Advanced Cryptography
CS 655

Week 14:
e Quantum Random Oracle Model

Homework 3: Due tonight at 11:59PM

Spring 2023



Key Encapsulation Mechanism (KEM)

* Three Algorithms
* Gen(1™, R) (Key-generation algorithm)
* Input: Random Bits R
* Output: (pk,sk) € K
* Encaps (1", R)
* Input: security parameter, random bits R
* Output: Symmetric key k € {0,1}Y™ and a ciphertext c
* Decaps,.(c) (Deterministic algorithm)
* Input: Secret key sk € K and a ciphertex c
* Output: a symmetric key{0,1}¥™ or 1 (fail)

* Invariant: Decaps,(c)=k whenever (c,k) = Encapspk(ln, R)



Application: KEM

* Alice knows Bob’s public key pk; and wants to send messages
mq, ..., My,

* Alice runs (¢, K) = Encaps,, (1"; R) to obtain symmetric key K

* Alice uses symmetric key to encrypt my, ..., my, i.e., ¢;= Encg(m;)
* Example: Encyk is AES-GCM

* Alice sends ¢, ¢4, ..., ¢ to Bob

* Bob recovers K = Decapsgy, (c) and then can decrypt ¢y, ..., ¢ tO
obtain mq, ..., my, i.e., m;= Deck(c;)
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KEM from RSA

e Recap: CCA-Secure KEM from RSA in Random Oracle Model

* RSA yields CPA-Secure KEM in Random Oracle Model
* (c =r°mod N,K = H(r)) « Encaps;, (1"; R) and Decapsg,(c) =
H(c%*mod N)
* Security based on RSA-Inversion assumption

* Post-Quantum Security?
* Shor’s Algorithm breaks RSA by factoring N
* Is random oracle model valid for quantum attacker?



Trapdoor Permutation

* Three Algorithms
* Gen(1", R) (Key-generation algorithm)
* Input: Random Bits R
* Qutput: (pk,sk) € I
* y = Eval | (x) (Deterministic algorithm)
* Input: x and public key pk; Output:y
* Rev (y) (Deterministic algorithm)

* |nput: Secret trapdoor key sk € K and a ciphertex c
* Qutput: x

* Invariant: Rev (Eval  (x))=x whenever (pk, sk) = Gen(1", R)

* Security Game: Challenger picks (pk, sk) = Gen(1", R) and generates
random x. Attacker gets pk and Eval  (x). Attacker tries to recover x.



KEM from Trapdoor Permutation

e CCA-Secure KEM from any trapdoor permutation in Random Oracle
Model

» (¢ = Eval ,(r),K = H(r)) < Encaps, (1"; R) and
* Decapsg, (c) = H(Rev,(c))

* Security proof in random oracle model
* Any KEM attacker can break security of trapdoor permutation.



KEM Security Reduction

(c = Eval, (r),K = H(r)) «< Encaps, (1"; R) and
Decapsg,(c) = H(Rev,(c))

Given KEM attacker A define Trapdoor Permutation attacker B
B is given pk and Eval ) (7) as input

B simulates KEM challenger and generates (¢ = Evalpk(r)) and a random key K

B sends (pk, c,K) to KEM attacker A and begins simulating A.

For each random oracle query x; made by A, B checks to see if ¢ = Evalpk(xi); if so we have found

r =X

B keeps track of all of A’s random oracle queries x4, ... x, and programs random responses 17, ... 7;.
* Caveat: If Evalpk(xj) = ¢; for some previous query to decaps then return the associated key K;.

When A queries the Decapsg (c;) oracle on input ¢; we check to see if ¢; = Eval  (x;) for some
j- If so we return the associated key r; = H(x;). If not return a random key K;.



