Advanced Cryptography CS 655

Week 12:

- Functional Secret Sharing/Distributed Point Functions

Secret Sharing

- (t, n)-Secret Sharing
- $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n}=\operatorname{ShareGen}(\mathrm{s}, \mathrm{t}, \mathrm{n})$
- Takes as input a secret an outputs n shares
- $s=\operatorname{RecoverShares}\left(\left(i_{1}, \llbracket s \rrbracket_{i_{1}}\right),\left(i_{2}, \llbracket s \rrbracket_{i_{2}}\right), \ldots,\left(i_{t}, \llbracket s \rrbracket_{i_{t}}\right)\right)$
- Takes as input a subset of t distinct shares and outputs the secret s
- Information Theoretic Privacy: any subset of $\mathrm{t}-1$ shares leaks no information about the secret s

$$
\operatorname{Pr}\left[\llbracket s \rrbracket_{i_{1}}, \ldots, \llbracket s \rrbracket_{i_{t-1}} \mid s\right]=\operatorname{Pr}\left[\llbracket s \rrbracket_{i_{1}}, \ldots, \llbracket s \rrbracket_{i_{t-1}} \mid s^{\prime}\right]
$$

Secret Sharing

- (t, n)-Secret Sharing
- $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n}=\operatorname{ShareGen}(\mathrm{s}, \mathrm{t}, \mathrm{n})$
- Takes as input a secret an outputs n shares
- $s=\operatorname{Recover}\left(\left(i_{1}, \llbracket s \rrbracket_{i_{1}}\right),\left(i_{2}, \llbracket s \rrbracket_{i_{2}}\right), \ldots,\left(i_{t}, \llbracket s \rrbracket_{i_{t}}\right)\right)$
- Takes as input a subset of t distinct shares and outputs the secret s
- Example 1: (n, n)-Secret Sharing for secrets $s \in\{0,1\}^{\lambda}$
- ShareGen(s, t, n)
- Pick $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n-1} \in\{0,1\}^{\lambda}$ uniformly at random
- Compute $\llbracket s \rrbracket_{n}=s \oplus \llbracket s \rrbracket_{1} \oplus \llbracket s \rrbracket_{2} \oplus \ldots \oplus \llbracket s \rrbracket_{n-1}$
- Recover $\left(\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n}\right)=\llbracket s \rrbracket_{1} \oplus \llbracket s \rrbracket_{2} \oplus \ldots \oplus \llbracket s \rrbracket_{n}$

Shamir Secret Sharing

- Uses polynomials over a field \mathbb{F}
- Fact: Suppose that $\mathrm{p}(\mathrm{x})=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}$ is a polynomial over a field $|\mathbb{F}|>t$ and let x_{1}, \ldots, x_{t} be any set of t distinct points on the field. Then the polynomial $\mathrm{p}(\mathrm{x})$ is uniquely determined by the outputs $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right)$.
Proof Sketch: If there is another degree $t-1$ polynomial

$$
f(x)=b_{0}+b_{1} x+\cdots+b_{t-1} x^{t-1}
$$

such that $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right)=\left(\mathrm{f}\left(x_{1}\right), \ldots, f\left(x_{t}\right)\right)$ then the polynomial

$$
g(x):=f(x)-p(x)=\left(b_{0}-a_{0}\right)+\left(b_{1}-a_{1}\right) x+\cdots+\left(b_{t-1}-a_{t-1}\right) x^{t-1}
$$

has troots i.e., $\mathrm{g}\left(x_{i}\right)=f\left(x_{i}\right)-p\left(x_{i}\right)=0$. But $g(x)$ has degree at most $t-1$ which means that it can have at most $t-1$ roots. Contradiction!

