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• Contents:

• Motivation
• Define the problem(s) you are working on clearly
• Related Work
• Preliminary Results

• What have you tried?
• What barriers have you encountered (if any)? 
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Obfuscation

• An obfuscator takes as input a program/circuit C and a security 
parameter 𝜆𝜆 and outputs a new program/circuit 𝐶𝐶′ = Obf 1𝜆𝜆 ,𝐶𝐶

• Efficiency: The function obfuscate should run in polynomial time in 
the size of the input program/circuit |C| and in the size of security 
parameter 𝜆𝜆

• Correctness: 𝐶𝐶′ should be equivalent to 𝐶𝐶 i.e., for all inputs x we have 
𝐶𝐶′ 𝑥𝑥 = 𝐶𝐶(𝑥𝑥)

Security?
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Virtual Blackbox Obfuscation

• VBB Security Definition: For all PPT attackers 𝒜𝒜 there exists a simulator 𝒮𝒮
such that for all programs {𝑃𝑃𝑛𝑛} and all security parameters 𝜆𝜆

Pr 𝒜𝒜 Obf 1𝜆𝜆 ,𝑃𝑃𝑛𝑛 − Pr[𝒮𝒮𝑃𝑃𝑛𝑛(⋅) 1𝜆𝜆 , |𝑃𝑃𝑛𝑛| ] ≤ negl(𝜆𝜆)

• Intuition: Anything an attacker could learn from the description of the 
obfuscated circuit 𝐶𝐶′ = Obf(C) the attacker could have learned if they had 
oracle access to the circuit 𝐶𝐶(𝑥𝑥) as a blackbox

• Pro: Very strong security notion for obfuscation! 
• Con: Impossible to achieve 
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Virtual Blackbox Obfuscation

• VBB Security Definition: For all PPT attackers 𝒜𝒜 there exists a 
simulator 𝒮𝒮 such that for all programs {𝑃𝑃𝑛𝑛} and all security 
parameters 𝜆𝜆

Pr 𝒜𝒜 Obf 1𝜆𝜆 ,𝑃𝑃𝑛𝑛 − Pr[𝒮𝒮𝑃𝑃𝑛𝑛(⋅) 1𝜆𝜆 , |𝑃𝑃𝑛𝑛| ] ≤ negl(𝜆𝜆)

• Impossibility: Let 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ {0,1}𝜆𝜆 be uniformly random strings and 
define the following program

𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥 = �
𝛽𝛽 if 𝑥𝑥 = 𝛼𝛼
𝛾𝛾 if 𝑥𝑥 𝛼𝛼 =
⊥ otherwise

𝛽𝛽
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View string x as description 
of a program. 𝑥𝑥 𝛼𝛼 denotes 
the output of this program 
on input 𝛼𝛼



Virtual Blackbox Obfuscation

• Impossibility: Let 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ {0,1}𝜆𝜆 be uniformly random strings and define the 
following program

𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥 = �
𝛽𝛽 if 𝑥𝑥 = 𝛼𝛼
𝛾𝛾 if 𝑥𝑥 𝛼𝛼 =
⊥ otherwise

𝛽𝛽

• Observation 1 (blackbox queries hide 𝜶𝜶,𝜷𝜷,𝜸𝜸): If 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ {0,1}𝜆𝜆 are uniformly 
random and 𝒮𝒮𝑃𝑃𝑛𝑛(⋅) makes at most q queries then all of the responses will be ⊥
except with probability 2q2−𝜆𝜆

(Proof Sketch)
• Pr 𝑥𝑥𝑖𝑖 = 𝛼𝛼 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥1 = ⋯ = 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥𝑖𝑖−1 =⊥] ≤ 2−𝜆𝜆

• Pr 𝑥𝑥𝑖𝑖 𝛼𝛼 = 𝛽𝛽 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥1 = ⋯ = 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥𝑖𝑖−1 =⊥] ≤ 2−𝜆𝜆
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Virtual Blackbox Obfuscation

• Impossibility: Let 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ {0,1}𝜆𝜆 be uniformly random strings and 
define the following program

𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥 = �
𝛽𝛽 if 𝑥𝑥 = 𝛼𝛼
𝛾𝛾 if 𝑥𝑥 𝛼𝛼 =
⊥ otherwise

𝛽𝛽

• Observation 2 (easy to extract 𝛼𝛼,𝛽𝛽, 𝛾𝛾 from any obfuscation of 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾)
• Let 𝑃𝑃 = Obf 1𝜆𝜆 ,𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥 and consider running P on input P.

