bits
- Operations on array: operations
- Operations on server memory: probes
- $\mathbf{O}=01,0_{2}, \ldots, O_{n}$
- oi $\in\{$ (read, p), (write, p, v) \}
- $A\left(\mathrm{o}_{\mathrm{i}}\right)=$ list of server positions probed
- $A(0)=\left(A\left(O_{1}\right), A\left(O_{2}\right), \ldots, A\left(O_{n}\right)\right)$
- Oblivious: $\left|\mathbf{0}^{1}\right|=\left|\mathbf{0}^{2}\right| \Rightarrow \Delta\left(\mathrm{A}\left(\mathbf{0}^{1}\right), \mathrm{A}\left(\mathbf{o}^{2}\right)\right) \leq \varepsilon$
- Perfect: $\varepsilon=0$
- Statistical: $\varepsilon=$ negl.
- Computational: | $\Delta \mid=$ poly
- Online: Simulate one operation at a time
- Offline: Gets o up front and can plan

- Amortised overhead: $\lim _{n}|A(0)| /|0|$
- Worst-case overhead: $\max _{\mathrm{i}}\left|\mathrm{A}\left(\mathrm{o}_{\mathrm{i}}\right)\right|$

Genesis

- Oded Goldreich: Towards a Theory of Software Protection and Simulation by Oblivious RAMs. STOC 1987
- "We show how to implement n fetch instructions to a [RAM] memory of size m by making less than $n \cdot m^{\varepsilon}$ actual accesses, for every fixed $\varepsilon>0$."
- Rafail Ostrovsky: An Efficient Software Protection Scheme. CRYPTO 1989
- Poly-logarithmic overhead
- Oded Goldreich, Rafail Ostrovsky: Software Protection and Simulation on Oblivious

RAMs. J. ACM 43(3). 1996

- Logarithmic lower bound in balls-in-bins model

Trivial ORAM

- Probe entire memory on each operation
- Perfect
- Overhead = N

Trivial ORAM

- Alice sends $c_{1}=\operatorname{Enc}_{\mathrm{K}}\left(x_{1}\right), \ldots ., c_{n}=\operatorname{Enc}_{\mathrm{K}}\left(x_{n}\right)$ to Bob for storage
- When Alice wants to load/write x_{i} she requests for Bob to send all ciphertexts.
- Subtle problem for write operations:
- What if Alice sends back $\left(c_{1}^{\prime}=\operatorname{Enc}_{K}\left(x_{1}{ }^{\prime}\right), c_{2}, \ldots c_{n}\right)$?
\rightarrow Bob learns that Alice was writing to location 1.
- Solution: Alice generates fresh ciphertexts $c_{i}^{\prime}=\operatorname{Enc}_{\mathrm{K}}\left(x_{i}{ }^{\prime}\right)$ for every (even if $x_{i}^{\prime}=x_{i}$ is unchanged)

Trivial ORAM

- Alice sends $c_{1}=\operatorname{Enc}_{\mathrm{K}}\left(x_{1}\right), \ldots ., c_{n}=\operatorname{Enc}_{\mathrm{K}}\left(x_{n}\right)$ to Bob for storage
- In remainder of this lecture we will assume that items are encrypted and that Alice always remembers to re-encrypt files every time it is touched.
- We can now focus only on the memory access pattern (i.e., probes).
- Memory Access Pattern: $\mathbf{0}=01,0_{2}, \ldots, O_{n}$
- oi $\boldsymbol{\epsilon}\{$ (read, p), (write, p, v) \}
- Length of access pattern $|\mathbf{0}|=\mathbf{n}$

Trivial ORAM

- Memory Access Pattern: $\mathbf{0}=0_{1}, 0_{2}, \ldots, O_{n}$
- oi $\boldsymbol{\epsilon}\{$ (read, p), (write, p, v) \}
- Length of access pattern $|\mathbf{0}|=\mathbf{n}$
- A(0) memory access pattern (probes) induced by ORAM compiler
- Note: A(0) is a random variable
- Trivial ORAM:
- $A\left(O_{i}\right)=(1, \ldots, n)$
- $A(0)=\left(A\left(0_{1}\right), \ldots, A\left(O_{n}\right)\right)=((1, \ldots, n), \ldots,(1, \ldots, n))$