Shamir Secret Sharing

- Uses polynomials over a field \mathbb{F}
- Fact: Suppose that $\mathrm{p}(\mathrm{x})=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}$ is a polynomial over a field $|\mathbb{F}|>t$ and let x_{1}, \ldots, x_{t} be any set of t distinct points on the field. Then the polynomial $\mathrm{p}(\mathrm{x})$ is uniquely determined by the outputs $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right)$.
Lagrange Interpolation: Efficient algorithm to find coefficients of $\mathrm{p}(\mathrm{x})$ given x_{1}, \ldots, x_{t} and $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right)$

Shamir Secret Sharing

- Uses polynomials over a field \mathbb{F}
- Fact: Suppose that $\mathrm{p}(\mathrm{x})=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}$ is a polynomial over a field $|\mathbb{F}|>t$ and let x_{1}, \ldots, x_{t} be any set of t distinct points on the field. Then the polynomial $\mathrm{p}(\mathrm{x})$ is uniquely determined by the outputs $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right)$
- View secret $s \in \mathbb{F}$ as a field element
- Fix distinct field elements $x_{0}, \ldots, x_{n-1} \in \mathbb{F}$
- ShareGen($\mathrm{s}, \mathrm{t}, \mathrm{n}$)
- Pick $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{t-1} \in \mathbb{F}$ uniformly at random
- Define the polynomial $f(x)$ such that $\left(\mathrm{f}\left(x_{0}\right), \ldots, f\left(x_{t-1}\right)\right)=\left(s, \llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{t-1}\right)$
- Lagrange Interpolation
- Set $\llbracket s \rrbracket_{j}:=f\left(x_{j}\right)$ for $j \geq t$
- Output $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n}$

Shamir Secret Sharing

- Uses polynomials over a field \mathbb{F}
- Fact: Suppose that $\mathrm{p}(\mathrm{x})=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}$ is a polynomial over a field $|\mathbb{F}|>t$ and let x_{1}, \ldots, x_{t} be any set of t distinct points on the field. Then the polynomial $\mathrm{p}(\mathrm{x})$ is uniquely determined by the outputs $\left(\mathrm{p}\left(x_{1}\right), \ldots, p\left(x_{t}\right)\right.$)
- View secret $s \in \mathbb{F}$ as a field element
- Fix distinct field elements $x_{0}, \ldots, x_{n} \in \mathbb{F}$
- ShareGen(s, t, n)
- Pick $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{t-1} \in \mathbb{F}$ uniformly at random
- Define the polynomial $f(x)$ such that $\left(\mathrm{f}\left(x_{0}\right), \ldots, f\left(x_{t-1}\right)\right)=\left(\mathrm{s}, \llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{t-1}\right)$
- Lagrange Interpolation
- Set $\llbracket s \rrbracket_{j}:=f\left(x_{j}\right)$ for $j \geq t$
- Output $\llbracket s \rrbracket_{1}, \llbracket s \rrbracket_{2}, \ldots, \llbracket s \rrbracket_{n}$
- Recover() uses Lagrange Interpolation to extract polynomial and recover $\mathrm{f}\left(x_{0}\right)$

Binary Secret Sharing Trick

- Alice has shares $\llbracket t \rrbracket_{1}$ and $\llbracket s \rrbracket_{1}$ of secret bits t and s
- Bob has shares $\llbracket t \rrbracket_{2}$ and $\llbracket s \rrbracket_{2}$ of secret bits t and s
- $\llbracket t \rrbracket_{1} \oplus \llbracket t \rrbracket_{2}=t$
$\cdot \llbracket s \rrbracket_{1} \oplus \llbracket s \rrbracket_{2}=s$
- Trick 1 Linearity: $\llbracket y \rrbracket_{i}=\llbracket t \rrbracket_{i} \oplus \llbracket s \rrbracket_{i}$ is a share of $s \oplus t$

$$
\llbracket y \rrbracket_{1} \oplus \llbracket y \rrbracket_{2}=\left(\llbracket t \rrbracket_{1} \oplus \llbracket s \rrbracket_{1}\right) \oplus\left(\llbracket t \rrbracket_{2} \oplus \llbracket s \rrbracket_{2}\right)=s \oplus t
$$

- Alice can compute $\llbracket y \rrbracket_{1}=\llbracket t \rrbracket_{1} \oplus \llbracket s \rrbracket_{1}$ locally
- Bob can compute $\llbracket y \rrbracket_{2}=\llbracket t \rrbracket_{2} \oplus \llbracket s \rrbracket_{2}$ locally

