Advanced Cryptography CS 655

Week 14:

Quantum Random Oracle Model

Homework 3: Due tonight at 11:59PM

Key Encapsulation Mechanism (KEM)

- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - Encaps_{pk} $(1^n, R)$
 - Input: security parameter, random bits R
 - Output: Symmetric key $k \in \{0,1\}^{\ell(n)}$ and a ciphertext c
 - Decaps_{sk}(c) (Deterministic algorithm)
 - Input: Secret key $sk \in \mathcal{K}$ and a ciphertex c
 - Output: a symmetric key $\{0,1\}^{\ell(n)}$ or \bot (fail)
- Invariant: Decaps_{sk}(c)=k whenever (c,k) = Encaps_{pk}(1ⁿ, R)

Application: KEM

- Alice knows Bob's public key pk_b and wants to send messages m_1, \dots, m_k
- Alice runs $(c, K) = \text{Encaps}_{pk_h}(1^n; R)$ to obtain symmetric key K
- Alice uses symmetric key to encrypt $m_1, ..., m_k$ i.e., $c_i = \operatorname{Enc}_{\mathbf{K}}(m_i)$
 - Example: Enc_K is AES-GCM
- Alice sends c, c_1, \dots, c_k to Bob
- Bob recovers $K = Decaps_{sk_b}(c)$ and then can decrypt c_1, \ldots, c_k to obtain m_1, \ldots, m_k i.e., $m_i = Dec_K(c_i)$

KEM CCA-Security ($KEM_{A,\Pi}^{cca}(n)$)

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t}$$

$$\Pr[\text{KEM}_{A,\Pi}^{\text{cca}} = 1] \leq \frac{1}{2} + \mu(n)$$

Random bit b (pk,sk) = Gen(.)

$$(c, k_0) = \operatorname{Encaps}_{pk}(.)$$

 $k_1 \leftarrow \{0, 1\}^{n_4}$

KEM from RSA

- Recap: CCA-Secure KEM from RSA in Random Oracle Model
- RSA yields CPA-Secure KEM in Random Oracle Model
 - $(c = r^e mod \ N, K = H(r)) \leftarrow \text{Encaps}_{pk}(1^n; R)$ and $\text{Decaps}_{sk}(c) = H(c^d mod \ N)$
- Security based on RSA-Inversion assumption
- Post-Quantum Security?
 - Shor's Algorithm breaks RSA by factoring N
 - Is random oracle model valid for quantum attacker?

Trapdoor Permutation

- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - $y = \text{Eval}_{pk}(x)$ (Deterministic algorithm)
 - Input: x and public key pk; Output: y
 - $Rev_{sk}(y)$ (Deterministic algorithm)
 - Input: Secret trapdoor key $sk \in \mathcal{K}$ and a ciphertex c
 - Output: x
- Invariant: $Rev_{sk}(Eval_{pk}(x))=x$ whenever $(pk, sk)=Gen(1^n, R)$
- Security Game: Challenger picks $(pk, sk) = \text{Gen}(1^n, R)$ and generates random x. Attacker gets pk and $\text{Eval}_{pk}(x)$. Attacker tries to recover x.

KEM from Trapdoor Permutation

- CCA-Secure KEM from any trapdoor permutation in Random Oracle Model
- $(c = \text{Eval}_{pk}(r), K = H(r)) \leftarrow \text{Encaps}_{pk}(1^n; R)$ and
- $\mathbf{Decaps_{sk}}(c) = H(\mathbf{Rev_{sk}}(c))$
- Security proof in random oracle model
 - Any KEM attacker can break security of trapdoor permutation.

KEM Security Reduction

- $(c = \text{Eval}_{pk}(r), K = H(r)) \leftarrow \text{Encaps}_{pk}(\mathbf{1}^n; R)$ and
- **Decaps**_{sk}(c) = $H(Rev_{sk}(c))$
- Given KEM attacker A define Trapdoor Permutation attacker B
- B is given pk and $Eval_{nk}(r)$ as input
 - B simulates KEM challenger and generates $(c = \text{Eval}_{nk}(r))$ and a random key K
 - B sends (pk, c, K) to KEM attacker A and begins simulating A.
 - For each random oracle query x_i made by A, B checks to see if $c = \text{Eval}_{pk}(x_i)$; if so we have found $r = x_i$
 - B keeps track of all of A's random oracle queries $x_1, \dots x_q$ and programs random responses $r_1, \dots r_q$.
 - Caveat: If $\operatorname{Eval}_{\operatorname{pk}}(x_j) = c_i$ for some previous query to decaps then return the associated key K_i .
 - When A queries the $\mathbf{Decaps}_{sk}(c_i)$ oracle on input c_i we check to see if $c_i = \mathrm{Eval}_{pk}(x_j)$ for some j. If so we return the associated key $r_j = H(x_j)$. If not return a random key K_i .