Definition: ORAM = Oblivious Array

- An ORAM implements an array of N words of $\log (N)$ bits
- Operations on array: operations
- Operations on server memory: probes
- $\mathbf{O}=01,0_{2}, \ldots, O_{n}$
- oo $\boldsymbol{E}\{$ (read, p), (write, p, v) \}
- $A\left(o_{i}\right)=$ list of server positions probed
- $A(0)=\left(A\left(O_{1}\right), A\left(O_{2}\right), \ldots, A\left(O_{n}\right)\right)$
- Oblivious: $\left|\mathbf{0}^{1}\right|=\left|\mathbf{0}^{2}\right| \Rightarrow \Delta\left(\mathrm{A}\left(\mathbf{0}^{1}\right), \mathrm{A}\left(\mathbf{o}^{2}\right)\right) \leq \varepsilon$
- Perfect: $\varepsilon=0$
- Statistical: $\varepsilon=$ negl.
- Computational: | $\Delta \mid=$ poly
- Online: Simulate one operation at a time
- Offline: Gets o up front and can plan

- Amortised overhead: $\lim n|A(0)| /|0|$
- Worst-case overhead: maxi $\left|\mathrm{A}\left(\mathrm{o}_{\mathrm{i}}\right)\right|$

ORAM Security/Limitation

- Memory Access Pattern: $\mathbf{0}=0_{1}, 0_{2}, \ldots, O_{n}$
- oi $\mathcal{E}\{$ (read, p), (write, p, v) $\}$
- Length of access pattern $|\mathbf{0}|=\mathbf{n}$
- Security Guarantee: For any two access patterns $\left|\mathbf{O}^{\mathbf{1}}\right|=\mid \mathbf{O}^{\mathbf{2}}$ of the same length an attacker cannot distinguish between $A\left(\mathbf{0}^{\mathbf{1}}\right)$ and $A\left(\mathbf{O}^{\mathbf{2}}\right)$
- Identical Distributions/Statistically Close/Computationally Indistinguishable
- Limitation: If $\left|\mathbf{0}^{1}\right|>\left|\mathbf{0}^{2}\right|$ there are no guarantees.
- Can append $\left|\mathbf{0}^{2}\right|$ with dummy operations
- Must append to maximum running time
- Efficiency bottleneck.

Oblivious Shuffling

- Initial Array: $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{n}-1]$
- Shuffled Array: $A[\pi(0)], \ldots, A[\pi(n-1)]$
- Security Goals:
- π is random permutation
- Attacker who observes memory access pattern during shuffling cannot distinguish between π and π^{\prime} (random unrelated permutation)
- Can do this using $\tilde{O}(N)$ probes

Oblivious Shuffling

- Initial Array: A[0],...,A[n-1]
- Shuffled Array: $A[\pi(0)], \ldots, A[\pi(n-1)]$
- Shuffle via Merge Sort?
- Suppose we have obliviously shuffled $\mathrm{L}=A[0], \ldots, A\left[\frac{n}{2}-1\right]$ and $\mathrm{R}=$ $A\left[\frac{n}{2}\right], \ldots, A[n-1]$
- Obtained $\pi_{L}(\mathrm{~L})=A\left[\pi_{L}(0)\right], \ldots, A\left[\pi_{L}(n-1)\right]$ and $\pi_{R}(R)=$ $A\left[\pi_{R}\left(\frac{n}{2}\right)\right], \ldots, A\left[\pi_{R}(n-1)\right]$
- Merge with $\tilde{O}(N)$ probes?
- Trickier than it seems...