KEM Security Reduction

(c = Eval \(r),K = H(r)) < Encaps,,(1"; R) and
Decapsg(c) = H(Rev,,(c))

Given KEM attacker A define Trapdoor Permutation attacker B

B is given pk and Eval () as input
* B simulates KEM challenger and generates (¢ = Evalpk(r)), a random bit b and a random keys K
* B sends (pk, ¢, Kp) to KEM attacker A and begins simulating A.
* For each random oracle query x; made by A, B checks to see if ¢ = Eval,, (x;); if so we have found r = x;
* B keeps track of all of A’s random oracle queries x4, ... X, and programs random responses 1y, ... 7.
* Caveat: If Evalpk(xj) = ¢; for some previous query to decaps then return the associated key K;.

* When A queries the Decapsg (c;) oracle on input ¢; we check to see if ¢; = Eval (x;) for some j. If so we return the
associated key r; = H(x;). If not return a random key K;.

* Analysis Sketch: If A does not query H(r) then it has no advantage in original KEM game. =» Successful KEM
attacker will query H(1") with non-negligible probability. = B wins trapdoor inversion game with non-
negligible probability.



KEM from Trapdoor Permutation

e CCA-Secure KEM from any trapdoor permutation in Random Oracle Model
* (¢ = Eval ,(r),K = H(r)) < Encaps,, (1"; R) and
+ Decapsg,(c) = H(Rev,,(c))

 Security proof in random oracle model
* Any KEM attacker can break security of trapdoor permutation.

* Post-Quantum Security?
e Assume trapdoor permutation is PQ-safe e.g., based on LWE, Lattices etc...
* Does reduction in classical ROM imply PQ-security?



Elephant in the Room?

* Shor’s Factoring Algorithm
* Breaks: RSA-OAEP, RSA-FDH, Pallier....
* Solves Discrete Log
* Breaks: EI-Gamal, EC-DSA, Schnorr Signatures,...

* Grover’s Algorithm
* Function Inversion: Given H: {0,1}"* - {0,1}" andy =
H(x) find x" such thaty = H(x")
* Classical random oracle model: requires Q(2™) queries
» Grover’s Search: Runs in time 0(2™/2)
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Elephant in the Room?

* Shor’s Factoring Algorithm
* Breaks: RSA-OAEP, RSA-FDH, Pallier....
* Solves Discrete Log
* Breaks: EI-Gamal, EC-DSA, Schnorr Signatures,...
* Basically, most deployed public key crypto

* NIST PQC Competition
* Public Key Encryption (PKE): Crystals-Kyber
e Hardness: Learning With Errors (LWE) (Specifically: Module-LWE)

* Integration in Crypto Libraries: Cloundfare (CIRCL), Amazon (AWS Key
Management), IBM

* Digital Signatures: Three Winners
e Crystals-Dilithium
* Falcon (Lattice Based Signatures):

* Hardness: Short Integer Solution (SIS) over NTRU Lattices
e SPHINCS+ (Hash Based Construction)




Random QOracle Model?

* Heuristic justification for Random Oracle Model

e Security proof rules out generic attacks” that use a hash function like
SHA3 as a black box.

* Hash functions such as SHA3 are incredibly well designed = it is
difficult for an attacker to do anything but run the code for SHA3 in a
black box manner...

* Experience: Security proof in ROM seems to imply security in practice.

* Grover’s Algorithm
* Function Inversion: Given H:{0,1}" — {0,1}" and y = H(x) find x’
such thaty = H(x')
* Classical random oracle model: requires Q(2™) queries
» Grover’s Search: Runs in time 0(2™/2)
* Grover’s search actually uses hash function in blackbox manner!
* What gives?




Quantum Computation (Basics)

Classical State (bits): x € {0,1}"
Quantum State (qubits) superposition

¢ = z Ay |X)

x€{0,1}"

Amplitudes: a, is a complex number a,, = a + bi with magnitude
la,| =+a? + b2 = |a,|? = a? + b?

Melas>urement (in standard basis): observe x with probability |a,|* = state ¢ collapses
to |x

Sum of squared amplitudes is always 1

|ax|2 =1

x€{0,1}"



Quantum Computation (Basics)

Classical State (bits): x € {0,1}"
Quantum State (qubits) superposition

QY = Z ax|x>
x€{0,1}"

Amplitudes: a, is a complex number a,, = a + bi with magnitude
la,| =+ a? + b2 = |a,|? = a? + b?