𝑃𝑃 𝑃𝑃 = 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑃𝑃 = 𝛾𝛾
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Obfuscation correctness Since 𝑃𝑃 𝛼𝛼 = 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾 𝛼𝛼 = 𝛽𝛽
Obfuscation correctness

Definition of 𝑃𝑃𝛼𝛼,𝛽𝛽,𝛾𝛾



VBB Impossibility for Circuits

• Challenge: Cannot feed circuit as input to itself
• Impossibility for Circuits given Fully Homomorphic Encryption

• 𝐶𝐶𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑥𝑥 =

Encpk 𝛼𝛼 if 𝑥𝑥 = 0
𝛽𝛽 if 𝑥𝑥 = 𝛼𝛼
𝛾𝛾 if Decsk 𝑥𝑥 = 𝛽𝛽
⊥ otherwise

• Observation 1: Oracle access to 𝐶𝐶𝛼𝛼,𝛽𝛽,𝛾𝛾 will still hide 𝛼𝛼,𝛽𝛽, 𝛾𝛾
• Observation 2: Given C′ = Obf(𝐶𝐶𝛼𝛼,𝛽𝛽,𝛾𝛾) we can extract Encpk 𝛼𝛼 and then obtain an 

encryption Encpk 𝛽𝛽 of 𝛽𝛽 by evaluating C′ homomorphically on  Encpk 𝛼𝛼 . Finally we 
can run C′ Encpk 𝛽𝛽 = 𝛾𝛾
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Indistinguishability Obfuscation

Two circuits 𝐶𝐶 and 𝐶𝐶′ are equivalent if 
1) They have the same size i.e.,|𝐶𝐶| = |𝐶𝐶′| for all n
2) They have equivalent input/output behavior i.e., for all inputs x we have 

𝐶𝐶 𝑥𝑥 = 𝐶𝐶′(𝑥𝑥)

Definition: For all pairs of equivalent circuits and all PPT distinguishers 𝒜𝒜 we have  
Pr 𝒜𝒜 iO 1𝜆𝜆 ,𝐶𝐶 = 1 − Pr 𝒜𝒜 iO 1𝜆𝜆 ,𝐶𝐶′ 𝑥𝑥 = 1 ≤ negl(𝜆𝜆)

Con: Weaker Promise  
• Pro: Achievable! 

• Con: Current constructions are not practically efficient. 
• Pro: Still very useful 

9



Indistinguishability Obfuscation: Best Possible

• ``On Best Possible Obfuscation” [TCC’07]

• Suppose obfuscator iO satisfies security notion of Indististinguishability
Obfuscation

• Suppose obfuscator Obf satisfies some other security notion
• Observe that 
1) Obf ′ C ≔ iO(Obf C ) cannot be weaker obfuscation scheme than Obf
2) C′ = Obf C is functionally equivalent to C
3) C′ is equivalent to Pad(C) i.e., pad description length of C so that circuits have 

the same size
4) Obf ′ C ≔ iO(Obf C ) is indistinguishable from iO(Pad C ) (by IO security)
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Indistinguishability Obfuscation

• Constructing iO:
• ``Candidate Indistinguishability Obfuscation and Functional Encryption for all 

Circuits” [FOCS’13]
• Many constructions based on new assumptions

• Many papers breaking assumptions (or constructions!) and many fixes
• Recent progress “Indistinguishability Obfuscation from Well-Founded Assumptions.” 

