
Advanced Cryptography
CS 655

Week 12: 

• Functional Secret Sharing/Distributed Point Functions

1Spring 2023

Save the Date: Midwest CRYPTO Day on April 11th at UIUC



Secret Sharing

• (t,n)-Secret Sharing
• 𝑠 1, 𝑠 2, … , 𝑠 𝑛 = ShareGen(s, t, n)

• Takes as input a secret an outputs n shares 

• s = RecoverShares 𝑖1, 𝑠 𝑖1 , 𝑖2, 𝑠 𝑖2 , … , 𝑖𝑡 , 𝑠 𝑖𝑡

• Takes as input a subset of t distinct shares and outputs the secret s

• Information Theoretic Privacy: any subset of t-1 shares leaks no 
information about the secret s

Pr 𝑠 𝑖1 , … , 𝑠 𝑖𝑡−1|𝑠 = Pr 𝑠 𝑖1 , … , 𝑠 𝑖𝑡−1|𝑠′
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Secret Sharing

• (t,n)-Secret Sharing
• 𝑠 1, 𝑠 2, … , 𝑠 𝑛 = ShareGen(s, t, n)

• Takes as input a secret an outputs n shares 

• s = Recover 𝑖1, 𝑠 𝑖1 , 𝑖2, 𝑠 𝑖2 , … , 𝑖𝑡 , 𝑠 𝑖𝑡

• Takes as input a subset of t distinct shares and outputs the secret s

• Example 1: (n,n)-Secret Sharing for secrets 𝑠 ∈ 0,1 𝜆

• ShareGen(s, t, n)
• Pick 𝑠 1, 𝑠 2, … , 𝑠 𝑛−1 ∈ 0,1 𝜆 uniformly at random
• Compute 𝑠 𝑛 = 𝑠⨁ 𝑠 1⨁ 𝑠 2⨁…⨁ 𝑠 𝑛−1

• Recover 𝑠 1, 𝑠 2, … , 𝑠 𝑛 = 𝑠 1⨁ 𝑠 2⨁…⨁ 𝑠 𝑛
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Shamir Secret Sharing

• Uses polynomials over a field 𝔽

• Fact: Suppose that p x = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 is a polynomial over a 

field 𝔽 > 𝑡 and let 𝑥1, … , 𝑥𝑡 be any set of t distinct points on the field. Then 
the polynomial p x is uniquely determined by the outputs p 𝑥1 , … , 𝑝 𝑥𝑡 .

Proof Sketch: If there is another degree 𝑡 − 1 polynomial 
𝑓 𝑥 = 𝑏0 + 𝑏1𝑥 +⋯+ 𝑏𝑡−1𝑥

𝑡−1

such that p 𝑥1 , … , 𝑝 𝑥𝑡 = f 𝑥1 , … , 𝑓 𝑥𝑡 then the polynomial 
𝑔 𝑥 ≔ 𝑓 𝑥 − 𝑝 𝑥 = 𝑏0 − 𝑎0 + 𝑏1 − 𝑎1 𝑥 +⋯+ 𝑏𝑡−1 − 𝑎𝑡−1 𝑥𝑡−1

has t roots i.e., g 𝑥𝑖 = 𝑓 𝑥𝑖 − 𝑝 𝑥𝑖 = 0. But 𝑔 𝑥 has degree at most 𝑡 − 1
which means that it can have at most 𝑡 − 1 roots. Contradiction!
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Shamir Secret Sharing

• Uses polynomials over a field 𝔽

• Fact: Suppose that p x = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 is a polynomial 

over a field 𝔽 > 𝑡 and let 𝑥1, … , 𝑥𝑡 be any set of t distinct points on the 
field. Then the polynomial p x is uniquely determined by the outputs 
p 𝑥1 , … , 𝑝 𝑥𝑡 .