Partial Measurement (Example): Measure first qubit
* observe 1 with probability X, cco13n-1 a1, |, |?=> state ¢ collapses to c; Dixefo,1)n-1 A1x|X)
* observe 0 with probability X, cco13n-1 (o, |ty |>=> state @ collapses to ¢, Dixef0,1}n-1 Xox|X)

Sum of squared amplitudes is always 1
C1 z la1xl? =1 and ¢ z laox|® =1
xefo0,1}~1 x€{0,1}"—1



Quantum Measurement (Basics)

* Quantum (Partial) Measurement: Necessarily alters the quantum
state * RO

o
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Quantum Measurement (Basics)

* Quantum (Partial) Measurement: Necessarily alters the quantum
state

* ldea: Replicate the state and measure the copy?

* Impossible! No-Cloning Theorem = Impossible to create an
independent and identical copy of an arbitrary/unknown quantum
state.



Quantum Computation (Basics)

* Quantum Gate (unitary transform): U;|@;) =|@;+1)
e Unitary Transform: UU* = U*U = | (identity) where U* is conjugate transpose
* Implication: Quantum Computation is Invertible:

Ui lpiv1) = U; (Uiley)) = o)

* Quantum Logic Gates
 Hadamard
e (Controled Not) CNOT
* CCNOT



Operator Gate(s) Matrix

. ] Pauli-X (X) X[ —D- [? cﬂ
Hadamard (Single Bit) I o
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Hadamard (Multiple Bits)

Qubit 1: [0) - H — —|O) +
Qubit 2: |0) > H - —|0) +

b
= 1)

Qubitn: |0) - H — —|O) + —= |1)

All at once

07) > HO™
x€{0,1}"
(Uniform over all bitstrings)

V277 x)

Operator

Gate(s)

Matrix

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7/8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)

|
N
|

I
o] [z

|
H
|

UUUUUUUU
UUUUUUUU
[[[[[[[[[[[[[[
DDDDDDDD
UUUUUUUU

UUUUUUUU




Quantum Oracle

 Consider real world instantiation of function F:{0,1}" — {0,1}"

* Given efficient code to compute F = Can define (quantum) circuit Qx

to compute F.
x,0™) = Qr = |x, F(x))

* More generally
%, ¥} = QF = |x, yOF (x))
* Reversible (Uncomputation)

%, yOF (x)) = |x, y®F (x)®F (x)) = |x,y)



Grover’s Algorithm

 Consider real world instantiation of function F:{0,1}" — {0,1}"
* Idea: [0™,0™) - HO"QI®™ - ¥ o 13n V27 ™|x, 0™)
2 V27 x, 0") = Qr = 2 V27 x, F(x))

x€{0,1}"1 x€{0,1}"
* We just evaluated F on all inputs by applying circuit Qr once!

* Quantum Pre-Image Attack in O(1) time?
* Problem: We must eventually measure our quantum state...

2
We observe |x', F(x') = y) with probability v2—" = 27"



Quantum Oracle

 Consider real world instantiation of function F:{0,1}" — {0,1}"
* Idea 1: [0™,0™) —» HO"QI®™ - ¥, o 1yn V27 |x, 0™)
2 V27 x, 0") = Qr = 2 V27 x, F(x))

x€{0,1}"1 x€{0,1}"
* Idea 2: Try to boost amplitude on target state(s) |x’, F(x") = y)



Quantum Oracle

 Consider real world instantiation of function F:{0,1}" — {0,1}"
* Idea 1: [0™,0™) —» HO"QI®™ - ¥, .o 1yn V27 |x, 0™)
Z V27 x,0") = Qp = z V27 x, F(x))

xe{(),l}n XE{O,l}n
* Negation: Can negate amplitudes where F(x) =y

V27 x, F(x)) — z V27 x, F(x))
x€{0,1}":F(x)=+y x€{0,1}":F(x)=y
This step requires us to query oracle Q



