Advanced Cryptography CS 655

Week 12:

• Functional Secret Sharing/Distributed Point Functions

Save the Date: Midwest CRYPTO Day on April 11th at UIUC

Secret Sharing

- (t,n)-Secret Sharing
 - $[s]_1, [s]_2, ..., [s]_n =$ ShareGen(s, t, n)
 - Takes as input a secret an outputs n shares
 - s = RecoverShares $((i_1, [s]_{i_1}), (i_2, [s]_{i_2}), ..., (i_t, [s]_{i_t}))$
 - Takes as input a subset of t distinct shares and outputs the secret s
- Information Theoretic Privacy: any subset of t-1 shares leaks no information about the secret s

$$\Pr[[[s]]_{i_1}, \dots, [[s]]_{i_{t-1}}|s] = \Pr[[[s]]_{i_1}, \dots, [[s]]_{i_{t-1}}|s']$$

Secret Sharing

- (t,n)-Secret Sharing
 - $[s]_1, [s]_2, ..., [s]_n =$ ShareGen(s, t, n)
 - Takes as input a secret an outputs n shares
 - s = Recover $((i_1, [s]_{i_1}), (i_2, [s]_{i_2}), ..., (i_t, [s]_{i_t}))$
 - Takes as input a subset of t distinct shares and outputs the secret s
- Example 1: (n,n)-Secret Sharing for secrets $s \in \{0,1\}^{\lambda}$
 - ShareGen(s, t, n)
 - Pick $\llbracket s \rrbracket_1, \llbracket s \rrbracket_2, \dots, \llbracket s \rrbracket_{n-1} \in \{0,1\}^{\lambda}$ uniformly at random
 - Compute $\llbracket s \rrbracket_n = s \oplus \llbracket s \rrbracket_1 \oplus \llbracket s \rrbracket_2 \oplus ... \oplus \llbracket s \rrbracket_{n-1}$
 - Recover($\llbracket s \rrbracket_1, \llbracket s \rrbracket_2, \dots, \llbracket s \rrbracket_n$) = $\llbracket s \rrbracket_1 \oplus \llbracket s \rrbracket_2 \oplus \dots \oplus \llbracket s \rrbracket_n$

- Uses polynomials over a field ${\mathbb F}$
- Fact: Suppose that $p(x) = a_0 + a_1x + \dots + a_{t-1}x^{t-1}$ is a polynomial over a field $|\mathbb{F}| > t$ and let x_1, \dots, x_t be any set of t distinct points on the field. Then the polynomial p(x) is uniquely determined by the outputs $(p(x_1), \dots, p(x_t))$.

Proof Sketch: If there is another degree t - 1 polynomial $f(x) = b_0 + b_1 x + \dots + b_{t-1} x^{t-1}$

such that $(p(x_1), \dots, p(x_t)) = (f(x_1), \dots, f(x_t))$ then the polynomial $g(x) \coloneqq f(x) - p(x) = (b_0 - a_0) + (b_1 - a_1)x + \dots + (b_{t-1} - a_{t-1})x^{t-1}$

has t roots i.e., $g(x_i) = f(x_i) - p(x_i) = 0$. But g(x) has degree at most t - 1 which means that it can have at most t - 1 roots. Contradiction!

- Uses polynomials over a field ${\mathbb F}$
- Fact: Suppose that $p(x) = a_0 + a_1x + \dots + a_{t-1}x^{t-1}$ is a polynomial over a field $|\mathbb{F}| > t$ and let x_1, \dots, x_t be any set of t distinct points on the field. Then the polynomial p(x) is uniquely determined by the outputs $(p(x_1), \dots, p(x_t))$.

Lagrange Interpolation: Efficient algorithm to find coefficients of p(x) given $x_1, ..., x_t$ and $(p(x_1), ..., p(x_t))$

- Uses polynomials over a field $\mathbb F$
- Fact: Suppose that $p(x) = a_0 + a_1x + \dots + a_{t-1}x^{t-1}$ is a polynomial over a field $|\mathbb{F}| > t$ and let x_1, \dots, x_t be any set of t distinct points on the field. Then the polynomial p(x) is uniquely determined by the outputs $(p(x_1), \dots, p(x_t))$
- View secret $s \in \mathbb{F}$ as a field element
 - Fix distinct field elements $x_0, ..., x_{n-1} \in \mathbb{F}$
 - ShareGen(s, t, n)
 - Pick $[s]_1, [s]_2, \dots, [s]_{t-1} \in \mathbb{F}$ uniformly at random
 - Define the polynomial f(x) such that $(f(x_0), \dots, f(x_{t-1})) = (s, [s]_1, [s]_2, \dots, [s]_{t-1})$
 - Lagrange Interpolation
 - Set $\llbracket s \rrbracket_j \coloneqq f(x_j)$ for $j \ge t$
 - Output $[\![s]\!]_1, [\![s]\!]_2, \dots, [\![s]\!]_n$

