Advanced Cryptography
CS 655

Week 12:
* Functional Secret Sharing/Distributed Point Functions

Save the Date: Midwest CRYPTO Day on April 11t at UIUC

Spring 2023



Secret Sharing

* (t,n)-Secret Sharing
* [sl1, [s]5, ..., [s]l,, = ShareGen(s,t, n)
* Takes as input a secret an outputs n shares
s = RecoverShares ((il, [[S]]il), (iz, [[S]]l-z), ) (it, [[S]]it) )

* Takes as input a subset of t distinct shares and outputs the secret s

* Information Theoretic Privacy: any subset of t-1 shares leaks no
information about the secret s

Pr|[sl;,, -\ [[S]]l-t_1|s] = Pr|[s];,, ..., [[s]]it_1|s']



Secret Sharing

* (t,n)-Secret Sharing
 [sl1, [s]5, ..., [s]l,, = ShareGen(s,t, n)
* Takes as input a secret an outputs n shares

s = Recover ((il, [[S]],;l), (iz, [[S]]iz), . (it; [[S]]it) )

* Takes as input a subset of t distinct shares and outputs the secret s

* Example 1: (n

'n)-Secret Sharing for secrets s € {0,1}*

* ShareGen(s, t,n)

* Pick [[s],

[sT5, ..., [S]—1 € {0,1}* uniformly at random

* Compute [s],, = s®[s]{DPls],D ... Bls],—1

* Recover([s]

11, [sll2, ..., [s]n) = [s]1®ls].® ... ®ls],



Shamir Secret Sharing

e Uses polynomials over a field F

e Fact: Suppose that p(x) = ag + a;x + -+ + a,_,x* "1 is a polynomial over a

field |[F| > t and let x4, ..., x; be any set of t distinct points on the field. Then
the polynomial p(x) is uniquely determined by the outputs (p(xl), ...,p(xt)).

Proof Sketch: If there is another degree t — 1 polynomial
f(x) — bO + blx + .-+ bt_lxt_l

such that (p(xy), ..., p(xs)) = (f(x1), ..., £ (x;)) then the polynomial
gx)=f(x)—plx) =y —ay) + (b —ap))x+ -+ (by_q — ap_y)xt"1

has trootsi.e., g(x;) = f(x;) — p(x;) = 0. But g(x) has degree at most t — 1
which means that it can have at most t — 1 roots. Contradiction!



Shamir Secret Sharing

* Uses polynomials over a field [F

e Fact: Suppose that p(x) = ag + a;x + -+ + a,_,x* "1 is a polynomial

over a field |F| > t and let x4, ..., x; be any set of t distinct points on the
field. Then the polynomial p(x) is uniquely determined by the outputs

(pCx1), ., p(xp)).
Lagrange Interpolation: Efficient algorithm to find coefficients of p(x)
given x4, ..., X; and (p(xl), ...,p(xt))



Shamir Secret Sharing

* Uses polynomials over a field [F

e Fact: Suppose that p(x) = ay + a;x + - + a,_,xt "1 is a polynomial over a field
|IF| > t and let x4, ..., x; be any set of t distinct points on the field. Then the

polynomial p(x) is uniquely determined by the outputs (p(xl), - p(xt))

* View secret s € [F as a field element

* Fix distinct field elements xg, ..., x,,—1 € F

* ShareGen(s, t, n)
* Pick [s]1, [s]2, ..., [sl—1 € F uniformly at random
 Define the polynomial f(x) such that (f(xo), ...,f(xt_l)) = (s, [s]1, [s]y, -, [SD¢—1)

* Lagrange Interpolation

* Set[s]; = f(xj) forj >t
* Output [s]q, [s],, ..., [s]



Shamir Secret Sharing

* Uses polynomials over a field [F

* Fact: Suppose thatp(x) = ay +a;x + -+ a;_1x* " isa Rol¥nomial over a field
|IF| > t and let x4, ..., x; be any set of t distinct points on the tield. Then the

polynomial p(x) is uniquely determined by the outputs (p(xl), . p(xt))

t—1 ;