Lagrange Interpolation: Efficient algorithm to find coefficients of p x
given 𝑥1, … , 𝑥𝑡 and p 𝑥1 , … , 𝑝 𝑥𝑡
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Shamir Secret Sharing

• Uses polynomials over a field 𝔽

• Fact: Suppose that p x = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 is a polynomial over a field 

𝔽 > 𝑡 and let 𝑥1, … , 𝑥𝑡 be any set of t distinct points on the field. Then the 
polynomial p x is uniquely determined by the outputs p 𝑥1 , … , 𝑝 𝑥𝑡

• View secret 𝑠 ∈ 𝔽 as a field element
• Fix distinct field elements 𝑥0, … , 𝑥𝑛−1 ∈ 𝔽
• ShareGen(s, t, n)

• Pick 𝑠 1, 𝑠 2, … , 𝑠 𝑡−1 ∈ 𝔽 uniformly at random

• Define the polynomial 𝑓 𝑥 such that f 𝑥0 , … , 𝑓 𝑥𝑡−1 = s, 𝑠 1, 𝑠 2, … , 𝑠 𝑡−1

• Lagrange Interpolation

• Set 𝑠 𝑗 ≔ 𝑓 𝑥𝑗 for 𝑗 ≥ 𝑡

• Output 𝑠 1, 𝑠 2, … , 𝑠 𝑛
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Shamir Secret Sharing

• Uses polynomials over a field 𝔽

• Fact: Suppose that p x = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 is a polynomial over a field 

𝔽 > 𝑡 and let 𝑥1, … , 𝑥𝑡 be any set of t distinct points on the field. Then the 
polynomial p x is uniquely determined by the outputs p 𝑥1 , … , 𝑝 𝑥𝑡

• View secret 𝑠 ∈ 𝔽 as a field element
• Fix distinct field elements 𝑥0, … , 𝑥𝑛 ∈ 𝔽
• ShareGen(s, t, n)

• Pick 𝑠 1, 𝑠 2, … , 𝑠 𝑡−1 ∈ 𝔽 uniformly at random
• Define the polynomial 𝑓 𝑥 such that f 𝑥0 , … , 𝑓 𝑥𝑡−1 = s, 𝑠 1, 𝑠 2, … , 𝑠 𝑡−1

• Lagrange Interpolation

• Set 𝑠 𝑗 ≔ 𝑓 𝑥𝑗 for 𝑗 ≥ 𝑡
• Output 𝑠 1, 𝑠 2, … , 𝑠 𝑛

• Recover() uses Lagrange Interpolation to extract polynomial and recover f 𝑥0
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Binary Secret Sharing Trick

• Alice has shares 𝑡 1 and 𝑠 1of secret bits t and s

• Bob has shares 𝑡 2 and 𝑠 2of secret bits t and s

• 𝑡 1⨁ 𝑡 2 = 𝑡

• 𝑠 1⨁ 𝑠 2 = 𝑠

• Trick 1 Linearity: 𝑦 𝑖 = 𝑡 𝑖⨁ 𝑠 𝑖is a share of 𝑠⨁𝑡
𝑦 1⨁ 𝑦 2 = 𝑡 1⨁ 𝑠 1 ⨁ 𝑡 2⨁ 𝑠 2 = 𝑠⨁𝑡

• Alice can compute 𝑦 1 = 𝑡 1⨁ 𝑠 1 locally

• Bob can compute 𝑦 2 = 𝑡 2⨁ 𝑠 2 locally
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Binary Secret Sharing Trick

• Alice has shares 𝑡 1 and 𝑠 1of secret bits t and s

• Bob has shares 𝑡 2 and 𝑠 2of secret bits t and s

• 𝑡 1⨁ 𝑡 2 = 𝑡

• 𝑠 1⨁ 𝑠 2 = 𝑠

• Trick 2: Suppose Alice/Bob want to compute shares of t ⋅ w (w 
known).
• Alice can compute 𝑦 1 = 𝑡 1 ⋅ w locally
• Bob can compute 𝑦 2 = 𝑡 2 ⋅ w locally