Binary Secret Sharing Trick

- Alice has shares $\llbracket t \rrbracket_{1}$ and $\llbracket s \rrbracket_{1}$ of secret bits t and s
- Bob has shares $\llbracket t \rrbracket_{2}$ and $\llbracket s \rrbracket_{2}$ of secret bits t and s
- $\llbracket t \rrbracket_{1} \oplus \llbracket t \rrbracket_{2}=t$
- $\llbracket s \rrbracket_{1} \oplus \llbracket s \rrbracket_{2}=s$
- Trick 2: Suppose Alice/Bob want to compute shares of $\mathrm{t} \cdot \mathrm{w}(\mathrm{w}$ known).
- Alice can compute $\llbracket y \rrbracket_{1}=\llbracket t \rrbracket_{1} \cdot \mathrm{w}$ locally
- Bob can compute $\llbracket y \rrbracket_{2}=\llbracket t \rrbracket_{2} \cdot \mathrm{w}$ locally

$$
\llbracket y \rrbracket_{1} \oplus \llbracket y \rrbracket_{2}=\left(\llbracket t \rrbracket_{1} \cdot \mathrm{w}\right) \oplus\left(\llbracket t \rrbracket_{2} \cdot \mathrm{w}\right)=w \cdot t
$$

Binary Secret Sharing Trick

- Alice has shares $\llbracket t \rrbracket_{1}$ and $\llbracket s \rrbracket_{1}$ of secret bits t and s
- Bob has shares $\llbracket t \rrbracket_{2}$ and $\llbracket s \rrbracket_{2}$ of secret bits t and s
- $\llbracket t \rrbracket_{1} \oplus \llbracket t \rrbracket_{2}=t$
- $\llbracket s \rrbracket_{1} \oplus \llbracket s \rrbracket_{2}=s$
- Combo: Suppose Alice/Bob want to compute shares of $s \oplus(\mathrm{t} \cdot \mathrm{w}$) (w known).
- Alice can compute $\llbracket y \rrbracket_{1}=\llbracket s \rrbracket_{1} \oplus\left(\llbracket t \rrbracket_{1} \cdot \mathrm{w}\right)$ locally
- Bob can compute $\llbracket y \rrbracket_{2}=\llbracket s \rrbracket_{2} \oplus \llbracket t \rrbracket_{2} \cdot \mathrm{w}$ locally

$$
\llbracket y \rrbracket_{1} \oplus \llbracket y \rrbracket_{2}=\left(\llbracket s \rrbracket_{1} \oplus\left(\llbracket t \rrbracket_{1} \cdot \mathrm{w}\right)\right) \oplus\left(\llbracket s \rrbracket_{2} \oplus\left(\llbracket t \rrbracket_{2} \cdot \mathrm{w}\right)\right)=\left\{\begin{array}{cc}
s & \text { if } w=0 \\
\mathrm{~s} \oplus \mathrm{t} & \text { otherwise }
\end{array}\right.
$$

Distributed Point Function

- Point Function:

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- Alice/Bob each get DPF keys K_{0} and K_{1}
- Alice can use K_{0} to compute a share $\llbracket s_{x} \rrbracket_{0}$ of $f_{\alpha, \beta}(x)$ for any input x
- Bob can use K_{1} to compute a share $\llbracket s_{x} \rrbracket_{1}$ of $f_{\alpha, \beta}(x)$ for any input x
- Correctness: for all inputs x

$$
\llbracket s_{x} \rrbracket_{0} \oplus \llbracket s_{x} \rrbracket_{1}=f_{\alpha, \beta}(x)
$$

Distributed Point Function

- Point Function:

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- Alice/Bob each get DPF keys K_{0} and K_{1}
- Alice can use K_{0} to compute a share $\llbracket s_{x} \rrbracket_{0}$ of $f_{\alpha, \beta}(x)$ for any input x
- Bob can use K_{1} to compute a share $\llbracket s_{x} \rrbracket_{1}$ of $f_{\alpha, \beta}(x)$ for any input x
- Privacy: Alice/Bob should not learn anything about the secrets α, β