- Uses polynomials over a field $\mathbb F$
- Fact: Suppose that $p(x) = a_0 + a_1x + \dots + a_{t-1}x^{t-1}$ is a polynomial over a field $|\mathbb{F}| > t$ and let x_1, \dots, x_t be any set of t distinct points on the field. Then the polynomial p(x) is uniquely determined by the outputs $(p(x_1), \dots, p(x_t))$
- View secret $s \in \mathbb{F}$ as a field element
 - Fix distinct field elements $x_0, \dots, x_n \in \mathbb{F}$
 - ShareGen(s, t, n)
 - Pick $[s]_1, [s]_2, \dots, [s]_{t-1} \in \mathbb{F}$ uniformly at random
 - Define the polynomial f(x) such that $(f(x_0), ..., f(x_{t-1})) = (s, [s]_1, [s]_2, ..., [s]_{t-1})$
 - Lagrange Interpolation
 - Set $\llbracket s \rrbracket_j \coloneqq f(x_j)$ for $j \ge t$
 - Output $[\![s]\!]_1, [\![s]\!]_2, ..., [\![s]\!]_n$
 - Recover() uses Lagrange Interpolation to extract polynomial and recover $f(x_0)$

Binary Secret Sharing Trick

- Alice has shares $[\![t]\!]_1$ and $[\![s]\!]_1$ of secret bits t and s
- Bob has shares $[t]_2$ and $[s]_2$ of secret bits t and s
- $\bullet \, [\![t]\!]_1 \oplus [\![t]\!]_2 = t$
- $\bullet \, [\![s]\!]_1 \oplus [\![s]\!]_2 = s$
- Trick 1 Linearity: $\llbracket y \rrbracket_i = \llbracket t \rrbracket_i \oplus \llbracket s \rrbracket_i$ is a share of $s \oplus t$ $\llbracket y \rrbracket_1 \oplus \llbracket y \rrbracket_2 = (\llbracket t \rrbracket_1 \oplus \llbracket s \rrbracket_1) \oplus (\llbracket t \rrbracket_2 \oplus \llbracket s \rrbracket_2) = s \oplus t$
 - Alice can compute $[\![y]\!]_1 = [\![t]\!]_1 \oplus [\![s]\!]_1$ locally
 - Bob can compute $[\![y]\!]_2 = [\![t]\!]_2 \oplus [\![s]\!]_2$ locally

Binary Secret Sharing Trick

- Alice has shares $[\![t]\!]_1$ and $[\![s]\!]_1$ of secret bits t and s
- Bob has shares $[\![t]\!]_2$ and $[\![s]\!]_2$ of secret bits t and s
- $\llbracket t \rrbracket_1 \oplus \llbracket t \rrbracket_2 = t$
- $\bullet \, [\![s]\!]_1 \oplus [\![s]\!]_2 = s$
- Trick 2: Suppose Alice/Bob want to compute shares of t \cdot w (w known).
 - Alice can compute $\llbracket y \rrbracket_1 = \llbracket t \rrbracket_1 \cdot w$ locally
 - Bob can compute $\llbracket y \rrbracket_2 = \llbracket t \rrbracket_2 \cdot w$ locally $\llbracket y \rrbracket_1 \oplus \llbracket y \rrbracket_2 = (\llbracket t \rrbracket_1 \cdot w) \oplus (\llbracket t \rrbracket_2 \cdot w) = w \cdot t$

Binary Secret Sharing Trick

- Alice has shares $[t]_1$ and $[s]_1$ of secret bits t and s
- Bob has shares $[t]_2$ and $[s]_2$ of secret bits t and s
- $\bullet \ \llbracket t \rrbracket_1 \oplus \llbracket t \rrbracket_2 = t$
- $\bullet \ \llbracket s \rrbracket_1 \oplus \llbracket s \rrbracket_2 = s$
- **Combo:** Suppose Alice/Bob want to compute shares of $s \bigoplus (t \cdot w)$ (w known).
 - Alice can compute $\llbracket y \rrbracket_1 = \llbracket s \rrbracket_1 \oplus (\llbracket t \rrbracket_1 \cdot w)$ locally
 - Bob can compute $\llbracket y \rrbracket_2 = \llbracket s \rrbracket_2 \oplus \llbracket t \rrbracket_2 \cdot w$ locally