Oblivious Merge (Attempt 1)

$\operatorname{Merge}\left(i, A\left[\pi_{L}(0)\right], \ldots, A\left[\pi_{L}(n-1)\right], j, A\left[\pi_{R}\left(\frac{n}{2}\right)\right], \ldots, A\left[\pi_{R}(n-1)\right]\right)$
Set $b=\left\{\begin{array}{ll}0 & \text { w. } p \frac{|L|-i}{|L|-i+|R|-j} \\ 1 & \text { otherwise }\end{array}\right.$ and $Y=\left\{\begin{array}{c}A\left[\pi_{L}(i)\right] \text { if } b=0 \\ A\left[\pi_{R}\left(\frac{n}{2}+j\right)\right] \text { otherwise }\end{array}\right.$
$\mathrm{Z}:=\operatorname{Merge}\left(i+1-b, A\left[\pi_{L}(0)\right], \ldots, A\left[\pi_{L}(n-1)\right],|R|-b, A\left[\pi_{R}\left(\frac{n}{2}\right)\right], \ldots, A\left[\pi_{R}(n-1)\right]\right)$
Return $\mathrm{Y} \circ \mathrm{Z}$

Initial Run with $\mathbf{i = 0}, \mathbf{j}=\mathbf{0}$. Problem?

Oblivious Merge (Attempt 1)

$$
\begin{aligned}
& \operatorname{Merge}\left(i, A\left[\pi_{L}(0)\right], \ldots, A\left[\pi_{L}(n-1)\right], j, A\left[\pi_{R}\left(\frac{n}{2}\right)\right], \ldots, A\left[\pi_{R}(n-1)\right]\right) \\
& \text { Set } b= \begin{cases}0 & \text { w.p } \frac{|L|-i}{|L|-i+|R|-j} \text { and } Y=\left\{\begin{array}{c}
A\left[\pi_{L}(i)\right] \text { if } b=0 \\
A\left[\pi_{R}\left(\frac{n}{2}+j\right)\right] \text { otherwise }
\end{array}\right. \\
\mathrm{Z}:=\operatorname{Merge}\left(i+1-b, A\left[\pi_{L}(0)\right], \ldots, A\left[\pi_{L}(n-1)\right],|R|-b, A\left[\pi_{R}\left(\frac{n}{2}\right)\right], \ldots, A\left[\pi_{R}(n-1)\right]\right)\end{cases}
\end{aligned}
$$

Return $\mathrm{Y} \circ \mathrm{Z}$
Initial Run with $\mathbf{i = 0 , j = 0}$. Problem? Red probes leak information about the final permutation!

Permute and Guard

- Guard of size G
- Store array + G dummy elements uniformly random permuted on server in PM
- Write: Write to Guard
- Read
- First read from Guard
- If not found, read from PM
- If found read dummy from PM
- Write to Guard
- Refresh: After G operations
- Join Guard and PM and create new fresh PM with fresh K

Permute and Guard

- Computational
- Price of G operations:
- Operations: $G^{\star} \mid G u a r d l \approx G^{2}$
- Permute $\approx N$
- Balances at $G=\sqrt{N}$
- Amortised overhead: $A O H \approx \sqrt{N}$

Recursive ${ }^{\text {eg }}$

- Use a larger Guard implemented as a Map data structure on a smaller ORAM
- We can do ORAM with $\mathrm{AOH}=N^{1 / 2}$
- Set the smaller ORAM to size $\approx N^{2 B}$ and capacity $N^{2 ß}$ in the map
- Price of G operations:
- Op.s: $G^{*} O H_{\text {Guard }}=G\left(N^{2 \beta}\right)^{1 / 2}=G N^{1 /}$
- Permute $\approx N$
- Balances at $G \approx N / N^{1 / \beta} \approx N^{2 / B}$
- Amortised overhead: $\mathrm{AOH} \approx N^{2} N^{2 / 3}=N^{1 / 3}$

Recursive

- Use a larger Guard implemented as a Map data structure on a smaller ORAM
- We can do ORAM with $\mathrm{AOH}=N^{1 /(k-1)}$
- Set the smaller ORAM to size $\approx N^{k-1) k}$ and (write, p, v) capacity $N^{(k-1) / k}$
- Price of G operations:
- Op.s: $G^{\star} O H_{\text {Guard }}=G N^{1 k}$
- Permute $\approx N$
- Balances at $G \approx N / N^{1 k} \approx M^{k-1)} k$
- Amortised overhead: $\mathrm{AOH} \approx N^{\left(N^{k-1}\right) k}=N^{1 / k}$