Distributed Point Function

- Point Function:

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- Alice/Bob each get DPF keys K_{0} and K_{1}
- Alice can use K_{0} to compute a share $\llbracket s_{x} \rrbracket_{0}$ of $f_{\alpha, \beta}(x)$ for any input x
- Bob can use K_{1} to compute a share $\llbracket s_{x} \rrbracket_{1}$ of $f_{\alpha, \beta}(x)$ for any input x
- Solution 1: Generate shares $\llbracket s_{\alpha} \rrbracket_{0} \oplus \llbracket s_{\alpha} \rrbracket_{1}=f_{\alpha, \beta}(\alpha)$ and set $K_{i}=$ $\left(\alpha, \llbracket s_{\alpha} \rrbracket_{i}\right)$
- Violates privacy

Distributed Point Function

- Point Function:

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- Alice/Bob each get DPF keys K_{0} and K_{1}
- Alice can use K_{0} to compute a share $\llbracket s_{x} \rrbracket_{0}$ of $f_{\alpha, \beta}(x)$ for any input x
- Bob can use K_{1} to compute a share $\llbracket s_{x} \rrbracket_{1}$ of $f_{\alpha, \beta}(x)$ for any input x
- Solution 2: Generate shares $\llbracket s_{x} \rrbracket_{0} \oplus \llbracket s_{x} \rrbracket_{1}=f_{\alpha, \beta}(x)$ for each input x and set $K_{i}=\left\{\llbracket s_{x} \rrbracket_{i}\right\}_{x \in\{0,1\}^{n}}$
- Private/Correct ©
- Problem: Exponentially large keys! :

GGM Based Distributed Point Function

- Attempt 1: Alice/Bob both get K which is the root of a GGM tree.
- Alice and Bob can both evaluate $F_{K}(x)$
- Alice and Bob obtain shares of $F_{K}(x) \oplus F_{K}(x)=0$
- Incorrect when $x=\alpha$ $\mathbf{G}(\mathbf{x}):=\overbrace{\substack{\downarrow \\ \mathbf{G}_{\mathbf{0}}(\mathbf{x})| |}}^{\lambda \text {-bits }} \mathbf{G}_{\mathbf{1}}(\mathbf{x}) \mathrm{s}_{\mathbf{1}} \mathbf{t}_{\mathbf{1}}$
- Attempt 2: Puncture key at $x=\alpha$
- Give Alice/Bob punctured Key $K[\alpha]$
- Generate shares $\llbracket s_{\alpha} \rrbracket_{0} \oplus \llbracket s_{\alpha} \rrbracket_{1}=f_{\alpha, \beta}(\alpha)=\beta$
- Give Alice/Bob the shares $\llbracket s_{\alpha} \rrbracket_{0}$ and $\llbracket s_{\alpha} \rrbracket_{1}$ respectively
- Correct ${ }^{-}$
- Hides β ©
- Does not hide α :

GGM Based Distributed Point Function

- Attempt 3 (Obfuscation):
- Pick PPRF keys K
- Define DPF keys

$$
K_{0}=i O\left(C_{0}\right), K_{1}=i O\left(C_{1}\right)
$$

Where

$$
\begin{aligned}
C_{0}(x) & :=F_{K}(x) \\
C_{1}(x) & := \begin{cases}\beta \oplus F_{K}(x) & \text { if } x=\alpha \\
F_{K}(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

λ-bits λ-bits

 $G(x):=G_{G_{0}(x)}| | G_{1}(x) s_{s_{1} t_{1}}$$\lambda$ bits

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

Advantages:
Correct! :

$$
\begin{aligned}
& K_{0}(\alpha) \oplus K_{1}(\alpha)=F_{K}(\alpha) \oplus \beta \oplus F_{K}(\alpha)=\beta \\
& \text { If } x \neq \alpha \\
& \quad K_{0}(x) \oplus K_{1}(x)=F_{K}(x) \oplus F_{K}(\alpha)=0
\end{aligned}
$$

GGM Based Distributed Point Function

- Attempt 3 (Obfuscation):