 $\llbracket y \rrbracket_1 \oplus \llbracket y \rrbracket_2 = \left(\llbracket s \rrbracket_1 \oplus (\llbracket t \rrbracket_1 \cdot w) \right) \oplus \left(\llbracket s \rrbracket_2 \oplus (\llbracket t \rrbracket_2 \cdot w) \right) = \begin{cases} s & \text{if } w = 0 \\ s \oplus t & \text{otherwise} \end{cases}$

• Point Function:

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

- Alice/Bob each get DPF keys K_0 and K_1
 - Alice can use K_0 to compute a share $[s_x]_0$ of $f_{\alpha,\beta}(x)$ for any input x
 - Bob can use K_1 to compute a share $[s_x]_1$ of $f_{\alpha,\beta}(x)$ for any input x
- **Correctness:** for all inputs x

 $\llbracket s_{\chi} \rrbracket_0 \oplus \llbracket s_{\chi} \rrbracket_1 = f_{\alpha,\beta}(\chi)$

• Point Function:

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

- Alice/Bob each get DPF keys K_0 and K_1
 - Alice can use K_0 to compute a share $[s_x]_0$ of $f_{\alpha,\beta}(x)$ for any input x
 - Bob can use K_1 to compute a share $[s_x]_1$ of $f_{\alpha,\beta}(x)$ for any input x
- **Privacy:** Alice/Bob should not learn anything about the secrets α, β

• Point Function:

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

- Alice/Bob each get DPF keys K_0 and K_1
 - Alice can use K_0 to compute a share $[s_x]_0$ of $f_{\alpha,\beta}(x)$ for any input x
 - Bob can use K_1 to compute a share $[s_x]_1$ of $f_{\alpha,\beta}(x)$ for any input x
- Solution 1: Generate shares $[\![s_{\alpha}]\!]_0 \oplus [\![s_{\alpha}]\!]_1 = f_{\alpha,\beta}(\alpha)$ and set $K_i = (\alpha, [\![s_{\alpha}]\!]_i)$
- Violates privacy

• Point Function:

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

- Alice/Bob each get DPF keys K_0 and K_1
 - Alice can use K_0 to compute a share $[s_x]_0$ of $f_{\alpha,\beta}(x)$ for any input x
 - Bob can use K_1 to compute a share $[s_x]_1$ of $f_{\alpha,\beta}(x)$ for any input x
- Solution 2: Generate shares $[\![s_x]\!]_0 \oplus [\![s_x]\!]_1 = f_{\alpha,\beta}(x)$ for each input x and set $K_i = \{[\![s_x]\!]_i\}_{x \in \{0,1\}^n}$
- Private/Correct 😳
- **Problem:** Exponentially large keys! 😕

GGM Based Distributed Point Function

- Attempt 1: Alice/Bob both get K which is the root of a GGM tree.
 - Alice and Bob can both evaluate $F_K(x)$
 - Alice and Bob obtain shares of $F_K(x) \oplus F_K(x) = 0$
 - Incorrect when $x = \alpha$
- Attempt 2: Puncture key at $x = \alpha$
 - Give Alice/Bob punctured Key $K[\alpha]$
 - Generate shares $[s_{\alpha}]_0 \oplus [s_{\alpha}]_1 = f_{\alpha,\beta}(\alpha) = \beta$
 - Give Alice/Bob the shares $[\![s_{\alpha}]\!]_0$ and $[\![s_{\alpha}]\!]_1$ respectively
 - Correct 🙂
 - Hides β \bigcirc
 - Does not hide α \otimes

$$\begin{array}{c} \lambda \text{-bits} & \lambda \text{-bits} \\ G(\mathbf{x}) := G_0(\mathbf{x}) \mid \mid G_1(\mathbf{x}) S_1 t_1 \\ \downarrow \\ \lambda \text{-bits} \end{array}$$

 λ bits

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

GGM Based Distributed Point Function

- Attempt 3 (Obfuscation):
 - Pick PPRF keys *K*
 - Define DPF keys $K_0 = iO(C_0), K_1 = iO(C_1)$