𝑦 1⨁ 𝑦 2 = 𝑡 1 ⋅ w ⨁ 𝑡 2 ⋅ w = 𝑤 ⋅ 𝑡

9



Binary Secret Sharing Trick

• Alice has shares 𝑡 1 and 𝑠 1of secret bits t and s
• Bob has shares 𝑡 2 and 𝑠 2of secret bits t and s

• 𝑡 1⨁ 𝑡 2 = 𝑡

• 𝑠 1⨁ 𝑠 2 = 𝑠

• Combo: Suppose Alice/Bob want to compute shares of s⨁(t ⋅ w) (w 
known).
• Alice can compute 𝑦 1 = 𝑠 1⨁ 𝑡 1 ⋅ w locally
• Bob can compute 𝑦 2 = 𝑠 2⨁ 𝑡 2 ⋅ w locally

𝑦 1⨁ 𝑦 2 = 𝑠 1⨁ 𝑡 1 ⋅ w ⨁ 𝑠 2⨁ 𝑡 2 ⋅ w = ቊ
𝑠 if 𝑤 = 0

s⨁t otherwise
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Distributed Point Function

• Point Function:

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

• Alice/Bob each get DPF keys 𝐾0 and 𝐾1
• Alice can use 𝐾0 to compute a share 𝑠𝑥 0 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Bob can use 𝐾1 to compute a share 𝑠𝑥 1 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Correctness: for all inputs x
𝑠𝑥 0⨁ 𝑠𝑥 1 = 𝑓𝛼,𝛽 𝑥
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Distributed Point Function

• Point Function: 

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

• Alice/Bob each get DPF keys 𝐾0 and 𝐾1
• Alice can use 𝐾0 to compute a share 𝑠𝑥 0 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Bob can use 𝐾1 to compute a share 𝑠𝑥 1 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Privacy: Alice/Bob should not learn anything about the secrets 𝛼, 𝛽
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Distributed Point Function

• Point Function: 

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

• Alice/Bob each get DPF keys 𝐾0 and 𝐾1
• Alice can use 𝐾0 to compute a share 𝑠𝑥 0 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Bob can use 𝐾1 to compute a share 𝑠𝑥 1 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Solution 1: Generate shares 𝑠𝛼 0⨁ 𝑠𝛼 1 = 𝑓𝛼,𝛽 𝛼 and set 𝐾𝑖 =
𝛼, 𝑠𝛼 𝑖

• Violates privacy
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Distributed Point Function

• Point Function: 

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

• Alice/Bob each get DPF keys 𝐾0 and 𝐾1
• Alice can use 𝐾0 to compute a share 𝑠𝑥 0 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥
• Bob can use 𝐾1 to compute a share 𝑠𝑥 1 of 𝑓𝛼,𝛽 𝑥 for any input 𝑥

• Solution 2: Generate shares 𝑠𝑥 0⨁ 𝑠𝑥 1 = 𝑓𝛼,𝛽 𝑥 for each input x and 
set 𝐾𝑖 = 𝑠𝑥 𝑖 𝑥∈{0,1}𝑛

• Private/Correct 
• Problem: Exponentially large keys! 
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GGM Based Distributed Point Function

• Attempt 1: Alice/Bob both get 𝐾 which is the 
root of a GGM tree. 
• Alice and Bob can both evaluate 𝐹𝐾(𝑥)
• Alice and Bob obtain shares of 𝐹𝐾 𝑥 ⨁𝐹𝐾(𝑥) = 0
• Incorrect when 𝑥 = 𝛼

• Attempt 2: Puncture key at 𝑥 = 𝛼
• Give Alice/Bob punctured Key 𝐾[𝛼]
• Generate shares 𝑠𝛼 0⨁ 𝑠𝛼 1 = 𝑓𝛼,𝛽 𝛼 = 𝛽
• Give Alice/Bob the shares 𝑠𝛼 0 and 𝑠𝛼 1

respectively
• Correct 
• Hides 𝛽
• Does not hide 𝛼 
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G(x):= G0(x) || G1(x)s1t1