- Pick PPRF key K
- Define DPF keys

$$
K_{0}=i O\left(C_{0}\right), K_{1}=i O\left(C_{1}\right)
$$

Where

$$
\begin{aligned}
C_{0}(x) & :=F_{K}(x) \\
C_{1}(x) & := \begin{cases}\beta \oplus F_{K}(x) & \text { if } x=\alpha \\
F_{K}(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

λ-bits λ-bits $G(x):=G_{G_{0}(x)}| | G_{1}(x) s_{1} t_{1}$
 λ bits

$$
f_{\alpha, \beta}(x):= \begin{cases}\beta & \text { if } x=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

Advantages:
Security?
See homework 3 ©

Disadvantage:
Highly impractical!

Recap: PPRFs from PRGs

$$
\mathbf{G}(\mathbf{x}): \overbrace{\mathbf{G}_{0}(\mathbf{x})}^{\lambda \text {-bits }}| | \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\lambda \text {-bits }}
$$

GGM Puncturable PRF Construction

Recap: PPRFs from PRGs

$$
\mathbf{G}(x):=\overbrace{\mathbf{G}_{0}(x)}^{\lambda \text {-bits }}| | \overbrace{\mathbf{G}_{1}(x)}^{\lambda \text {-bits }}
$$

Could start with keys $G_{0}(k)$ and $G_{1}(k)$ instead of k

DPF Idea

$\mathbf{G}(\mathbf{x}):=\overbrace{\mathbf{G}_{\mathbf{0}}(\mathbf{x})}^{\lambda \text {-bits }}| | \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\lambda \text {-bits }}$

Suppose first bit $\alpha_{1}=0$

Alice/Bob compute same thing on green paths/different things on red paths

DPF Idea

$$
\mathbf{G}(\mathbf{x}):=\overbrace{\mathbf{G}_{0}(\mathbf{x})}^{\lambda \text {-bits }} \mid \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\lambda \text {-bits }}
$$

Suppose first bit $\alpha_{1}=0$

DPF: Fix Attempt 1

$$
\mathbf{G}(\mathbf{x}):=\overbrace{\mathbf{G}_{0}(\mathbf{x})}^{\lambda \text {-bits }}| | \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\lambda \text {-bits }}
$$

Suppose first bit $\alpha_{1}=0$ and second bit is $\alpha_{2}=0$

DPF: Fix Attempt 1

$$
\mathbf{G}(\mathbf{x}):=\overbrace{\mathbf{G}_{0}(\mathbf{x})}^{\lambda \text {-bits }} \mid \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\lambda \text {-bits }}
$$

Suppose first bit $\alpha_{1}=0$ and second bit is $\alpha_{2}=0$

Level 2: Pick random strings R_{0}^{B}, R_{1}^{B}, and set $R_{1}^{A}=\left(G_{1}\left(s_{0}\right) \oplus G_{1}\left(s_{0}{ }^{\prime}\right)\right) \oplus R_{0}^{B}$ and $R_{0}^{A}=R_{0}^{B}$
Bob uses function $B_{0}^{2}(x)=G_{0}(x) \oplus R_{0}^{B}$ and $B_{1}^{2}(x)=\mathrm{G}_{1}(\mathrm{x}) \oplus R_{1}^{B}$
Alice defines functions $A_{0}^{2}(x)=G_{0}(x) \oplus R_{0}^{A}$ and $A_{1}^{2}(x)=G_{1}(x) \oplus R_{1}^{A}$

DPF: Fix Attempt 1

Suppose first bit $\alpha_{1}=0$ and second bit is $\alpha_{2}=0$

Level 2: Pick random strings R_{0}^{B}, R_{1}^{B}, and set $R_{1}^{A}=\left(G_{1}\left(s_{0}\right) \oplus G_{1}\left(s_{0}{ }^{\prime}\right)\right) \oplus R_{0}^{B}$ and $R_{0}^{A}=R_{0}^{B}$
Warning: If we make all random strings public then Alice/Bob learn $\alpha_{2}=0$
Solution: Some random strings are public; some are given only to Alice (resp. Bob).