KEM Security Reduction

- $(c = \text{Eval}_{pk}(r), K = H(r)) \leftarrow \text{Encaps}_{pk}(1^n; R)$ and
- **Decaps**_{sk} $(c) = H(Rev_{sk}(c))$
- Given KEM attacker A define Trapdoor Permutation attacker B
- B is given pk and $Eval_{pk}(r)$ as input
 - B simulates KEM challenger and generates $(c = \text{Eval}_{nk}(r))$, a random bit b and a random keys K
 - B sends (pk, c, K_h) to KEM attacker A and begins simulating A.
 - For each random oracle query x_i made by A, B checks to see if $c = \text{Eval}_{pk}(x_i)$; if so we have found $r = x_i$
 - B keeps track of all of A's random oracle queries $x_1, ... x_q$ and programs random responses $r_1, ... r_q$.
 - Caveat: If $\operatorname{Eval}_{\operatorname{pk}}(x_j) = c_i$ for some previous query to decaps then return the associated key K_i .
 - When A queries the $\mathbf{Decaps}_{sk}(c_i)$ oracle on input c_i we check to see if $c_i = \mathrm{Eval}_{pk}(x_j)$ for some j. If so we return the associated key $r_j = H(x_j)$. If not return a random key K_i .
- Analysis Sketch: If A does not query H(r) then it has no advantage in original KEM game. \rightarrow Successful KEM attacker will query H(r) with non-negligible probability. \rightarrow B wins trapdoor inversion game with non-negligible probability.

KEM from Trapdoor Permutation

- CCA-Secure KEM from any trapdoor permutation in Random Oracle Model
- $(c = \text{Eval}_{pk}(r), K = H(r)) \leftarrow \text{Encaps}_{pk}(\mathbf{1}^n; R)$ and
- $\mathbf{Decaps_{sk}}(c) = H(\mathbf{Rev_{sk}}(c))$
- Security proof in random oracle model
 - Any KEM attacker can break security of trapdoor permutation.
- Post-Quantum Security?
 - Assume trapdoor permutation is PQ-safe e.g., based on LWE, Lattices etc...
 - Does reduction in classical ROM imply PQ-security?

Elephant in the Room?

- Shor's Factoring Algorithm
 - Breaks: RSA-OAEP, RSA-FDH, Pallier....
 - Solves Discrete Log
 - Breaks: El-Gamal, EC-DSA, Schnorr Signatures,...
- Grover's Algorithm
 - Function Inversion: Given $H: \{0,1\}^n \to \{0,1\}^n$ and y = H(x) find x' such that y = H(x')
 - Classical random oracle model: requires $\Omega(2^n)$ queries
 - Grover's Search: Runs in time $O(2^{n/2})$

Elephant in the Room?

- Shor's Factoring Algorithm
 - Breaks: RSA-OAEP, RSA-FDH, Pallier....
 - Solves Discrete Log
 - Breaks: El-Gamal, EC-DSA, Schnorr Signatures,...
 - Basically, most deployed public key crypto
- NIST PQC Competition
 - Public Key Encryption (PKE): Crystals-Kyber
 - Hardness: Learning With Errors (LWE) (Specifically: Module-LWE)
 - Integration in Crypto Libraries: Cloundfare (CIRCL), Amazon (AWS Key Management), IBM
 - Digital Signatures: Three Winners
 - Crystals-Dilithium
 - Falcon (Lattice Based Signatures):
 - Hardness: Short Integer Solution (SIS) over NTRU Lattices
 - SPHINCS+ (Hash Based Construction)

Random Oracle Model?

- Heuristic justification for Random Oracle Model
 - Security proof rules out ``generic attacks" that use a hash function like SHA3 as a black box.
 - Hash functions such as SHA3 are incredibly well designed → it is difficult for an attacker to do anything but run the code for SHA3 in a black box manner...
 - Experience: Security proof in ROM seems to imply security in practice.
- Grover's Algorithm
 - Function Inversion: Given $H:\{0,1\}^n \to \{0,1\}^n$ and y=H(x) find x' such that y=H(x')
 - Classical random oracle model: requires $\Omega(2^n)$ queries
 - **Grover's Search:** Runs in time $O(2^{n/2})$
 - Grover's search actually uses hash function in blackbox manner!
 - What gives?