[STOC’21]
• Constructs iO from sub-exponential security of well studies crypto assumptions

• Learning With Errors (LWE), Learning Parity with Noise (LPN) over prime fields, PRG in NC0,  
and Decision Linear (DLIN) assumption for symmetric bilinear groups of prime order

• Applications of iO (our focus): Witness Encryption, Short Signatures, Proofs 
of Human Work, Universal Samplers, ….
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Powerful Tool for iO: Puncturable PRF

• Three algorithms KeyGen, Puncture, and Eval

• 𝐹𝐹𝐾𝐾 𝑥𝑥 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐾𝐾, 𝑥𝑥) is a pseudorandom function

• Puncture K, x′ takes as input a key 𝐾𝐾 and an input x and outputs a new 
punctured key 𝐾𝐾{𝑥𝑥′}

• Correctness: Eval K x′ , x = Eval(K, x) for all inputs 𝑥𝑥 ≠ 𝑥𝑥′ and Eval K x′ , x′ =⊥
• Security: K x′ leaks no information about 𝐹𝐹𝐾𝐾 𝑥𝑥 i.e., all PPT distinguishers 𝒜𝒜 we have  

Pr 𝒜𝒜 K x′ ,𝐹𝐹𝐾𝐾 𝑥𝑥′ = 1 − Pr 𝒜𝒜 K x′ , 𝑟𝑟 = 1 ≤ negl(𝜆𝜆)
(where r is a random string)

• Intuition: 𝐾𝐾{𝑥𝑥′} allows us to evaluate 𝐹𝐹𝐾𝐾 𝑥𝑥 on all inputs 𝑥𝑥 ≠ 𝑥𝑥′ except for x’ 
while ensuring that 𝐹𝐹𝐾𝐾 𝑥𝑥′ is still indistinguishable from random. 
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GGM: PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝝀𝝀 = 2𝝀𝝀. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last 𝝀𝝀 bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝝀𝝀 = 2𝝀𝝀. Then there is a secure PRF.
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k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

n-bits n-bits



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝝀𝝀 = 2𝝀𝝀. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝝀𝝀)
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PRFs from PRGs

Claim 1: For any t(𝝀𝝀) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Proof Sketch (by Triangle Inequality): Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Proof Sketch
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀)

≤ �
𝒋𝒋<𝒕𝒕 𝝀𝝀

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝝀𝝀 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀 (𝑸𝑸𝑸𝑸𝑸𝑸)

17



PRFs from PRGs

Claim 1: For any t(𝝀𝝀) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀)

≤ �
𝒋𝒋<𝒕𝒕(𝝀𝝀)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝝀𝝀 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝝀𝝀)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

(QED, Claim 1)
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Hybrid H1 and H2

• Original Construction: Hybrid H1

20

20

K

r0 = G0(K) r1 = G1(K)

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid H1 and H2

• Modified Construction H2: Pick r0 and r1 randomly instead of ri = Gi(K)

21

21

____

r0 r1

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid H3

• Modified Construction H3: Pick r00 , r01 , r10 and r11 randomly instead 
of applying PRG

22

22

____

____ ____

r00 r01

……

r10
r11

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid Hn

• Truly Random Function: All output values rx are picked randomly

23

23

____

____ ____

____ ____

…r00…0

____ ____

r11…1…

0

0

0

0

… rx … …

0 00

1

1

1

1

1

1

1



Hybrid H1 vs H2

25

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Claim 2: Attacker who makes t(𝝀𝝀) queries to Fk (or f) cannot 
distinguish H2 from the real game (except with negligible 
probability).

Proof Intuition: Follows by Claim 1



Hybrid Hi vs Hi
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish Hi from Hi -1 
the real game (except with negligible probability).

Challenge: Cannot replace 2i pseudorandom values with random strings at level i
2𝑖𝑖 negl 𝝀𝝀 is not necessarily negligible if 𝑖𝑖 = 𝝀𝝀

2
Key Idea: Only need to replace t(𝝀𝝀) values (note:  𝑡𝑡 𝝀𝝀 negl 𝝀𝝀 is negligible).



Hybrid Hi
• Red Leaf Nodes: Queried Fk(x)   (at most t(n) red leaf nodes)
• Red Internal Nodes: On path from red leaf node to root
• Level i: ≤ 𝑡𝑡(𝑛𝑛) red nodes
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Hybrid H1 vs H2

28

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Claim 2: Attacker who makes t(𝝀𝝀) oracle queries to our function cannot 
distinguish Hi from Hi+1 (except with negligible probability).