Hierarchical

- After each 2^{\prime} operations shuffle the elements in levels $1, \ldots$, i and store them in level i using fresh PRF_{K}
- Lemma: All guards get emptied before they are full
- Some nitty-gritty stuff with dummies and enough room for the map data structure and dummies

AOH of Hierarchical

- Guard i has size about $2^{i} i$
- Guard i is sorted every 2^{-i} operations at a price of $2^{i}{ }^{2}$
- Guard i costs amortised i^{2} per operation
- $1+2^{2} \ldots+\log (N)^{2} \approx \log (N)^{3}$
- $\mathrm{AOH}: \log (N)^{3}$

Ball in Bins

- Lower bound [GO'96]: To implement N operations you must make $N \log (N)$ probes (if you use a balls-in-bins ORAM)
- Balls-in-Bins:
- The ORAM construction does not look at the data being stored, it is treated atomically
- Can only confuse the adversary by swapping balls around

Now What？

－By 1996 some very basic question are open：

Is computational security inherent？

銯Is amortisation inherent or can we get poly－log worst－case overhead？
素Can we go below $\mathrm{OH} \log (N)$ using a non－balls－in－bins ORAM？
教Is the $\mathrm{OH} \log (N)$ or $\log (N)^{3}$ or somewhere in between？

March 2010: Information Theoretic Solutions

- Ivan Damgård, Sigurd Meldgaard, Jesper Buus Nielsen: Perfectly Secure Oblivious RAM without Random Oracles. TCC 2011
- Posted on IACR ePrint on 2 March 2010
- AOH: $\log \left(N^{3}\right.$
- Perfect security
- Also:
- Method for ORAM in MPC
- $N \log (N)$ lower bound on amount of randomness ORAM must store
- Milkós Ajtai. Oblivious RAMs without cryptographic assumptions. STOC 2010
- Posted on ECCC on 6 March 2010
- STOC had deadline November 52009
- Poly-logarithmic overhead, constant in exponent not explicitly given
- Statistical error for t operations: $t^{\text {tog(t) }}$

2011: Worst-Case Poly-Log OH

- Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, Mingfei Li: Oblivious RAM with O((log N $)^{3}$) Worst-Case Cost. ASIACRYPT 2011
- Worst case $\log (N)^{3}$
- Amortised overhead $\log (N)^{2}$ when using DMN'11 as a tool: ORAM on small internal buckets
- Statistical
- Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, Roberto Tamassia: Oblivious RAM simulation with efficient worstcase access overhead. CCSW 2011
- Worst case $N^{1 / 2 l o g(N)^{2}}$
- Worst case $\log (N)^{2}$ with large client memory.
- Computational
- Eyal Kushilevitz, Steve Lu, Rafail Ostrovsky: On the (in)security of hash-based oblivious RAM and a new balancing scheme. SODA 2012
- IACR ePrint August 2011
- Worst case $\log (N)^{2} / \log (\log (N))$
- Computational
- The last two paper uses "deamortisation":
- Have two hash maps on each level
- Shuffle one while using the other and swap when the shuffling is done

2011-2013: Path ORAM

- Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, Mingfei Li: Oblivious RAM with O((log N)³) Worst-Case Cost. ASIACRYPT 2011
- Worst case overhead $\log (N)^{3}$
- Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Srinivas Devadas: Path ORAM: an extremely simple oblivious RAM protocol. CCS 2013
- Worst case overhead $\log (N)^{2}$
- PathORAM Idea:
- Fix the tree (do not shuffle the levels as Ajtai and DMN'11)
- Store V_{p} on path to uniformly random leaf L_{p}
- Use smaller ORAM L with size $N^{\prime}=N / 2$ and word size $w=2 \log (N)$
- For all $p^{\prime}=p$ div 2 store $\left(L_{2 p+0,} L_{2 p+1}\right)$ in $L[p]$