* View secret s € [F as a field element
* Fix distinct field elements xq, ..., x,, € F
* ShareGen(s, t, n)
* Pick [s]1, [s]2, .., [sl—1 € F uniformly at random
* Define the polynomial f(x) such that (f(xo), ...,f(xt_l)) = (s, [s]1, ISy, -, [SD¢=1)
* Lagrange Interpolation
* Set[s]; =f(x;) forj >t
* Output [s]q, [s],, ..., [s],
« Recover() uses Lagrange Interpolation to extract polynomial and recover f(x,)



Binary Secret Sharing Trick

* Alice has shares [[t]; and [s],of secret bits t and s
* Bob has shares [[t], and [s],of secret bits t and s

c [t],1Dltl, =t
* [s]:®Dls], =s

* Trick 1 Linearity: [[y]; = [[t];®l
[yl,®lyl, = ([t], Dl

S

* Alice can compute [[y]; = [t].®

s

;1s a share of s@t

sl [t],@[s],) = st
[s]

1 locally

* Bob can compute [y], = [t],®[s], locally



Binary Secret Sharing Trick

* Alice has shares [[t]; and [s],of secret bits t and s
* Bob has shares [[t], and [s],of secret bits t and s

c [t],1Dltl, =t
* [s]:®Dls], =s

* Trick 2: Suppose Alice/Bob want to compute shares of t - w (w
known).
* Alice can compute [y]; = [t]l; - w locally
* Bob can compute [y]l, = [t], - wlocally

[[3’]]1@1)’12 — ([[t]]1 'W)EB([[t]]z W) =w-t




Binary Secret Sharing Trick

* Alice has shares [[t]; and [s];of secret bits t and s
* Bob has shares [t], and [s],of secret bits t and s

* [t ®ltl, =t
* [s]1®Blsl; =s

* Combo: Suppose Alice/Bob want to compute shares of s@(t- w) (w
known).

e Alice can compute [y]; = [s]{®([t]; - w) locally
* Bob can compute [y], = [s].®[t], - w locally |
[y1:®Iy]; = ([sT &Il - w)®([sI® ([t - w)) = { s 1w =9

sépt otherwise



Distributed Point Function

 Point Function:

otherwise

fap(x) = {g if x = a

* Alice/Bob each get DPF keys K, and K;
* Alice can use K, to compute a share [s,], of f, z(x) for any input x
* Bob can use K; to compute a share [s,]; of f g(x) for any input x

* Correctness: for all inputs x
[sxlo®lsyk]1 = fa,B (x)



Distributed Point Function

 Point Function:

otherwise

fap(x) = {g if x = a

* Alice/Bob each get DPF keys K, and K;
* Alice can use K, to compute a share [s,], of f, z(x) for any input x
* Bob can use K; to compute a share [s,]; of f g(x) for any input x

* Privacy: Alice/Bob should not learn anything about the secrets a, 8



Distributed Point Function

 Point Function:

otherwise

fap(x) = {g if x = a

* Alice/Bob each get DPF keys K, and K,
* Alice can use K, to compute a share [s,], of f, z(x) for any input x
* Bob can use K; to compute a share [[s,]; of f g(x) for any input x

* Solution 1: Generate shares [[s,[o®[s.]1 = fo p(a) and set K; =
(a, [sali)

* Violates privacy



Distributed Point Function

* Point Function:

fap () = {ﬁ e

otherwise

* Alice/Bob each get DPF keys K, and K;
* Alice can use K, to compute a share [[s, ]y of f; g(x) for any input x
* Bob can use K; to compute a share [[s,]; of f, z(x) for any input x

* Solution 2: Generate shares [s,[o®[sx]1 = fa p(x) for each input x and
set K; = {[[Sx]]i}xe{o,l}"

* Private/Correct ©

* Problem: Exponentially large keys! ®



GGM Based Distributed Point Function

A bItS A-bits
* Attempt 1: Alice/Bob both get K which is the

root of a GGM tree.