Proof: Indistinguishability follows by Claim 1 
Let x1,…xt denote the t queries. Let y1,…,yt denote first i bits of each 

query.
(Hi+1 vs Hi : replaced 𝑮𝑮 𝑷𝑷𝒚𝒚𝒊𝒊 with 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟎𝟎 ∥ 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟏𝟏)



Hybrid Hi vs Hi
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Claim 1: For any t(𝝀𝝀) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝝀𝝀) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝝀𝝀) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀

Claim 3: Attacker who makes t(𝝀𝝀) queries to Fk (or f) cannot distinguish 
Hi from Hi -1 the real game (except with negligible probability).

Triangle Inequality: Attacker who makes t(𝝀𝝀) queries to Fk (or f) cannot 
distinguish H1 (real construction) from Hn (truly random function) 
except with negligible probability.  



Punctured Key (Example)

K{011} = G1(k), G0(G0(k)) and G0(G1(G0(k)))
G1(k)   Can evaluate Fk(1x’) for any input x’ in {0,1}2
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Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

n-bits n-bits



Punctured Key (Example)

K{011} = G1(k), G0(G0(k)) and G0(G1(G0(k)))
G0(G0(k))   Can evaluate Fk(00x’) for any bit x’
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Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

n-bits n-bits



Punctured Key (Example)

K{011} = G1(k), G0(G0(k)) and G0(G1(G0(k)))
G0(G1(G0(k)))  Can evaluate Fk(001) 
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Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

n-bits n-bits



GGM Puncturable PRF

• 𝑭𝑭𝑲𝑲: 𝟎𝟎,𝟏𝟏 𝒏𝒏 → 𝟎𝟎,𝟏𝟏 𝝀𝝀

• GGM tree has depth-proportional to length of PRF input n
• Punctured Key Stores: n pseudorandom strings of length 𝝀𝝀
• Punctured Key K{x} has size  O(n 𝝀𝝀)
• Security follows similar hybrid argument
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Digital Signatures from iO

• Define a circuit 𝐶𝐶𝐾𝐾 𝜎𝜎,𝑚𝑚 = �1 if Eval K, m = 𝜎𝜎
0 otherwise

• Key Generation: Pick a random Puncturable PRF key K and output 
public key pk = iO(𝐶𝐶𝐾𝐾) and secret key sk = K

• Signing: Sign sk, m = Eval(K, m) = 𝜎𝜎
• Signature Verification: Just run obfuscated program pk(. , . ) with 

inputs 𝜎𝜎 and m.
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Digital Signatures from iO

• Define a circuit 𝐶𝐶𝐾𝐾 𝜎𝜎,𝑚𝑚 = �1 if Eval K, m = 𝜎𝜎
0 otherwise

• Selective Signature Forgery Game: Fix a target message 𝑚𝑚∗ and then 
generate (sk,pk). 

• Attacker may make q queries to signing oracle Sign sk,⋅ on any other message i.e., 
𝑚𝑚𝑖𝑖 ≠ 𝑚𝑚∗ for all queries i.

• Attacker’s goal: output forgery 𝜎𝜎∗for 𝑚𝑚∗

• Selective Security  Adaptive Security (Union bound over all target 
messages 𝑚𝑚∗)

• Union bound trick requires sub-exponential security of iO + PPRF
• Standard Trick in many iO security proofs
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Selective Security Proof: Hybrid Argument

𝐶𝐶𝐾𝐾 𝜎𝜎,𝑚𝑚 = �1 if Eval K, m = 𝜎𝜎
0 otherwise

• Hybrid 1: Replace pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾) with pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝑓𝑓,𝐾𝐾) where 