Quantum Computation (Basics)

- Classical State (bits): $x \in \{0,1\}^n$
- Quantum State (qubits) superposition

$$\varphi = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

- Amplitudes: α_x is a complex number $\alpha_x = a + bi$ with magnitude $|\alpha_x| = \sqrt{a^2 + b^2} \Rightarrow |\alpha_x|^2 = a^2 + b^2$
- Measurement (in standard basis): observe x with probability $|\alpha_x|^2 \rightarrow$ state φ collapses to $|x\rangle$
- Sum of squared amplitudes is always 1

$$\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$$

Quantum Computation (Basics)

- Classical State (bits): $x \in \{0,1\}^n$
- Quantum State (qubits) superposition

$$\varphi = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

• **Amplitudes:** α_x is a complex number $\alpha_x = a + bi$ with magnitude $|\alpha_x| = \sqrt{a^2 + b^2} \Rightarrow |\alpha_x|^2 = a^2 + b^2$

- Partial Measurement (Example): Measure first qubit
 - observe 1 with probability $\sum_{x \in \{0,1\}^{n-1}} \alpha_{1x} |\alpha_x|^2 \rightarrow \text{state } \varphi \text{ collapses to } c_1 \sum_{x \in \{0,1\}^{n-1}} \alpha_{1x} |x\rangle$
 - observe 0 with probability $\sum_{x \in \{0,1\}^{n-1}} \alpha_{0x} |\alpha_x|^2 \rightarrow \text{state } \varphi \text{ collapses to } c_0 \sum_{x \in \{0,1\}^{n-1}} \alpha_{0x} |x\rangle$
- Sum of squared amplitudes is always 1

$$c_1 \sum_{x \in \{0,1\}^{n-1}} |\alpha_{1x}|^2 = 1$$
 and $c_0 \sum_{x \in \{0,1\}^{n-1}} |\alpha_{0x}|^2 = 1$

Quantum Measurement (Basics)

• Quantum (Partial) Measurement: Necessarily alters the quantum

state

Quantum Measurement (Basics)

 Quantum (Partial) Measurement: Necessarily alters the quantum state

• Idea: Replicate the state and measure the copy?

 Impossible! No-Cloning Theorem → Impossible to create an independent and identical copy of an arbitrary/unknown quantum state.

Quantum Computation (Basics)

- Quantum Gate (unitary transform): $U_i | \varphi_i \rangle \Rightarrow | \varphi_{i+1} \rangle$
 - Unitary Transform: UU* = U*U = I (identity) where U* is conjugate transpose
 - Implication: Quantum Computation is Invertible:

$$U_i^* | \varphi_{i+1} \rangle = U_i^* (U_i | \varphi_i \rangle) = | \varphi_i \rangle$$

- Quantum Logic Gates
 - Hadamard
 - (Controled Not) CNOT
 - CCNOT

Hadamard (Single Bit)

$$H|0\rangle \Rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|1\rangle \Rightarrow \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{z}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$- \boxed{\mathbf{H}} -$		$rac{1}{\sqrt{2}}egin{bmatrix}1&&1\1&&-1\end{bmatrix}$
Phase (S, P)	-S $-$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$- \boxed{\mathbf{T}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		- *-	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

Hadamard (Multiple Bits)

Qubit 1:
$$|0\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

Qubit 2: $|0\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

Qubit 2:
$$|0\rangle \to H \to \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

Qubit n:
$$|0\rangle \to H \to \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

All at once

$$|0^n\rangle \to H^{\otimes n} \to \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x\rangle$$

(Uniform over all bitstrings)

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}-$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$- \boxed{\mathbf{H}} -$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		_ * _	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

- Consider real world instantiation of function $F: \{0,1\}^n \to \{0,1\}^n$
- Given efficient code to compute F \rightarrow Can define (quantum) circuit Q_F to compute F.

$$|x,0^n\rangle \to Q_F \to |x,F(x)\rangle$$

More generally

$$|x,y\rangle \to Q_F \to |x,y \oplus F(x)\rangle$$

Reversible (Uncomputation)

$$|x, y \oplus F(x)\rangle \rightarrow |x, y \oplus F(x) \oplus F(x)\rangle = |x, y\rangle$$