* Alice and Bob can both evaluate Fy (x) G(X): O(X) I I Gl(x)s t
* Alice and Bob obtain shares of Fx(x)®Fg(x) = 0
* Incorrect whenx = « A bits

* Attempt 2: Puncturekeyatx = « B ifx=a
* Give Alice/Bob punctured Key K[«a] fap(x) = {0 otherwise
* Generate shares [[s,]o®lsql1 = fop(a) =B

* Give Alice/Bob the shares [s,], and [[Sa]]l
respectively

e Correct ©
e Hides f ©
e Does not hide a ®



GGM Based Distributed Point Function

A bItS A-blts
* Attempt 3 (Obfuscation):

- Pick PPRF keys K G(x):=G (X) | | G (X)S t
* Define DPF keys

Ko = i0(Co), Ky = i0(Cy) et
Where
Co(x) = Fg(x) fa (%) = {g i)ft}icer:wcizse
| BOF(x) ifx =«
Ci(x) = .
Fr(x) otherwise Advantages:
Correct! ©

Ko(a)®K;(a) = Fx(a)DBDFy(a) = B

If x # a
Ko(x)®K; (x) = Fx(x)®Fg(a) =0



GGM Based Distributed Point Function

A bItS A-blts
* Attempt 3 (Obfuscation):

+ Pick PPRF key K G(x):= 0(x) | | Gl(x)s t
* Define DPF keys

Ko = i0(Co), Ky = i0(Cy) Ao
Where
Co(x) == Fx(x) fap(x) = {g i)ft}icer:wcizse
| BOF(x) ifx =«
Ci(x) = .
Fr(x) otherwise Advantages:
Security?

See homework 3 ©

Disadvantage:
Highly impractical!



A -bits A -bits

Recap: PPRFs from PRGs

G(x):= Gy(x) | | G,(x)
GGM Puncturable PRF Construction

F(011)=G,(G,(G,(k)))



A -bits A -bits
G(x):= Gy(x) | | G,4(x)
Could start with keys G,(k) and G, (k) instead of k

Recap: PPRFs from PRGs

F(011)=G,(G,(G,(k)))



A -bits A -bits

G(x):= G,(x) | | G,(x)

DPF Idea

Suppose first bit a; = 0

Alice Bob

Alice/Bob compute same thing on green paths/different things on red paths



A -bits A -bits
| |

G(x):= G,(x) | | G,(x)

DPF Idea

Suppose first bit a; = 0

Alice Bob

If ¢, = 0 we want purple path to converge



A -bits A -bits

G(x):= G,(x) | | G,(x)

DPF: Fix Attempt 1

Suppose first bit «;, = 0 and second bitisa, = 0

Alice Bob




A -bits A -bits

G(x):= Gy(x) | | G,(x)

DPF: Fix Attempt 1

1

Suppose first bit «;, = 0 and second bitisa, = 0

Alice Bob

Level 2: Pick random strings RS, RZ, and set R{ = (G;(so)®G,(so") )ORE and RE = RS
Bob uses function BZ(x) = Go(x)®RE and B#(x) = G,(x)®R?
Alice defines functions 43(x) = Go(x)®RE and A%(x) = G, (x)®DRE



A -bits A -bits

G(x):= Gy(x) | | G,(x)

DPF: Fix Attempt 1

1

Suppose first bit «;, = 0 and second bitisa, = 0

Alice Bob

Level 2: Pick random strings RS, RZ, and set R{ = (G;(so)®G,(so") )ORE and RE = RS
Warning: If we make all random strings public then Alice/Bob learn a, = 0
Solution: Some random strings are public; some are given only to Alice (resp. Bob).