Define a circuit 𝐶𝐶𝑓𝑓,𝐾𝐾 𝜎𝜎,𝑚𝑚 = �1 if 𝑓𝑓(Eval K, m ) = 𝑓𝑓(𝜎𝜎)
0 otherwise

Note 1: If f is a one-way permutation then 𝐶𝐶𝑓𝑓,𝐾𝐾 and 𝐶𝐶𝐾𝐾 are equivalent
Note 2: Hybrid 1 is indistinguishable from Hybrid 0 (original game) due to 
iO security (since 𝐶𝐶𝑓𝑓,𝐾𝐾and 𝐶𝐶𝐾𝐾 are equivalent circuits)
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Selective Security Proof: Hybrid Argument

𝐶𝐶𝑓𝑓,𝐾𝐾 𝜎𝜎,𝑚𝑚 = �1 if 𝑓𝑓(Eval K, m ) = 𝑓𝑓(𝜎𝜎)
0 otherwise

• Equivalent if f is a one-way permutation
• Hybrid 2: Replace pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝑓𝑓,𝐾𝐾) with pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑧𝑧∗) where 

𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑧𝑧∗ 𝜎𝜎,𝑚𝑚 = �
1
1
0

if 𝑓𝑓(𝜎𝜎),𝑚𝑚 = 𝑧𝑧∗,𝑚𝑚∗

if Eval(𝐾𝐾{𝑚𝑚∗}, m) = 𝜎𝜎
otherwise

where 𝑧𝑧∗ = 𝑓𝑓(𝜎𝜎∗)

Note: Hybrid 2 is indistinguishable from Hybrid 1 due to iO security (since 
𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑧𝑧∗ and 𝐶𝐶𝑓𝑓,𝐾𝐾 are equivalent circuits)
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Selective Security Proof: Hybrid Argument

• 𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑧𝑧∗ 𝜎𝜎,𝑚𝑚 = �
1
1
0

if 𝑓𝑓(𝜎𝜎),𝑚𝑚 = 𝑧𝑧∗,𝑚𝑚∗

if Eval(𝐾𝐾{𝑚𝑚∗}, m) = 𝜎𝜎
otherwise

where 𝑧𝑧∗ = 𝑓𝑓(𝜎𝜎∗)

• Hybrid 3: Replace pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑧𝑧∗) with pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑓𝑓(𝑟𝑟)) where r is a 
uniformly random string and 

𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑅𝑅 𝜎𝜎,𝑚𝑚 = �
1
1
0

if 𝑓𝑓(𝜎𝜎),𝑚𝑚 = 𝑅𝑅,𝑚𝑚∗

if Eval(𝐾𝐾{𝑚𝑚∗}, m) = 𝜎𝜎
otherwise

where 𝑅𝑅 = 𝑓𝑓(𝑟𝑟)

Note: Hybrid 3 is indistinguishable from Hybrid 1 due to security of the punctured PRF. 
Even if we reveal 𝑟𝑟 attacker cannot distinguish random r from 𝜎𝜎∗ = Eval(𝐾𝐾,𝑚𝑚∗). 
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Selective Security Proof: Hybrid Argument

• Hybrid 2: Replace pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝜎𝜎∗) with pk = 𝑖𝑖𝑖𝑖(𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑓𝑓(𝑟𝑟)) where 
r is a uniformly random string and

𝐶𝐶𝐾𝐾 𝑚𝑚∗ ,𝑅𝑅 𝜎𝜎,𝑚𝑚 = �
1
1
0

if 𝑓𝑓(𝜎𝜎),𝑚𝑚 = 𝑅𝑅,𝑚𝑚∗

if Eval(𝐾𝐾{𝑚𝑚∗}, m) = 𝜎𝜎
otherwise

where 𝑅𝑅 = 𝑓𝑓(𝑟𝑟)

Signature Forgery in Hybrid 3? Forging a signatures requires us to find 
some 𝜎𝜎∗ such that 𝑓𝑓 𝑟𝑟 = 𝑓𝑓(𝜎𝜎∗). Difficulty follows from security of OWP. 
Obfuscated program only contains 𝑅𝑅 = 𝑓𝑓 𝑟𝑟 for uniformly random r. 
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Short Signatures from iO