Grover's Algorithm

- Consider real world instantiation of function $F: \{0,1\}^n \to \{0,1\}^n$
- Idea: $|0^n,0^n\rangle \to H^{\otimes n} \otimes I^{\otimes n} \to \sum_{x\in\{0,1\}^n} \sqrt{2^{-n}}|x,0^n\rangle$ $\sum_{x\in\{0,1\}^n} \sqrt{2^{-n}}|x,0^n\rangle \Rightarrow Q_F \Rightarrow \sum_{x\in\{0,1\}^n} \sqrt{2^{-n}}|x,F(x)\rangle$
- We just evaluated F on all inputs by applying circuit Q_F once!
- Quantum Pre-Image Attack in O(1) time?
- Problem: We must eventually measure our quantum state...

We observe $|x', F(x') = y\rangle$ with probability $\sqrt{2^{-n}}^2 = 2^{-n}$

- Consider real world instantiation of function $F: \{0,1\}^n \to \{0,1\}^n$
- Idea 1: $|0^n, 0^n\rangle \to H^{\bigotimes n} \otimes I^{\bigotimes n} \to \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle$ $\sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle \Rightarrow Q_F \Rightarrow \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, F(x)\rangle$
- Idea 2: Try to boost amplitude on target state(s) |x', F(x')| = y

- Consider real world instantiation of function $F: \{0,1\}^n \to \{0,1\}^n$
- Idea 1: $|0^n, 0^n\rangle \to H^{\otimes n} \otimes I^{\otimes n} \to \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle$ $\sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle \Rightarrow Q_F \Rightarrow \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, F(x)\rangle$
- Negation: Can negate amplitudes where F(x) = y

$$\sum_{x \in \{0,1\}^n : F(x) \neq y} \sqrt{2^{-n}} |x, F(x)\rangle - \sum_{x \in \{0,1\}^n : F(x) = y} \sqrt{2^{-n}} |x, F(x)\rangle$$

This step requires us to query oracle Q_F

• Negation: Can negate amplitudes where F(x) = y

$$\sum_{x \in \{0,1\}^n : F(x) \neq y} \sqrt{2^{-n}} |x, F(x)\rangle - \sum_{x \in \{0,1\}^n : F(x) = y} \sqrt{2^{-n}} |x, F(x)\rangle$$

This step requires us to query oracle Q_F

Reflection: Can reflect amplitudes around mean

$$\sum_{x \in \{0,1\}^n : F(x) \neq y} \sqrt{2^{-n}} (1-\varepsilon) |x, F(x)\rangle + \sum_{x \in \{0,1\}^n : F(x) = y} (3-\varepsilon') \sqrt{2^{-n}} |x, F(x)\rangle$$

- Consider real world instantiation of function $F: \{0,1\}^n \to \{0,1\}^n$
- Idea 1: $|0^n, 0^n\rangle \to H^{\otimes n} \otimes I^{\otimes n} \to \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle$ $\sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, 0^n\rangle \Rightarrow Q_F \Rightarrow \sum_{x \in \{0,1\}^n} \sqrt{2^{-n}} |x, F(x)\rangle$
- Idea 2: Try to boost amplitude on target state(s) |x', F(x')| = y
 - Negate + Reflect
 - Repeat $O(\sqrt{2^n})$ times to ensure that we reach state $\sum_{x \in \{0,1\}^n} \alpha_x |x, F(x)\rangle$ s.t

$$\sum_{x \in \{0,1\}^n : F(x) = y} |\alpha_x|^2 \ge 0.99$$

Quantum Random Oracle Model

• **Motivation:** Any real world hash function can be computed efficiently by a quantum circuit → we can use Grover's algorithm.

 Grover's algorithm uses hash function as random blackbox, but somehow the classical Random Oracle model does not capture power of generic quantum attacker.

• **Goal:** Generic analysis tools to analyze the power of a quantum attacker who uses hash function as a blackbox?

ROM vs qROM [BDF+11]

<Classical ROM>

<Quantum ROM>

ROM vs qROM [BDF+11]

<Classical ROM>

<Quantum ROM>

- Security proofs are much more challenging in the qROM
 - 0 Programmability & Extractability (ROM: ✓, qROM: ✗)
 - 0 Recording quantum queries?