A+1-bits 2 4 1 -pits

G(x):= Gy(x) || G,(x)
A —bit input
Suppose first bit «;, = 0 and second bitisa, = 0

DPF: Control Bits

Alice Bob

At each level i Alice (resp. Bob) will have secret control bits t‘g'iand t‘il'i (resp. tg’iand tf'i) which are part of the private key

. Bll — AJ1 B;l —_— ,1
Guarantee: t1—a1 = tl—a'1 and ta1 = t‘él



A+1-bits 2 4 1 -pits

G(x):= Gy(x) || G,(x)
A —bit input
Suppose first bit «;, = 0 and second bitisa, = 0

DPF: Invariants

Alice Bob

A1
1

Invariant (Control Bits): At each node on the red path Alice/Bob can locally compute secret shares of [1] and at each node off

this path Alice/Bob have secret shares of [0].
Invariant: At each node off the path Alice/Bob can locally compute secret shares of 04 and at each node on the red path

Alice/Bob have shares of a pseudorandom A —bit string R



Conditional Correction Gadget

* Alice has Ry and by and
* Bob has Ry = R®R, and b; = b®b,
* Public Correction Factor A

* Bob computes R; = R; @&(b,4) and Alice computes Ry, = Ry ®(byA)

* Thus, Alice/Bob can locally obtain shares of R@(bA)
 If b=0 (e.g., already off path) then net effect is that no correction is applied
 Already off path (R=0,b=0) =» R@®(bA) = 0 (Secret shares of 0!)
* If b=1 (e.g., was still on path) then net effect is that correction is applied
* IfA =R,b=1=> R®(bA) = 0 (Secret shares of 0 again!)



Conditional Correction Gadget: Attempt 1

* Define conditional correction factors Ay and A’ for each level
. Afxi = (0 (stay on path =2 no correction)
: Want no Want
. A’i_ai = R (leave path = want to apply correction) correction correction

 Alice/Bob can apply correction factor Aﬁci

* Problem?
* Alice/Bob can figure out «; from the value A and A’!

* Can we make Ay, “look random”?

28



Correction Words (On Path)

* At each level we define public correction words CW|i]

G(sg

)
Lo,t; Ry tg

Want no Want
correction correction

G(sp)

If ai =1
Lo',t,” Ry tg' =1

Conditional|Correction: ty = 1 Lo.tL

[Conditional Correction: t, =0 D

Invariants: If x; = 0 (exit path) =» Alice/Bob have shares of zeroi.e., L@ Ly = 0 and t;®t; = 0
If x; = 1 (stay on path) = Alice/Bob have shares of pseudorandom Ry®R,"" and tgp + (1 — tg) =.1

LOI,tL, ROI'

CWIi]=A



Correction Words (On Path)

* At each level we define public correction words CW|i]

G(sg

)
Lo,t; Ry tg

Want no Want
correction correction

G(sp)

If ai =0
Lo',t,” Ry tg' =1

Conditional|Correction: t), = 1 Ro, tr

[Conditional Correction: t, =0

Invariants: If x; = 1 (exit path) = Alice/Bob have shares of zero i.e., Ry Ry = 0 and t; Dtz = 0
If x; = 0 (stay on path) =» Alice/Bob have shares of pseudorandom Ly®L, " and t; + (1 —t;) =1

RO’, tp'

CWIi]=A

30



Correction Words (Already off path)

* At each level we define public correction words CW|i]

G(so)

Ly,t;, R tg =1

Want no Want no
correction correction

G (Sp)
Lo,t; Ry tg

|fai =1

LO ItL

ConditionaI[Correction: to =0 o

[Conditional Correction: t, =0

LOI,tL’ RO"

LO ItL RO, tR LO ItL RO, tR

CWIi]=A

Invariants: If x; = 0 (remain off path) =» Alice/Bob have shares of zeroi.e., Ly Ly = O and t;®t; = 0
If x; = 1 (remain off path) =» Alice/Bob have shares of pseudorandom Ry@R, and t,Btp =0



Distributed Point Function: Complexity

* Function Share/Key Size

* PRG Seed (A bits)
* Correction Word at Each Level: O(An) bits total

* Key Generation (Time)
* n PRG evaluations (plus a few XORs)

* Evaluation:

* n PRG evaluations (plus a few XORs)
* Essentially the same as



Other Examples of Functional Secret Sharing

* FSS for Decision Trees ((ncome renge of pptce? )
* Applications to Machine Learning o $30-70K -
(Cmmnalre ord? ) ears1 prezent i h) (Cﬂnﬁnalrecnrd?)
wes <1 15 n/\t
; JM : (B ) (o)