𝝀 -bits 𝝀-bits

𝝀 bits

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise



GGM Based Distributed Point Function

• Attempt 3 (Obfuscation):
• Pick PPRF keys 𝐾

• Define DPF keys
𝐾0 = 𝑖𝑂 𝐶0 , 𝐾1 = 𝑖𝑂(𝐶1)

Where 

𝐶0 𝑥 ≔ 𝐹𝐾 𝑥

𝐶1 𝑥 ≔ ቊ
𝛽⨁𝐹𝐾 𝑥 𝑖𝑓𝑥 = 𝛼

𝐹𝐾 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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G(x):= G0(x) || G1(x)s1t1

𝝀 -bits 𝝀-bits

𝝀 bits

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

Advantages:
Correct! 

𝐾0 𝛼 ⨁𝐾1 𝛼 = 𝐹𝐾 𝛼 ⨁𝛽⨁𝐹𝐾 𝛼 = 𝛽

If 𝑥 ≠ 𝛼
𝐾0 𝑥 ⨁𝐾1 𝑥 = 𝐹𝐾 𝑥 ⨁𝐹𝐾 𝛼 = 0



GGM Based Distributed Point Function

• Attempt 3 (Obfuscation):
• Pick PPRF key 𝐾

• Define DPF keys
𝐾0 = 𝑖𝑂 𝐶0 , 𝐾1 = 𝑖𝑂(𝐶1)

Where 

𝐶0 𝑥 ≔ 𝐹𝐾 𝑥

𝐶1 𝑥 ≔ ቊ
𝛽⨁𝐹𝐾 𝑥 𝑖𝑓𝑥 = 𝛼

𝐹𝐾 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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G(x):= G0(x) || G1(x)s1t1

𝝀 -bits 𝝀-bits

𝝀 bits

𝑓𝛼,𝛽 𝑥 ≔ ቊ
𝛽
0

if 𝑥 = 𝛼
otherwise

Advantages:
Security? 
See homework 3 

Disadvantage: 
Highly impractical!



Recap: PPRFs from PRGs

GGM Puncturable PRF Construction

18

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits



Recap: PPRFs from PRGs

Could start with keys G0(k) and G1(k) instead of k
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__

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits



DPF Idea

Suppose first bit 𝛼1 = 0

s0 s1

0
1

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits

Alice

S0’ s1

0
1

Bob

Alice/Bob compute same thing on green paths/different things on red paths



DPF Idea

Suppose first bit 𝛼1 = 0

s0 s1

0
1

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits

Alice

S0’ s1

0
1

Bob

If 𝛼2 = 0 we want purple path to converge 



DPF: Fix Attempt 1

Suppose first bit 𝛼1 = 0 and second bit is 𝛼2 = 0

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits

𝐺0(𝑠1)

s0 s1

0 1

Alice

𝐺1(𝑠1)𝐺0(𝑠0) 𝐺1(𝑠0) 𝐺0(𝑠1)

𝑠0′ s1

0 1

Bob

𝐺1(𝑠1)𝐺0(𝑠0′) 𝐺1(𝑠0′)



 





DPF: Fix Attempt 1

Suppose first bit 𝛼1 = 0 and second bit is 𝛼2 = 0

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits

Level 2: Pick random strings 𝑅0
𝐵 , 𝑅1

𝐵 , and set 𝑅1
𝐴 = 𝐺1(𝑠0)⨁𝐺1(𝑠0′) ⨁𝑅0

𝐵 and 𝑅0
𝐴 = 𝑅0

𝐵

Bob uses function 𝐵0
2 𝑥 = 𝐺0 𝑥 ⨁𝑅0

𝐵 and 𝐵1
2 𝑥 = G1(x)⨁𝑅1

𝐵

Alice defines functions 𝐴0
2 𝑥 = 𝐺0 𝑥 ⨁𝑅0

𝐴 and 𝐴1
2 𝑥 = 𝐺1 𝑥 ⨁𝑅1

𝐴

𝐴0
2(𝑠1)

s0 s1

0 1

Alice

𝐴1
2(𝑠1)𝐴0

2(𝑠0) 𝐴1
2(𝑠0) 𝐵0

2(𝑠1)