How to Record Quantum Queries and Applications to Quantum Indifferentiability

Mark Zhandry
Princeton University & NTT Research

The (Classical) Random Oracle Model (ROM)

The (Classical) Random Oracle Model (ROM)

Typical ROM Proof: On-the-fly Simulation

Query(x, D):

If (x,y) ∈ D:

Return(y,D)

Else:

y ß \$ Y

D' = D+(x,y)

Return(y,D')

Typical ROM Proof: On-the-fly Simulation

Allows us to:

- Know the inputs adversary cares about
- Know the corresponding outputs
- (Adaptively) program the outputs
- Easy analysis of bad events (e.g. collisions)

The Quantum Random Oracle Model (QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]

Now standard in post-quantum crypto

Problem with Classical Proofs in QROM

How do we record the **x** values?

Problem with Classical Proofs in QROM

Observer Effect:

Learning anything about quantum system disturbs it

answers obliviously, so no disturbance

Reduction must answer obliviously, too?

Typical QROM Proof

H fixed once and for all at beginning

Limitations

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs?
- Easy analysis of bad events (e.g. collisions)?

Limitations

Allows us to:

- Know the inputs adversary cares about?
- •Know the corresponding outputs?
 X
- (Adaptively) program the outputs? \(\lambda / \rangle \)
- Easy analysis of bad events (e.g. collisions)?

Limitations

Good News: Numerous positive results (30+ papers)

Bad News: Still some major holdouts

Indifferentiable domain extension

Fiat-Shamir

Luby-Rackoff

ROM è ICM

Example: Domain Extension for Random Oracles

Q: Does Merkle-Damgård preserve random oracle-ness?

Example: Domain Extension for Random Oracles

A: Yes(ish) [Coron-Dodis-Malinaud-Puniya'05] How? *Indifferentiability* [Maurer-Renner-Holenstein'04]

Quantum Indifferentiability?

Concurrently considered by [Carstens-Ebrahimi-Tabia-Unruh'18]

Quantum Indifferentiability?

This Work: On-the-fly simulation of quantum random oracles

(aka Compressed Oracles)

Step 1: Quantum-ify (aka Purify)

Quantum-ifying (aka purifying) random oracle:

Reminiscent of old impossibilities for unconditional quantum protocols [Lo'97,Lo-Chau'97,Mayers'97,Nayak'99]

Step 1: Superposition of Oracles

Step 2: Look at Fourier Domain

Step 2: Look at Fourier Domain

Initial oracle state: Z(x) = 0

Query(x, y, \hat{H}): $\hat{H} = \hat{H} \oplus P_{x,y}$

$$P_{x,y}(x') = \begin{cases} y & \text{if } x = x' \\ 0 & \text{else} \end{cases}$$

Step 3: Compress

Step 3: Compress

Initial oracle state: {}

Query(x, y, D^{\prime}):

(1) If
$$\exists (x,y') \in ^D$$
: $^D = D^+(x,0)$

(2) Replace (x,y')∈^D with (x,y'⊕y)

(3) If $(x,0) \in ^{\mathbf{D}}$: remove it

Step 4: Revert back to Primal Domain

Step 4: Revert back to Primal Domain

Compressed Oracles

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs? Fixed by [Don-Fehr-Majenz-Schaffner'19,Liu-Z'19], later this session!
- Easy analysis of bad events (e.g. collisions)?

So, what happened?

Recall...

Observer Effect:

Learning anything about quantum system disturbs it

Compressed oracles decode such disturbance

Caveats

Outputs in database ≠0 in Fourier domain

y values aren't exactly query outputs

Examining x,y values perturbs state

> Still must be careful about how we use them

But, still good enough for many applications...

Applications In This Work

Quantum Indiff. of Merkle-Damgård

Easily re-prove quantum lower bounds:

 $\Omega(N^{1/2})$ queries needed for Grover search

 $\Omega(N^{1/3})$ queries needed for collision finding

 $\Omega(N^{1/(k+1)})$ queries needed for k-SUM

CCA-security of plain Fujisaki-Okamoto

Further Applications

```
[Alagic-Majenz-Russell-Song'18]: Quantum-secure signature separation
```

[Liu-Z'19a]: Tight bounds for multi-collision problem

[Liu-Z'19b]: Fiat-Shamir

([Don-Fehr-Majenz-Schaffner'19]: direct proof)

[Czajkowski-Majenz-Schaffner-Zur'19]: Indifferentiability of Sponge

[Hosoyamada-Iwata'19]: 4-round Luby-Rackoff

[Chiesa-Manohar-Spooner'19]: zk-SNARKs

[Bindel-Hamburg-Hülsing-Persichetti'19]:

Tighter CCA security proofs

Lessons Learned

Always purify your oracles!

Thanks for Listening