DPF: Control Bits

$$
\lambda+1 \text {-bits } \quad \lambda+1 \text {-bits }
$$

 λ-bit input
Suppose first bit $\alpha_{1}=0$ and second bit is $\alpha_{2}=0$

At each level i Alice (resp. Bob) will have secret control bits $t_{0}^{A, i}$ and $t_{1}^{A, i}\left(\right.$ resp. $t_{0}^{B, i}$ and $t_{1}^{B, i}$) which are part of the private key Guarantee: $t_{1-\alpha_{1}}^{B, 1}=t_{1-\alpha_{1}}^{A, 1} \quad$ and $t_{\alpha_{1}}^{B, 1}=t_{\alpha_{1}}^{A, 1}$

DPF: Invariants

$$
\underset{\lambda-\text { bit input }}{\mathbf{G}(\mathbf{x})} \overbrace{\mathbf{G}_{\mathbf{0}}(\mathbf{x})}^{\lambda+1 \text {-bits }} \mid \overbrace{\mathbf{G}_{\mathbf{1}}(\mathbf{x})}^{\lambda+1 \text {-bits }}
$$

Suppose first bit $\alpha_{1}=0$ and second bit is $\alpha_{2}=0$

Invariant (Control Bits): At each node on the red path Alice/Bob can locally compute secret shares of [1] and at each node off this path Alice/Bob have secret shares of [0].
Invariant: At each node off the path Alice/Bob can locally compute secret shares of 0^{λ} and at each node on the red path Alice/Bob have shares of a pseudorandom λ-bit string R

Conditional Correction Gadget

- Alice has R_{0} and b_{0} and
- Bob has $R_{1}=R \oplus R_{0}$ and $b_{1}=b \oplus b_{0}$
- Public Correction Factor Δ
- Bob computes $R_{1}^{\prime}=R_{1} \oplus\left(b_{1} \Delta\right)$ and Alice computes $R_{0}^{\prime}=R_{0} \oplus\left(b_{0} \Delta\right)$

$$
R_{1}^{\prime} \oplus R_{0}^{\prime}=R \oplus\left(b_{1} \Delta\right) \oplus\left(b_{0} \Delta\right)=R \oplus(b \Delta)
$$

- Thus, Alice/Bob can locally obtain shares of $R \oplus(b \Delta)$
- If $b=0$ (e.g., already off path) then net effect is that no correction is applied
- Already off path $(\mathrm{R}=0, \mathrm{~b}=0) \rightarrow R \oplus(b \Delta)=0$ (Secret shares of 0 !)
- If $b=1$ (e.g., was still on path) then net effect is that correction is applied
- If $\Delta=\mathrm{R}, \mathrm{b}=1 \rightarrow R \oplus(b \Delta)=0$ (Secret shares of 0 again!)

Conditional Correction Gadget: Attempt 1

- Define conditional correction factors Δ_{0}^{i} and Δ_{1}^{i} for each level
- $\Delta_{\alpha_{i}}^{i}=0$ (stay on path \rightarrow no correction)
- $\Delta_{1-\alpha_{i}}^{i}=R$ (leave path \rightarrow want to apply correction)
- Alice/Bob can apply correction factor $\Delta_{x_{i}}^{i}$
- Problem?
- Alice/Bob can figure out α_{i} from the value Δ_{0}^{i} and Δ_{1}^{i} !
- Can we make $\Delta_{\alpha_{i}}^{i}$ "look random"?

Correction Words (On Path)