Path ORAM

- Divide layer i into 2^{i} buckets of size $O(1)$
- Impose a BST on the buckets
- Do not shuffle the levels!
- Assign position p of array to a uniformly random leaf L_{p} of the tree - Invariant: $\left(L_{p}, V_{p}\right)$ is always to be found in bucket on path to L_{p}
- Inject fresh (L_{p}, V_{p}) at root after access
- Read/write by r/w entire path to L_{p}
- Push (L, V) pairs as low as possible before writing the path back
- Use a stash to store overflow from buckets
- Worst-case OH: $\log (N)$

Its ORAMs All the Way Down!

- Recursively store position maps for levels of size N_{i} in ORAMs of size $N_{i-1}=N_{i} / 2$
- Statistical security
- Worst-case OH: $\log (N)^{2}$
- $\sum_{i=1, \ldots, \log (N)} \log \left(2^{i}\right) \approx \log (N)^{2}$
- If the word size is $w=\log (N)^{2}$ then the OH becomes $\log (N)$
- Not trivial
- Not unreasonable in practice

2016-2018: What About that Lower Bound?!

- Elette Boyle, Moni Naor: Is There an Oblivious RAM Lower Bound? ITCS 2016
- Points out the following about the Goldreich-Ostrovsky lower bound:
- It only applies to "balls-in-bins" algorithms, i.e., algorithms where the ORAM may only shuffle stored values around and not apply any sophisticated encoding of the data
- It only applies to computationally unbounded adversaries
- But it applies even to off-line algorithms and improving it will involve switching to considering on-line or proving unconditional lower bounds of circuits for sorting
- Kasper Green Larsen, Jesper Buus Nielsen: Yes, There is an Oblivious RAM Lower Bound! CRYPTO 2018
- Applies to all types of on-line algorithms
- Applies also to computationally bounded adversaries

2016-2018: What About that Lower Bound?!

- Kasper Green Larsen, Jesper Buus Nielsen: Yes, There is an Oblivious RAM Lower Bound! CRYPTO 2018
- Applies to all types of on-line algorithms
- Applies also to computationally bounded adversaries
- Mihai Patrascu, Erik D. Demaine: Logarithmic Lower Bounds in the Cell-Probe Model. SIAM
J. Comput. 35(4) 2006
- Introduced the "Information transfer" technique
- On-line algorithms turns time into location by putting events on a time-line
- Reasoning about how information moves around in space is much, much easier than reasoning about computational complexity
- Put a binary tree on top to reason about how information is moved
- LN'18: The "Information transfer" technique normally does not apply to array maintenance but when combined with obliviousness suddenly it does

PanORAMa

After the Cuckoo:
Lookup is log(N)
Amortised OH is $\log (N)^{2}$ because of having to shuffle the levels

Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo: PanORAMa: Oblivious RAM with Logarithmic Overhead. FOCS 2018

Amortised Overhead: $\log (N) \log (\log (N))$
No need to shuffle merged levels:
The remaining, untouched elements are already randomly permuted!
Extract the untouched elements
One can do this in $\mathrm{O}(N \log (\log (N)))$
Sorting small buckets of size $\mathrm{O}(\log (\mathrm{N})$
Randomly merge the permuted untouched elements
Only has to add $O(M$ randomness but suffers $\log (\log (N)$ to do it obliviously

OptORAMa

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, Elaine Shi: OptORAMa: Optimal Oblivious RAM. EUROCRYPT 2020

Amortised Overhead: O(log N)
Has O(M) oblivious, deterministic tight compaction aloorithm!
Tight compactions: Sort elements marked 0 or 1 such that all marked 0 appear first
Circumvents 0-1 lower bound by doing non-comparison operations
Extract the unused elements using tight compaction
Merge-shuffle: Just a "reverse tight compaction" which is O(M)
Paper is 73 pages so I must have simplified somewhere:-)

All at Once!?!?!