Fully Homomorphic Encryption (FHE)

* Idea: Alice sends Bob Encpg , (x1), ..., Encpg , (x,)
Encpg , (x;) + EncpKA(xj) = EncpKA(xi + xj)
and
Encpg , (x;) X EncpKA(xj) = EncpKA(xi X x]-)
* Bob cannot decrypt messages, but given a circuit C can compute
EncpKA(C(xl, ey Xy ))
* Proposed Application: Export confidential computation to cloud

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)



https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Fully Homomorphic Encryption (FHE)

* Idea: Alice sends Bob Encpg , (x1), ..., Encpg , (x,)

* Bob cannot decrypt messages, but given a circuit C can compute
EnCpKA(C(xl, . ))

 \We now have candidate constructions!

* Encryption/Decryption are polynomial time
e ...but expensive in practice.
* Proved to be CPA-Secure under plausible assumptions

* Remark 1: Partially Homomorphic Encryption schemes cannot be
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)



https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Partially Homomorphic Encryption

* Plain RSA is multiplicatively homomorphic
EnCpKA(xl‘) X EnCpKA(x]') — EnCpKA(xi X x])

* But not additively homomorphic

* Pallier Cryptosystem
Encpg ,(x;) X EncpKA(xj) = EncpKA(xi + xj)

(EnCPKA(xi)) — EnCpKA(k X x])

* Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier cryptosystem



https://en.wikipedia.org/wiki/Paillier_cryptosystem

Partially Homomorphic Encryption

» Secret Key: Large (prime) number p.
* Public Key: N = pqand x; = pq; + 2r; + 1 foreachi < t wherer; K p

* Encrypting a Bit b:
* Select Random Subset: S C [t] and random 7 K p
*Returnc =b +2r+Y;csx; mod N =p )i csqi +2(r + ) cs1i) + bmod N

* Decrypting a ciphertext:
*» Aslongas2(r + ), cs1i) <D
* (cmodp)mod 2 =2+ Y;esr;) +b)mod2=>b



Partially Homomorphic Encryption

* Encrypting a Bit b:
* Select Random Subset: S C [t] and random 7T K p
*Returnc =b +2r+Y;cex; mod N =p)ccqi + 2(r + ) cs1i) +b

* Adding two ciphertexts

c+c’=p(Zqi+zqi>+2<r+r’+2ri+2ri>+b+b’

i ES [ €S’ I ES I ESY
| ]
Y

Noise increases a bit

38



Partially Homomorphic Encryption

* Encrypting a Bit b:
* Select Random Subset: S C [t] and random 1 K p
*Returnc =b+2r+Y;csx; mod N =pYiceqi +2(r + X esri) +b

* Multiply two ciphertexts

CC'ZP(Z%’Zqi+Zinri+--->+

1eS {eS’ iES 1ESr
4 (r+2ri><r’+2ri> +2b(r+Zri>+2b’<r+2ri>+bb’
i ES i €S/ L ESY LES

\ /
f

Noise increases a bit more (multiplicative)




Bootstrapping (Gentry 2009)

* Transform Partially Homomorphic Encryption Scheme into Fully
Homomorphic Encryption Scheme

* Key ldea:

* Maintain two public keys pk, and pk, for partially homomorphic encryption
* Also, encrypt sk, using pk, and encrypt sk, under pk;
* The ciphertexts are included in the public key

Run homomorphic evaluation using pk, until the noise gets to be too large
Let c,,...,C, be intermediate ciphertext(s) (under key pk;)

Encrypt c,,...,c, bit by bit under (under key pk,)

Then evaluate the decryption circuit homorphically (under key pk,)

* Challenge: Need to make sure that decryption circuit is shallow enough to evaluate...

* Expensive, but there are tricks to reduce the running time



Fully Homomorphic Encryption Resources

* Implementation: https://github.com/shaih/HElib
e Tutorial: https://www.youtube.com/watch?v=j{IWOR2bGC7c

41


https://github.com/shaih/HElib
https://www.youtube.com/watch?v=jIWOR2bGC7c

Thanks for Listening