Quantum Oracle

* Negation: Can negate amplitudes where F(x) =y

V27 x, F(x)) — 2 V27" x, F(x))
x€{0,1}":F(x) =y x€{0,1}:F(x)=y
This step requires us to query oracle Q

Amplitude BLEHHE

I oy = Negation = =

IIIIIIIIII




Amplitude

Quantum Oracle

* Reflection: Can reflect amplitudes around mean

\/F(l —&)|x, F(x)) +

x€{0,1}":F(x)=+y

= Negation =

Amplitude

IIIII

x€{0,1}"":F(x)=y

= Reflection =

(3 — €HV27|x, F (x))

Amplitude

Items
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Quantum Oracle

 Consider real world instantiation of function F:{0,1}"* - {0,1}"
* Idea 1: [0, 0™) —» H®"®I®" > ¥ () 13n V27 |x, 0™)
Z V27 x,0") = Qr = Z V27 x, F(x))
x€{0,1}" xe{0,1}"

* Idea 2: Try to boost amplitude on target state(s) |x’, F(x') = y)
* Negate + Reflect

» Repeat 0(v/2") times to ensure that we reach state Dixefo1}n Xx|x, F (X)) s.t

la,|? = 0.99
x€{0,1}"":F(x)=y



Quantum Random Oracle Model

* Motivation: Any real world hash function can be computed efficiently
by a quantum circuit = we can use Grover’s algorithm.

* Grover’s algorithm uses hash function as random blackbox, but
somehow the classical Random Oracle model does not capture power
of generic quantum attacker.

* Goal: Generic analysis tools to analyze the power of a quantum
attacker who uses hash function as a blackbox?



ROMvs qROM [BDF*11]
<Classical ROM> <Quantum ROM>

- L & s F
JL X,y S JL
H(x) ﬁ Z Ay y|x, yOH (X))
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ROMvs qROM [BDF*11]
<Classical ROM> <Quantum ROM>

® L e e
JL X,y S JL
H(x) ﬁ Z Ay y|x, yOH (X))

2 XY
<

N

« Security proofs are much more challenging in the gROM

0 Programmability & Extractability (ROM: v/, gROM: X)
0 Recording quantum queries?




How to Record Quantum Queries
and Applications to Quantum Indifferentiability

Mark Zhandry .-;)9

Princeton University & NTT Research
@






The (Classical) Random Oracle
Model (ROM)

[Bellare-Rogaway’93]
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The (Classical) Random Oracle
Model (ROM)

[Bellare-Rogaway’93]

\ Cryptosystem




Typical ROM Proof: On-the-fly Simulation

Input | Output Query(x, D):
If (x,y) €D:
X
- Y1 Return(y,D)
X, | Y2 Else:
X3 Y3 y BSY
D* = D+(x,y)
Xa | Ya Return(y,D’)




Typical ROM Proof: On-the-fly Simulation

Allows us to:

* Know the inputs adversary cares about v
* Know the corresponding outputs v
* (Adaptively) program the outputs v

* Easy analysis of bad events (e.g. collisions)



The Quantum Random Oracle Model
(QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-2’11]

a\é
@O
Q?’?}

Now standard in post-quantum crypto



Problem with Classical Proofs in QROM

nputg | Output
X4 Y1
How do we record
the x values? X2 Y2
l x3 1 y3
\CARZ



Problem with Classical Proofs in QROM

Observer Effect:
Learning anything about quantum system disturbs it

/’

\

n
HJ answers obliviously, so no disturbance

4

Reduction must answer obliviously, too?



Typical QROM Proof

H fixed once and for all at beginning



Limitations

Allows us to:
* Know the inputs adversary cares about?

* Know the corresponding outputs?
* (Adaptively) program the outputs?

* Easy analysis of bad events (e.g. collisions)?



Limitations

Allows us to:

«kreow-the-irputsadversary-caresaboeut: X
~know-the-correspordingoutputs? X
*(Adaptively)} program the outputs? /X



Limitations

Good News: Numerous positive results (30+ papers)

Bad News: Still some major holdouts

Indifferentiable

domain extension
Fiat-Shamir

Luby-Rackoff
ROM e ICM



Example: Domain Extension for Random Oracles

Q: Does Merkle-Damgard preserve random oracle-ness?