Where

$$C_{0}(x) \coloneqq F_{K}(x)$$

$$C_{1}(x) \coloneqq \begin{cases} \beta \oplus F_{K}(x) & if x = \alpha \\ F_{K}(x) & otherwise \end{cases}$$

 λ bits

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

Advantages: Correct! ©

 $K_0(\alpha) \oplus K_1(\alpha) = F_K(\alpha) \oplus \beta \oplus F_K(\alpha) = \beta$

If $x \neq \alpha$ $K_0(x) \oplus K_1(x) = F_K(x) \oplus F_K(\alpha) = 0$ 16

GGM Based Distributed Point Function

- Attempt 3 (Obfuscation):
 - Pick PPRF key K
 - Define DPF keys $K_0 = iO(C_0), K_1 = iO(C_1)$

Where

$$C_{0}(x) \coloneqq F_{K}(x)$$

$$C_{1}(x) \coloneqq \begin{cases} \beta \oplus F_{K}(x) & ifx = \alpha \\ F_{K}(x) & otherwise \end{cases}$$

$$A \text{-bits} \qquad \lambda \text{-bits} \qquad \lambda \text{-bits} \qquad G(x) := G_0(x) || G_1(x) S_1 t_1$$

 λ bits

$$f_{\alpha,\beta}(x) \coloneqq \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

Advantages: Security? See homework 3 ⓒ

Disadvantage: Highly impractical!

Recap: PPRFs from PRGs $G(x):=G_0(x) || G_1(x)$

GGM Puncturable PRF Construction

Recap: PPRFs from PRGs $G(x):=G_0(x) || G_1(x)$

Could start with keys $G_0(k)$ and $G_1(k)$ instead of k

DPF Idea

 $\widehat{\mathbf{G}(\mathbf{x}):=\mathbf{G}_0(\mathbf{x}) | \mathbf{G}_1(\mathbf{x})}$

Suppose first bit $\alpha_1 = 0$

Alice/Bob compute same thing on green paths/different things on red paths

DPF Idea

 $\widehat{\mathbf{G}(\mathbf{x}):=\mathbf{G}_0(\mathbf{x}) | \mathbf{G}_1(\mathbf{x})}$

Suppose first bit $\alpha_1 = 0$

If $\alpha_2 = 0$ we want purple path to converge

DPF: Fix Attempt 1 $G(x):=G_0(x) | | G_1(x)$

Suppose first bit $\alpha_1 = 0$ and second bit is $\alpha_2 = 0$

DPF: Fix Attempt 1 $G(x):=G_0(x) || G_1(x)$

Suppose first bit $\alpha_1 = 0$ and second bit is $\alpha_2 = 0$

Level 2: Pick random strings R_0^B , R_1^B , and set $R_1^A = (G_1(s_0) \oplus G_1(s_0')) \oplus R_0^B$ and $R_0^A = R_0^B$ Bob uses function $B_0^2(x) = G_0(x) \oplus R_0^B$ and $B_1^2(x) = G_1(x) \oplus R_1^B$ Alice defines functions $A_0^2(x) = G_0(x) \oplus R_0^A$ and $A_1^2(x) = G_1(x) \oplus R_1^A$

DPF: Fix Attempt 1 $G(x):=G_0(x) || G_1(x)$

Suppose first bit $\alpha_1 = 0$ and second bit is $\alpha_2 = 0$

Level 2: Pick random strings R_0^B , R_1^B , and set $R_1^A = (G_1(s_0) \oplus G_1(s_0')) \oplus R_0^B$ and $R_0^A = R_0^B$ Warning: If we make all random strings public then Alice/Bob learn $\alpha_2 = 0$ **Solution:** Some random strings are public; some are given only to Alice (resp. Bob).

DPF: Control Bits

$$A + 1 - bits$$

 $G(x) := G_0(x) | G_1(x)$
 $\lambda - bit input$
Suppose first bit $\alpha_1 = 0$ and second bit is $\alpha_2 = 0$

At each level i Alice (resp. Bob) will have secret control bits $t_0^{A,i}$ and $t_1^{A,i}$ (resp. $t_0^{B,i}$ and $t_1^{B,i}$) which are part of the private key

Guarantee:
$$m{t}_{1-lpha_1}^{B,1}=m{t}_{1-lpha_1}^{A,1}~~$$
 and $m{t}_{lpha_1}^{B,1}=m{t}_{lpha_1}^{A,1}$

Invariant (Control Bits): At each node *on the red path* Alice/Bob can locally compute secret shares of [1] and at each node off this path Alice/Bob have secret shares of [0].