𝑠0′ s1

0 1

Bob

𝐵1
2(𝑠1)𝐵0

2(𝑠0′) 𝐵1
2(𝑠0′)



DPF: Fix Attempt 1

Suppose first bit 𝛼1 = 0 and second bit is 𝛼2 = 0

G(x):= G0(x) || G1(x)  

𝝀 -bits 𝝀 -bits

Level 2: Pick random strings 𝑅0
𝐵 , 𝑅1

𝐵 , and set 𝑅1
𝐴 = 𝐺1(𝑠0)⨁𝐺1(𝑠0′) ⨁𝑅0

𝐵 and 𝑅0
𝐴 = 𝑅0

𝐵

Warning: If we make all random strings public then Alice/Bob learn 𝛼2 = 0
Solution: Some random strings are public; some are given only to Alice (resp. Bob).

𝐴0
2(𝑠1)

s0 s1

0 1

Alice

𝐴1
2(𝑠1)𝐴0

2(𝑠0) 𝐴1
2(𝑠0) 𝐵0

2(𝑠1)

𝑠0′ s1

0 1

Bob

𝐵1
2(𝑠1)𝐵0

2(𝑠0′) 𝐵1
2(𝑠0′)



DPF: Control Bits

Suppose first bit 𝛼1 = 0 and second bit is 𝛼2 = 0

G(x):= G0(x) || G1(x)  

𝝀 + 𝟏 -bits 𝝀 + 𝟏 -bits

At each level i Alice (resp. Bob) will have secret control bits 𝒕𝟎
𝑨,𝒊and 𝒕𝟏

𝑨,𝒊 (resp. 𝒕𝟎
𝑩,𝒊and 𝒕𝟏

𝑩,𝒊) which are part of the private key

Guarantee: 𝒕𝟏−𝛼
1

𝑩,𝟏 = 𝒕𝟏−𝛼
1

𝑨,𝟏 and 𝒕𝛼
1

𝑩,𝟏 = 𝒕𝛼
1

𝑨,𝟏

𝐴0
2(𝑠1, 𝑡1)

𝑠0 𝑠1

0 1

Alice

𝐴1
2(𝑠1, 𝑡1)𝐴0

2(𝑠0, 𝑡0) 𝐴1
2(𝑠0, 𝑡0) 𝐵0

2(𝑠1, 𝑡1)

𝑠0
′ 𝑠1

0 1

Bob

𝐵1
2(𝑠1, 𝑡1)𝐵0

2(𝑠0
′ , 𝑡0′) 𝐵1

2(𝑠0
′ , 𝑡0′)

𝝀 –bit input

𝒕𝟎
𝑨,𝟏 𝒕𝟏

𝑨,𝟏
𝒕𝟎
𝑩,𝟏 ≠ 𝒕𝟎

𝑨,𝟏
𝒕𝟏
𝑩,𝟏 = 𝒕𝟏

𝑨,𝟏



DPF: Invariants

Suppose first bit 𝛼1 = 0 and second bit is 𝛼2 = 0

G(x):= G0(x) || G1(x)  

𝝀 + 𝟏 -bits 𝝀 + 𝟏 -bits

Invariant (Control Bits): At each node on the red path Alice/Bob can locally compute secret shares of [1] and at each node off 
this path Alice/Bob have secret shares of [0].

Invariant: At each node off the path Alice/Bob can locally compute secret shares of 0𝜆 and at each node on the red path 
Alice/Bob have shares of a pseudorandom 𝜆 –bit string R

? ? ?

𝑠0 𝑠1

0 1

Alice

? ? ?? ? ? ? ? ? ? ? ?

𝑠0
′ 𝑠1

0 1

Bob

? ? ?? ? ? ? ? ?