\ 4




Example: Domain Extension for Random Oracles

A: Yes(ish) [Coron-Dodis-Malinaud-Puniya’05]
How? Indifferentiability [Maurer-Renner-Holenstein’04]
Real World Ideal World

MD % H :Sim
\ =\

Thm [Ristenpart-Shacham-Shrimpton’11]:
Indifferentiability = as good as RO for “single stage games”




Quantum Indifferentiability?

Concurrently considered by [Carstens-Ebrahimi-Tabia-Unruh’18]

Real World |deal World

S

: H
MD QY - Wﬁm




Quantum Indifferentiability?

* Stat tO 3 St r@m@(ﬁe.m,sion IS

. [Carstens-Ebrahimi-Takia-Unruh’18]:
Proof ide esstr uth indom H



This Work:

On-the-fly simulation of
guantum random oracles

(aka Compressed Oracles)




Step 1: Quantume-ify (aka Purify)

* Quantum-ifying (aka purifying) random oracle:
=) HB now single quantum system

Reminiscent of old impossibilities for unconditional
guantum protocols [Lo’97,Lo-Chau’97,Mayers’97,Nayak’99]



Step 1: Superposition of Oracles

Initial oracle state: @

Quer

Oracle’s state

Adversary’s query



Step 2: Look at Fourier Domain




Step 2: Look at Fourier Domain

e

Initial oracle state: Z(x) = 0

Query(x, y, H): H = A®P, ,

y ifx=x’
O else

|
. Fourier E'A-T2
Proof: T IA T

Px,y(x’) = {




Step 3: Compress

Observation:

After q queries, H is non-zero on at most q points /
\




Step 3: Compress

Initial oracle state: {} l

Query(x, y, DY:
(1) If A(x,y’)E"*D: D = B%(x,0)

(2) Replace (x,y’)E"D
with (x,y’ey)

(3) If (x,0) €E™D: remove it




Step 4: Revert back to Primal Domain




Step 4: Revert back to Primal Domain

npu utput

PRIER
Roughly analogous

@ n X2 || Y2 | to classical on-the-

X3 V3 fly simulation

Xg Ya

7N

Points adversary cares about ~Corresponding outputs




Compressed Oracles

Allows us to:
* Know the inputs adversary cares about? v

* Know the corresponding outputs? v

* (Adaptively) program the outputs? X

Fixed by [Don-Fehr-Majenz-Schaffner’19,Liu-2’19], later this session!

* Easy analysis of bad events (e.g. collisions)? v/



So, what happened?

Recall...

Observer Effect:
Learning anything about quantum system disturbs it

)
G learns about %? through queries

-8
%7 gets disturbed

Compressed oracles decode such disturbance



Caveats

Outputs in database #0 in Fourier domain
m) Yy values aren’t exactly query outputs

Examining x,y values perturbs state
m) Still must be careful about how we use them

But, still good enough for many applications...



Applications In This Work

Quantum Indiff. of
Merkle-Damgard

Easily re-prove quantum lower bounds:
Q(N1/2) queries needed for Grover search
Q(N1/3) queries needed for collision finding
Q(N1/(k+1)) queries needed for k-SUM

CCA-security of plain
Fujisaki-Okamoto



Further Applications

[Alagic-Majenz-Russell-Song’18]:
Quantum-secure signature separation
[Liu-Z’19a]: Tight bounds
for multi-collision problem
[Liu-Z’19b]: Fiat-Shamir
( [Don-Fehr-Majenz-Schaffner’19]: direct proof)

[Czajkowski-Majenz-Schaffner-Zur’19]:
Indifferentiability of Sponge
[Hosoyamada-lwata’19]:
[Chiesa-Manohar-Spooner’19]: 4-round Luby-Rackoff
zk-SNARKs
[Bindel-Hamburg-Hulsing-Persichetti’19]:
Tighter CCA security proofs



Lessons Learned

Always purify your oracles!



Thanks for Listening