- At each level we define public correction words CW[i]

$$
\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{t}_{\boldsymbol{L}} \quad R_{0}{ }^{\prime \prime}, 1-\boldsymbol{t}_{\boldsymbol{R}}
$$

$$
L_{0}, t_{L} \quad R_{0}, t_{R}
$$

$$
\text { If } \alpha_{i}=1
$$

$$
t_{0}^{\prime}=1
$$

$$
\mathrm{CW}[\mathrm{i}]=\Delta
$$

Invariants: If $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$ (exit path) \rightarrow Alice/Bob have shares of zero i.e., $L_{0} \oplus L_{0}=\mathbf{0}$ and $t_{L} \oplus t_{L}=\mathbf{0}$

$$
\text { If } \boldsymbol{x}_{\boldsymbol{i}}=\mathbf{1} \text { (stay on path) } \boldsymbol{\rightarrow} \text { Alice/Bob have shares of pseudorandom } \boldsymbol{R}_{0} \oplus R_{0}{ }^{\prime \prime} \text { and } \boldsymbol{t}_{\boldsymbol{R}}+\left(\mathbf{1}-\boldsymbol{t}_{\boldsymbol{R}}\right)={ }_{29} 1
$$

Correction Words (On Path)

- At each level we define public correction words CW[i]

$$
\text { If } \alpha_{i}=0
$$

$$
t_{0}^{\prime}=1
$$

$\mathrm{CW}[\mathrm{i}]=\Delta$
Invariants: If $x_{i}=\mathbf{1}$ (exit path) \rightarrow Alice/Bob have shares of zero i.e., $\boldsymbol{R}_{\mathbf{0}} \oplus \boldsymbol{R}_{\mathbf{0}}=\mathbf{0}$ and $t_{R} \oplus t_{R}=\mathbf{0}$ If $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$ (stay on path) $\boldsymbol{\rightarrow}$ Alice/Bob have shares of pseudorandom $L_{0} \oplus L_{0}{ }^{\prime \prime}$ and $t_{L}+\left(\mathbf{1}-\boldsymbol{t}_{L}\right)=1$

Correction Words (Already off path)

- At each level we define public correction words CW[i]

$$
\text { If } \alpha_{i}=1
$$

$$
t_{0}^{\prime}=1
$$

$$
\mathrm{CW}[\mathrm{i}]=\Delta
$$

Invariants: If $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$ (remain off path) \rightarrow Alice/Bob have shares of zero i.e., $L_{0} \oplus L_{0}=0$ and $t_{L} \oplus t_{L}=0$ If $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{1}$ (remain off path) $\boldsymbol{\rightarrow} \boldsymbol{A}$ Alice/Bob have shares of pseudorandom $R_{0} \oplus R_{0}$ and $t_{R} \oplus t_{R}=\mathbf{0}$

Distributed Point Function: Complexity

- Function Share/Key Size
- PRG Seed (λ bits)
- Correction Word at Each Level: $O(\lambda n)$ bits total
- Key Generation (Time)
- n PRG evaluations (plus a few XORs)
- Evaluation:
- n PRG evaluations (plus a few XORs)
- Essentially the same as

Other Examples of Functional Secret Sharing

- FSS for Decision Trees
- Applications to Machine Learning

Fully Homomorphic Encryption (FHE)

- Idea: Alice sends Bob $E n c_{P K_{A}}\left(x_{1}\right), \ldots, E n c_{P K_{A}}\left(x_{n}\right)$

$$
E n c_{P K_{A}}\left(x_{i}\right)+E n c_{P K_{A}}\left(x_{j}\right)=\operatorname{Enc}_{P K_{A}}\left(x_{i}+x_{j}\right)
$$

and

$$
E n c_{P K_{A}}\left(x_{i}\right) \times E n c_{P K_{A}}\left(x_{j}\right)=E n c_{P K_{A}}\left(x_{i} \times x_{j}\right)
$$

- Bob cannot decrypt messages, but given a circuit C can compute

$$
E n c_{P K_{A}}\left(C\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- Proposed Application: Export confidential computation to cloud

Fully Homomorphic Encryption (FHE)

- Idea: Alice sends Bob $E n c_{P K_{A}}\left(x_{1}\right), \ldots, E n c_{P K_{A}}\left(x_{n}\right)$
- Bob cannot decrypt messages, but given a circuit C can compute

$$
E n c_{P K_{A}}\left(C\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- We now have candidate constructions!
- Encryption/Decryption are polynomial time
- ...but expensive in practice.
- Proved to be CPA-Secure under plausible assumptions
- Remark 1: Partially Homomorphic Encryption schemes cannot be CCA-Secure. Why not?