𝝀 –bit input

𝒕𝟎
𝑨,𝟏 𝒕𝟏

𝑨,𝟏
𝒕𝟎
𝑩,𝟏 ≠ 𝒕𝟎

𝑨,𝟏
𝒕𝟏
𝑩,𝟏 = 𝒕𝟏

𝑨,𝟏



Conditional Correction Gadget 

• Alice has 𝑅0 and 𝑏0 and 
• Bob has 𝑅1 = 𝑅⨁𝑅0 and 𝑏1 = 𝑏⨁𝑏0
• Public Correction Factor Δ

• Bob computes 𝑅1
′ = 𝑅1 ⨁(𝑏1Δ) and Alice computes 𝑅0

′ = 𝑅0 ⨁(𝑏0Δ)
𝑅1
′⨁𝑅0

′ = 𝑅⨁ 𝑏1Δ ⨁ 𝑏0Δ = 𝑅⨁(𝑏Δ)

• Thus, Alice/Bob can locally obtain shares of 𝑅⨁(𝑏Δ)
• If b=0 (e.g., already off path) then net effect is that no correction is applied

• Already off path (R=0,b=0)  𝑅⨁ 𝑏Δ = 0 (Secret shares of 0!)
• If b=1 (e.g., was still on path) then net effect is that correction is applied

• If Δ = R,b=1 𝑅⨁ 𝑏Δ = 0 (Secret shares of 0 again!) 
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Conditional Correction Gadget: Attempt 1 

• Define conditional correction factors Δ0
𝑖 and Δ1

𝑖 for each level
• Δ𝛼𝑖

𝑖 = 0 (stay on path  no correction)

• Δ1−𝛼𝑖
𝑖 = 𝑅 (leave path  want to apply correction)

• Alice/Bob can apply correction factor Δ𝑥𝑖
𝑖

• Problem? 
• Alice/Bob can figure out 𝛼𝑖 from the value Δ0

𝑖 and Δ1
𝑖 !

• Can we make Δ𝛼𝑖
𝑖 ``look random”?

28

𝑠0

Want no 
correction

Want 
correction 



Correction Words (On Path)

• At each level we define public correction words CW[i] 
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𝑠0

Want no 
correction

Want 
correction 

𝑠0

𝐺(𝑠0)

𝑠0′𝑡0 𝑡0′

𝑡0
′ = 1𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅

Conditional Correction: 𝑡0 = 0

𝑳𝟎 ,𝒕𝑳 𝑹𝟎, 𝒕𝑹

𝐿0′ ,𝑡𝐿′ 𝑅0′, 𝑡𝑅′

𝐺(𝑠0′)
𝐺(𝑠0)

𝐿0 ,𝑡𝐿 𝑳𝟎, 𝑡𝑅

𝐿0′ ,𝑡𝐿′ 𝑅0′, 𝟏 − 𝒕𝑹′

CW[i]= Δ

Conditional Correction: 𝑡0
′ = 1

𝑳𝟎 ,𝒕𝑳 𝑅0′′, 1 − 𝒕𝑹

If 𝜶𝒊 = 𝟏

Invariants: If 𝒙𝒊 = 𝟎 (exit path)   Alice/Bob have shares of zero i.e., 𝑳𝟎⨁ 𝑳𝟎 = 𝟎 and 𝒕𝑳⨁𝒕𝑳 = 𝟎
If 𝒙𝒊 = 𝟏 (stay on path)  Alice/Bob have shares of pseudorandom 𝑹𝟎⨁𝑅0′′ and 𝒕𝑹 + 𝟏 − 𝒕𝑹 = 1

⨁



Correction Words (On Path)

• At each level we define public correction words CW[i] 
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𝑠0

Want no 
correction

Want 
correction 

𝑠0

𝐺(𝑠0)

𝑠0′𝑡0 𝑡0′

𝑡0
′ = 1𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅

Conditional Correction: 𝑡0 = 0

𝑳𝟎 ,𝒕𝑳 𝑹𝟎, 𝒕𝑹

𝐿0′ ,𝑡𝐿′ 𝑅0′, 𝑡𝑅′

𝐺(𝑠0′)
𝐺(𝑠0)