Invariant: At each node off the path Alice/Bob can locally compute secret shares of 0^{λ} and at each node on the red path Alice/Bob have shares of a pseudorandom λ –bit string R

Conditional Correction Gadget

- Alice has R_0 and b_0 and
- Bob has $R_1 = R \oplus R_0$ and $b_1 = b \oplus b_0$
- Public Correction Factor Δ
- Bob computes $R'_1 = R_1 \bigoplus (b_1 \Delta)$ and Alice computes $R'_0 = R_0 \bigoplus (b_0 \Delta)$ $R'_1 \bigoplus R'_0 = R \bigoplus (b_1 \Delta) \bigoplus (b_0 \Delta) = R \bigoplus (b\Delta)$
- Thus, Alice/Bob can locally obtain shares of $R \oplus (b\Delta)$
 - If b=0 (e.g., already off path) then net effect is that no correction is applied
 - Already off path (R=0,b=0) $\rightarrow R \oplus (b\Delta) = 0$ (Secret shares of 0!)
 - If b=1 (e.g., was still on path) then net effect is that correction is applied
 - If $\Delta = R, b=1 \rightarrow R \oplus (b\Delta) = 0$ (Secret shares of 0 again!)

Conditional Correction Gadget: Attempt 1

- Define conditional correction factors Δ_0^i and Δ_1^i for each level
 - $\Delta_{\alpha_i}^i = 0$ (stay on path \rightarrow no correction)
 - $\Delta_{1-\alpha_i}^i = R$ (leave path \rightarrow want to apply correction)
- Alice/Bob can apply correction factor $\Delta_{x_i}^i$
- Problem?
 - Alice/Bob can figure out α_i from the value Δ_0^i and Δ_1^i !
 - Can we make $\Delta_{\alpha_i}^i$ ``look random"?

 S_0

Want no

correctior

Want

correctior

Correction Words (On Path)

• At each level we define public correction words CW[i]

 S_0

Invariants: If $x_i = 0$ (exit path) \Rightarrow Alice/Bob have shares of zero i.e., $L_0 \oplus L_0 = 0$ and $t_L \oplus t_L = 0$ If $x_i = 1$ (stay on path) \Rightarrow Alice/Bob have shares of pseudorandom $R_0 \oplus R_0''$ and $t_R + (1 - t_R) = 1$

Correction Words (On Path)

• At each level we define public correction words CW[i]

 S_0

Invariants: If $x_i = 1$ (exit path) \Rightarrow Alice/Bob have shares of zero i.e., $R_0 \oplus R_0 = 0$ and $t_R \oplus t_R = 0$ If $x_i = 0$ (stay on path) \Rightarrow Alice/Bob have shares of pseudorandom $L_0 \oplus L_0''$ and $t_L + (1 - t_L) = 1$

Correction Words (Already off path)

• At each level we define public correction words CW[i]

*S*₁

Invariants: If $x_i = 0$ (remain off path) \rightarrow Alice/Bob have shares of zero i.e., $L_0 \oplus L_0 = 0$ and $t_L \oplus t_L = 0$ If $x_i = 1$ (remain off path) \rightarrow Alice/Bob have shares of pseudorandom $R_0 \oplus R_0$ and $t_R \oplus t_R = 0$ 31

Distributed Point Function: Complexity

- Function Share/Key Size
 - PRG Seed (λ bits)
 - Correction Word at Each Level: $O(\lambda n)$ bits total
- Key Generation (Time)
 - n PRG evaluations (plus a few XORs)
- Evaluation:
 - n PRG evaluations (plus a few XORs)
 - Essentially the same as

Other Examples of Functional Secret Sharing

Income range of applicant? FSS for Decision Trees Applications to Machine Learning <\$30K \$30-70K > \$70K Criminal record? Criminal record? Years in present job? 1-5 >5 yes, no < 1 DO Tes (no bañ loan (no Ioni ban (no louñ loan Makes credit card payments? no yes, ban (no Ionii

Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob $Enc_{PK_A}(x_1), \dots, Enc_{PK_A}(x_n)$ $Enc_{PK_A}(x_i) + Enc_{PK_A}(x_j) = Enc_{PK_A}(x_i + x_j)$

and

$$Enc_{PK_A}(x_i) \times Enc_{PK_A}(x_j) = Enc_{PK_A}(x_i \times x_j)$$

- Bob cannot decrypt messages, but given a circuit C can compute $Enc_{PK_A}(C(x_1, ..., x_n))$
- Proposed Application: Export confidential computation to cloud