Partially Homomorphic Encryption

- Plain RSA is multiplicatively homomorphic

$$
E n c_{P K_{A}}\left(x_{i}\right) \times E n c_{P K_{A}}\left(x_{j}\right)=E n c_{P K_{A}}\left(x_{i} \times x_{j}\right)
$$

- But not additively homomorphic
- Pallier Cryptosystem

$$
\begin{gathered}
E n c_{P K_{A}}\left(x_{i}\right) \times E n c_{P K_{A}}\left(x_{j}\right)=E n c_{P K_{A}}\left(x_{i}+x_{j}\right) \\
\left(E n c_{P K_{A}}\left(x_{i}\right)\right)^{k}=\operatorname{Enc}_{P K_{A}}\left(k \times x_{j}\right)
\end{gathered}
$$

- Not same as FHE, but still useful in multiparty computation

Partially Homomorphic Encryption

- Secret Key: Large (prime) number p .
- Public Key: $\mathrm{N}=\mathrm{pq}$ and $x_{i}=p q_{i}+2 r_{i}+1$ for each $i \leq t$ where $r_{i} \ll p$
- Encrypting a Bit b:
- Select Random Subset: $S \subset[t]$ and random $r \ll p$
- Return $c=b+2 r+\sum_{i \in S} x_{i} \bmod N=p \sum_{i \in S} q_{i}+2\left(r+\sum_{i \in S} r_{i}\right)+b \bmod N$
- Decrypting a ciphertext:
- As long as $2\left(r+\sum_{i \in S} r_{i}\right)<p$
- $(c \bmod p) \bmod 2=\left(2\left(r+\sum_{i \in S} r_{i}\right)+b\right) \bmod 2=b$

Partially Homomorphic Encryption

- Encrypting a Bit b:
- Select Random Subset: $S \subset[t]$ and random $r \ll p$
- Return $c=b+2 r+\sum_{i \in S} x_{i} \bmod N=p \sum_{i \in S} q_{i}+2\left(r+\sum_{i \in S} r_{i}\right)+b$
- Adding two ciphertexts

$$
c+c^{\prime}=p\left(\sum_{i \in S} q_{i}+\sum_{i \in S^{\prime}} q_{i}\right)+2\left(r+r^{\prime}+\sum_{i \in S} r_{i}+\sum_{i \in S^{\prime}} r_{i}\right)+b+b^{\prime}
$$

Noise increases a bit

Partially Homomorphic Encryption

- Encrypting a Bit b:
- Select Random Subset: $S \subset[t]$ and random $r \ll p$
- Return $c=b+2 r+\sum_{i \in S} x_{i} \bmod N=p \sum_{i \in S} q_{i}+2\left(r+\sum_{i \in S} r_{i}\right)+b$
- Multiply two ciphertexts

$$
\begin{aligned}
& c c^{\prime}=p\left(\sum_{i \in S} q_{i} \sum_{i \in S^{\prime}} q_{i}+\sum_{i \in S} q_{i} \sum_{i \in S^{\prime}} r_{i}+\cdots\right)+
\end{aligned}
$$

Bootstrapping (Gentry 2009)

- Transform Partially Homomorphic Encryption Scheme into Fully Homomorphic Encryption Scheme

- Key Idea:

- Maintain two public keys pk_{1} and pk_{2} for partially homomorphic encryption
- Also, encrypt sk ${ }_{1}$ using pk_{2} and encrypt sk ${ }_{2}$ under pk_{1}
- The ciphertexts are included in the public key
- Run homomorphic evaluation using pk_{1} until the noise gets to be too large
- Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$ be intermediate ciphertext(s) (under key pk_{1})
- Encrypt $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$ bit by bit under (under key pk_{2})
- Then evaluate the decryption circuit homorphically (under key pk_{2})
- Challenge: Need to make sure that decryption circuit is shallow enough to evaluate...
- Expensive, but there are tricks to reduce the running time

Fully Homomorphic Encryption Resources

- Implementation: https://github.com/shaih/HElib
- Tutorial: https://www.youtube.com/watch?v=jIWOR2bGC7c

Thanks for Listening