𝑅0 ,𝑡𝐿 𝑅0, 𝑡𝑅

𝐿0′ ,𝟏 − 𝒕𝑳′ 𝑅0′, 𝒕𝑹′

Conditional Correction: 𝑡0
′ = 1

𝑳𝟎′′ ,𝟏 − 𝒕𝑳 𝑅0, 𝒕𝑹

If 𝜶𝒊 = 𝟎

CW[i]= Δ

⨁

Invariants: If 𝒙𝒊 = 𝟏 (exit path)   Alice/Bob have shares of zero i.e., 𝑹𝟎⨁𝑹𝟎 = 𝟎 and 𝒕𝑹⨁𝒕𝑹 = 𝟎
If 𝒙𝒊 = 𝟎 (stay on path)  Alice/Bob have shares of pseudorandom 𝑳𝟎⨁𝐿0′′ and 𝒕𝑳 + 𝟏 − 𝒕𝑳 = 1



Correction Words (Already off path)

• At each level we define public correction words CW[i] 
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𝑠1

Want no 
correction

Want  no 
correction 

𝑠0

𝐺(𝑠0)

𝑠0𝑡0 𝑡0

𝑡0
′ = 1𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅

Conditional Correction: 𝑡0 = 0

𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅

𝐺(𝑠0′)
𝐺(𝑠0)

𝐿0 ,𝑡𝐿 𝑳𝟎, 𝑡𝑅

𝐿0′ ,𝑡𝐿′ 𝑅0′, 𝟏 − 𝒕𝑹′

CW[i]= Δ

Conditional Correction: 𝑡0 =0 

If 𝜶𝒊 = 𝟏

Invariants: If 𝒙𝒊 = 𝟎 (remain off path)   Alice/Bob have shares of zero i.e., 𝑳𝟎⨁ 𝑳𝟎 = 𝟎 and 𝒕𝑳⨁𝒕𝑳 = 𝟎
If 𝒙𝒊 = 𝟏 (remain off path)  Alice/Bob have shares of pseudorandom 𝑹𝟎⨁𝑅0 and 𝒕𝑹⨁𝒕𝑹 = 𝟎

⨁

𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅𝐿0 ,𝑡𝐿 𝑅0, 𝑡𝑅



Distributed Point Function: Complexity

• Function Share/Key Size
• PRG Seed (𝜆 bits)

• Correction Word at Each Level: O(𝜆𝑛) bits total 

• Key Generation (Time)
• n PRG evaluations (plus a few XORs)

• Evaluation:
• n PRG evaluations (plus a few XORs)

• Essentially the same as 
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Other Examples of Functional Secret Sharing

• FSS for Decision Trees
• Applications to Machine Learning
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Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥1 , … , 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑛
𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 + 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑗 = 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 + 𝑥𝑗

and
𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 × 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑗 = 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 × 𝑥𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝑛𝑐𝑃𝐾𝐴 𝐶 𝑥1, … , 𝑥𝑛

• Proposed Application: Export confidential computation to cloud 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥1 , … , 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝑛𝑐𝑃𝐾𝐴 𝐶 𝑥1, … , 𝑥𝑛

• We now have candidate constructions!
• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be 
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 × 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑗 = 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 × 𝑥𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 × 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑗 = 𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖 + 𝑥𝑗

𝐸𝑛𝑐𝑃𝐾𝐴 𝑥𝑖
𝑘
= 𝐸𝑛𝑐𝑃𝐾𝐴 𝑘 × 𝑥𝑗

• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem


Partially Homomorphic Encryption

• Secret Key: Large (prime) number p.