- Perfect, worst-case, $\mathrm{OH}=\log (N)$?
- Michael A. Raskin, Mark Simkin: Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead. ASIACRYPT 2019
- Worst case $\mathrm{OH}=\sqrt{ } \mathrm{N}$
- Computational, worst-case, $\mathrm{OH}=\log (\mathrm{N})$?
- Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Elaine Shi: Oblivious RAM with Worst-Case Logarithmic Overhead. CRYPTO 2021
- New deamortisation technique compatible with merge-shuffle and compaction
- Perfect, amortised, $\mathrm{OH}=\log (\mathrm{N})$?
- T.-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, Kartik Nayak: Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions. ITC 2021
- $\mathrm{AOH}=\mathrm{O}\left(\log (N)^{3} / \log (\log (N))\right)$
- Perfect, worst-case, $\mathrm{OH}=\log (N)$?
- Statistical, worst-case, $\mathrm{OH}=\log (N)$
- Path ORAM for word-size $\log (N)^{2}$

ORAMs with Special Properties

- ORAMs good for MPC
- Marcel Keller, Peter Scholl: Efficient, Oblivious Data Structures for MPC. ASIACRYPT 2014
- Xiao Wang, T.-H. Hubert Chan, Elaine Shi: Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower Bound. CCS 2015
- Parallel ORAM
- Elette Boyle, Kai-Min Chung, Rafael Pass: Oblivious Parallel RAM and Applications. TCC 2016
- Round Complexity
- David Cash, Andrew Drucker, Alexander Hoover: A Lower Bound for One-Round Oblivious RAM. TCC 2020
- $\sqrt{ } \mathrm{N}$ Overhead
- Oh a $\sqrt{ }$ again!?

- Random-index ORAM

- Shai Halevi, Eyal Kushilevitz: Random-Index Oblivious RAM. TCC Yesterday.
- This one is One-Round...

Other Oblivious Data Structures

- Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov, Yan Huang: Oblivious Data Structures. CCS 2014
- Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen: Lower Bounds for Oblivious Data Structures. SODA 2019
- $\Omega(\log N)$ lower bounds for oblivious stacks, queues, deques, priority queues and search trees
- Giuseppe Persiano, Kevin Yeo: Lower Bounds for Differentially Private RAMs. EUROCRYPT 2019
- Constant DP security of a single operation implies $\Omega(\log N) \mathrm{OH}$
- Information transfer does not work here, introduces chronogram technique to ORAM
- Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. STOC 1989
- Kasper Green Larsen, Mark Simkin, Kevin Yeo: Lower Bounds for Multi-server Oblivious RAMs. TCC 2020
- K servers of which the adversary can see the access pattern to only one
- If better than approx $1 / K$ security then $\mathrm{OH} \Omega(\log N)$
- Zahra Jafargholi, Kasper Green Larsen, Mark Simkin: Optimal Oblivious Priority Queues. SODA 2021
- $\mathrm{OH}=10 \log (N)$
- Ilan Komargodski, Elaine Shi: Differentially Oblivious Turing Machines. ITCS 2021 - OH O($\log \log N)$
- Differentially private stack can be done with $\mathrm{OH} \mathrm{O}(\log \log N)$.

Thanks for Listening

How to Record Quantum Queries

and Applications to Quantum Indifferentiability

Mark Zhandry

Princeton University \& NTT Research

The (Classical) Random Oracle Model (ROM)

The (Classical) Random Oracle Model (ROM)

[Bellare-Rogaway'93]

Typical ROM Proof: On-the-fly Simulation

Typical ROM Proof: On-the-fly Simulation

Allows us to:

- Know the inputs adversary cares about
- Know the corresponding outputs
- (Adaptively) program the outputs
- Easy analysis of bad events (e.g. collisions)

The Quantum Random Oracle Model (QROM)

Problem with Classical Proofs in QROM

Problem with Classical Proofs in QROM

Observer Effect:
 Learning anything about quantum system disturbs it

$\frac{\text { H. }}{\text { (r) }}$ answers obliviously, so no disturbance

Reduction must answer obliviously, too?