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

Fully Homomorphic Encryption (FHE)

- Idea: Alice sends Bob $Enc_{PK_A}(x_1)$, ..., $Enc_{PK_A}(x_n)$
- Bob cannot decrypt messages, but given a circuit C can compute $Enc_{PK_A}(C(x_1, ..., x_n))$
- We now have candidate constructions!
 - Encryption/Decryption are polynomial time
 - ...but expensive in practice.
 - Proved to be CPA-Secure under plausible assumptions
- Remark 1: Partially Homomorphic Encryption schemes cannot be CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

- Plain RSA is multiplicatively homomorphic $Enc_{PK_{A}}(x_{i}) \times Enc_{PK_{A}}(x_{j}) = Enc_{PK_{A}}(x_{i} \times x_{j})$
- But not additively homomorphic
- Pallier Cryptosystem

$$Enc_{PK_{A}}(x_{i}) \times Enc_{PK_{A}}(x_{j}) = Enc_{PK_{A}}(x_{i} + x_{j})$$
$$\left(Enc_{PK_{A}}(x_{i})\right)^{k} = Enc_{PK_{A}}(k \times x_{j})$$

• Not same as FHE, but still useful in multiparty computation

- Secret Key: Large (prime) number p.
- **Public Key:** N = pq and $x_i = pq_i + 2r_i + 1$ for each $i \le t$ where $r_i \ll p$
- Encrypting a Bit b:
 - Select Random Subset: $S \subset [t]$ and random $r \ll p$
 - Return $c = b + 2r + \sum_{i \in S} x_i \mod N = p \sum_{i \in S} q_i + 2(r + \sum_{i \in S} r_i) + b \mod N$
- Decrypting a ciphertext:
 - As long as $2(r + \sum_{i \in S} r_i) < p$
 - $(c \mod p) \mod 2 = (2(r + \sum_{i \in S} r_i) + b) \mod 2 = b$

- Encrypting a Bit b:
 - Select Random Subset: $S \subset [t]$ and random $r \ll p$
 - Return $c = b + 2r + \sum_{i \in S} x_i \mod N = p \sum_{i \in S} q_i + 2(r + \sum_{i \in S} r_i) + b$
- Adding two ciphertexts

$$c + c' = p\left(\sum_{i \in S} q_i + \sum_{i \in S'} q_i\right) + 2\left(r + r' + \sum_{i \in S} r_i + \sum_{i \in S'} r_i\right) + b + b'$$

Noise increases a bit

- Encrypting a Bit b:
 - Select Random Subset: $S \subset [t]$ and random $r \ll p$
 - Return $c = b + 2r + \sum_{i \in S} x_i \mod N = p \sum_{i \in S} q_i + 2(r + \sum_{i \in S} r_i) + b$
- Multiply two ciphertexts

$$cc' = p\left(\sum_{i \in S} q_i \sum_{i \in S'} q_i + \sum_{i \in S'} q_i \sum_{i \in S'} r_i + \cdots\right) + 4\left(\left(r + \sum_{i \in S'} r_i\right)\left(r' + \sum_{i \in S'} r_i\right)\right) + 2b\left(r + \sum_{i \in S'} r_i\right) + 2b'\left(r + \sum_{i \in S} r_i\right) + bb'$$

Bootstrapping (Gentry 2009)

- Transform Partially Homomorphic Encryption Scheme into Fully Homomorphic Encryption Scheme
- Key Idea:
 - Maintain two public keys pk₁ and pk₂ for partially homomorphic encryption
 - Also, encrypt sk₁ using pk₂ and encrypt sk₂ under pk₁
 - The ciphertexts are included in the public key
 - Run homomorphic evaluation using pk_1 until the noise gets to be too large
 - Let c₁,...,c_k be intermediate ciphertext(s) (under key pk₁)
 - Encrypt c₁,...,c_k bit by bit under (under key pk₂)
 - Then evaluate the decryption circuit homorphically (under key pk₂)
 - Challenge: Need to make sure that decryption circuit is shallow enough to evaluate...
- Expensive, but there are tricks to reduce the running time

Fully Homomorphic Encryption Resources

- Implementation: <u>https://github.com/shaih/HElib</u>
- Tutorial: https://www.youtube.com/watch?v=jlWOR2bGC7c