• Public Key: N = pq and 𝑥𝑖 = 𝑝𝑞𝑖 + 2𝑟𝑖 + 1 for each 𝑖 ≤ 𝑡 where 𝑟𝑖 ≪ 𝑝

• Encrypting a Bit b:
• Select Random Subset: 𝑆 ⊂ [𝑡] and random 𝑟 ≪ 𝑝

• Return 𝑐 = 𝑏 + 2𝑟 + σ𝑖 ∈𝑆 𝑥𝑖 𝑚𝑜𝑑 𝑁 = 𝑝σ𝑖 ∈𝑆 𝑞𝑖 + 2 𝑟 + σ𝑖 ∈𝑆 𝑟𝑖 + 𝑏 𝑚𝑜𝑑 𝑁

• Decrypting a ciphertext:
• As long as 2 𝑟 + σ𝑖 ∈𝑆 𝑟𝑖 < p
• 𝑐 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 2 = 2 𝑟 + σ𝑖 ∈𝑆 𝑟𝑖 + 𝑏 𝑚𝑜𝑑 2 = 𝑏
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Partially Homomorphic Encryption

• Encrypting a Bit b:
• Select Random Subset: 𝑆 ⊂ [𝑡] and random 𝑟 ≪ 𝑝

• Return 𝑐 = 𝑏 + 2𝑟 + σ𝑖 ∈𝑆 𝑥𝑖 𝑚𝑜𝑑 𝑁 = 𝑝σ𝑖 ∈𝑆 𝑞𝑖 + 2 𝑟 + σ𝑖 ∈𝑆 𝑟𝑖 + 𝑏

• Adding two ciphertexts

𝑐 + 𝑐′ = 𝑝 

𝑖 ∈𝑆

𝑞𝑖 + 

𝑖 ∈𝑆′

𝑞𝑖 + 2 𝑟 + 𝑟′ +

𝑖 ∈𝑆

𝑟𝑖 + 

𝑖 ∈𝑆′

𝑟𝑖 + 𝑏 + 𝑏′

38
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Partially Homomorphic Encryption

• Encrypting a Bit b:
• Select Random Subset: 𝑆 ⊂ [𝑡] and random 𝑟 ≪ 𝑝

• Return 𝑐 = 𝑏 + 2𝑟 + σ𝑖 ∈𝑆 𝑥𝑖 𝑚𝑜𝑑 𝑁 = 𝑝σ𝑖 ∈𝑆 𝑞𝑖 + 2 𝑟 + σ𝑖 ∈𝑆 𝑟𝑖 + 𝑏

• Multiply two ciphertexts

𝑐𝑐′ = 𝑝 

𝑖 ∈𝑆

𝑞𝑖 

𝑖 ∈𝑆′

𝑞𝑖 +

𝑖 ∈𝑆

𝑞𝑖 

𝑖 ∈𝑆′

𝑟𝑖 +⋯ +

4 𝒓 +

𝒊 ∈𝑺

𝒓𝒊 𝒓′ + 

𝒊 ∈𝑺′

𝒓𝒊 + 2𝑏 𝑟 + 

𝑖 ∈𝑆′

𝑟𝑖 + 2𝑏′ 𝑟 +

𝑖 ∈𝑆

𝑟𝑖 + 𝑏𝑏′

39Noise increases a bit more (multiplicative)



Bootstrapping (Gentry 2009)

• Transform Partially Homomorphic Encryption Scheme into Fully 
Homomorphic Encryption Scheme

• Key Idea: 
• Maintain two public keys pk1 and pk2 for partially homomorphic encryption

• Also, encrypt sk1 using pk2 and encrypt sk2 under pk1

• The ciphertexts are included in the public key

• Run homomorphic evaluation using pk1 until the noise gets to be too large
• Let c1,…,ck be intermediate ciphertext(s) (under key pk1)
• Encrypt c1,…,ck bit by bit under (under key pk2) 
• Then evaluate the decryption circuit homorphically (under key pk2) 
• Challenge: Need to make sure that decryption circuit is shallow enough to evaluate…

• Expensive, but there are tricks to reduce the running time
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Fully Homomorphic Encryption Resources

• Implementation: https://github.com/shaih/HElib

• Tutorial: https://www.youtube.com/watch?v=jIWOR2bGC7c
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https://github.com/shaih/HElib
https://www.youtube.com/watch?v=jIWOR2bGC7c


Thanks for Listening
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