Typical QROM Proof

H fixed once and for all at beginning

Limitations

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs?
- Easy analysis of bad events (e.g. collisions)?

Limitations

Allows us to:

- INnow the inputs adversary cares about? X
- 皆now the corresponding outputs?
-(Adaptively) program the outputs?
/ $/ X$
- Easy analysis of bad ovents (e.g. collicions)? X

Limitations

Good News: Numerous positive results (30+ papers)

Bad News: Still some major holdouts
Indifferentiable domain extension

Fiat-Shamir

Luby-Rackoff

ROM è ICM

Example: Domain Extension for Random Oracles

Q: Does Merkle-Damgård preserve random oracle-ness?

Example: Domain Extension for Random Oracles

A: Yes(ish) [Coron-Dodis-Malinaud-Puniya’05]
How? Indifferentiability [Maurer-Renner-Holenstein’04]

Quantum Indifferentiability?

Concurrently considered by [Carstens-Ebrahimi-Tabia-Unruh'18]

Quantum Indifferentiability?

This Work:

On-the-fly simulation of quantum random oracles

(aka Compressed Oracles)

Step 1: Quantum-ify (aka Purify)

- Quantum-ifying (aka purifying) random oracle:

Step 1: Superposition of Oracles

Initial oracle state:

Oracle's state

Adversary's query

Step 2: Look at Fourier Domain

Step 2: Look at Fourier Domain

Step 3: Compress

Observation:

After \mathbf{q} queries, $\hat{\mathbf{H}}$ is non-zero on at most \mathbf{q} points

Step 3: Compress

Initial oracle state: $\}$
Query (x, y, $\left.D^{\wedge}\right)$:
(1) If $\nexists\left(x, y^{\prime}\right) \in{ }^{\wedge} D: \mathcal{D}=D^{\wedge}+(x, 0)$
(2) Replace $\left(x, y^{\prime}\right) \in \wedge^{\wedge} \mathbf{D}$ with ($\mathbf{x}, \mathbf{y}^{\prime} \oplus \mathbf{y}$)
(3) If $(\mathbf{x}, \mathbf{0}) \in^{\wedge} \mathbf{D}$: remove it

Step 4: Revert back to Primal Domain

Step 4: Revert back to Primal Domain

Compressed Oracles

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs? x
Fixed by [Don-Fehr-Majenz-Schaffner'19,Liu-Z'19], later this session!
- Easy analysis of bad events (e.g. collisions)? \downarrow

So, what happened?

Recall...

Observer Effect:

Learning anything about quantum system disturbs it

Compressed oracles decode such disturbance

Caveats

Outputs in database $\neq \mathbf{0}$ in Fourier domain
$\Rightarrow y$ values aren't exactly query outputs

Examining $\mathbf{x , y}$ values perturbs state

\Rightarrow Still must be careful about how we use them

But, still good enough for many applications...

Applications In This Work

Quantum Indiff. of
 Merkle-Damgård

Easily re-prove quantum lower bounds: $\Omega\left(\mathbf{N}^{1 / 2}\right)$ queries needed for Grover search $\Omega\left(\mathbf{N}^{1 / 3}\right)$ queries needed for collision finding $\Omega\left(\mathbf{N}^{1 /(k+1)}\right)$ queries needed for \mathbf{k}-SUM

CCA-security of plain
Fujisaki-Okamoto

Further Applications

[Alagic-Majenz-Russell-Song'18]:
Quantum-secure signature separation
[Liu-Z'19a]: Tight bounds
for multi-collision problem
[Liu-Z'19b]: Fiat-Shamir
([Don-Fehr-Majenz-Schaffner'19]: direct proof)
[Czajkowski-Majenz-Schaffner-Zur'19]:
Indifferentiability of Sponge
[Chiesa-Manohar-Spooner'19]:
[Hosoyamada-Iwata'19]:
zk-SNARKs
[Bindel-Hamburg-Hülsing-Persichetti' 19]:
Tighter CCA security proofs

Lessons Learned

Always purify your oracles!