• The signature is just a PRF output  we can hope for 𝜆𝜆-bit signatures 
with 𝜆𝜆-bit security

• Advantage of the iO based signature construction 
• Length of Public Key will be much longer longer (obfuscated program) 
• Not practically efficient (unless we get practically efficient iO) 
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Short Signature Schemes

• RSA-FDH: 𝜔𝜔(𝑘𝑘)-bits
• EC-DSA: 4k-bits
• Schnorr: 4k-bits
• Short Schnorr Signature: 3k-bits

• Suggested in Schnorr’s original paper
• Eurocrypt 2022: provides k-bit security in idealized models 

(GGM+Random Oracle)
• BLS: 2k-bits

• Bilinear Pairings for Verification
• Shorter signatures, but higher computational overhead 

• iO Based Signatures: k bits
• Purely Theoretical Construction
• No practical instantiation of indistinguishability obfuscation!  
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Witness Encryption

Recap: NP-Complete problems.
• Consider an NP-Complete problem e.g., CIRCUIT-SAT
• Instance: Circuit 𝐶𝐶: {0,1}𝑛𝑛→ {0,1}
• Decision Problem: Does there exist some input x such that 𝐶𝐶 𝑥𝑥 = 1?
• NP Certifier: Given witness x it is easy to verify that the circuit is 

satisfiable e.g., 𝐶𝐶 𝑥𝑥 = 1
• NP Hard: Polynomial time reduction from any other decision problem 

in NP (e.g., SAT, 3COLOR, CLIQUE) reduces to CIRCUIT-SAT. 
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Witness Encryption

• Idea: Use C as a public key and witness x as a secret key
𝑸𝑸𝒏𝒏𝑬𝑬 𝑪𝑪,𝒎𝒎 = 𝑬𝑬

𝑸𝑸𝒏𝒏𝑬𝑬 𝒙𝒙, 𝑬𝑬 = 𝒎𝒎 𝑖𝑖𝑓𝑓 𝐶𝐶 𝑥𝑥 = 0
• Any party can encrypt message using C.
• Ciphertext can only be decrypted if we know a witness x.
• If no witness exists then ciphertext is “permanently locked” i.e., 

attacker cannot distinguish between 𝐸𝐸𝑛𝑛𝐸𝐸 𝐶𝐶,𝑚𝑚 and 𝐸𝐸𝑛𝑛𝐸𝐸 𝐶𝐶,𝑚𝑚′
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Witness Encryption

• Idea: Use C as a public key and witness x as a secret key
𝑸𝑸𝒏𝒏𝑬𝑬 𝑪𝑪,𝒎𝒎 = 𝑬𝑬

𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 = 𝐦𝐦 if C x = 1; otherwise 𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 =⊥
Construction:

Enc 𝐶𝐶,𝑚𝑚 = iO 1𝜆𝜆,𝑸𝑸𝑪𝑪,𝒎𝒎

Where 𝑸𝑸𝑪𝑪,𝒎𝒎 is a circuit such that 

𝑸𝑸𝑪𝑪,𝒎𝒎 𝒙𝒙 = �𝒎𝒎⊥
𝒊𝒊𝒊𝒊 𝑪𝑪 𝒙𝒙 = 𝟎𝟎
𝒐𝒐𝒕𝒕𝒐𝒐𝒏𝒏𝑷𝑷𝒐𝒐𝒊𝒊𝒔𝒔𝒏𝒏
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Witness Encryption

• Idea: Use C as a public key and witness x as a secret key
𝑸𝑸𝒏𝒏𝑬𝑬 𝑪𝑪,𝒎𝒎 = 𝑬𝑬

𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 = 𝐦𝐦 if C x = 1; otherwise 𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 =⊥
Construction:

Enc 𝐶𝐶,𝑚𝑚 = iO 1𝜆𝜆,𝑸𝑸𝑪𝑪,𝒎𝒎

𝑸𝑸𝑪𝑪,𝒎𝒎 𝒙𝒙 = �𝒎𝒎⊥
𝒊𝒊𝒊𝒊 𝑪𝑪 𝒙𝒙 = 𝟎𝟎
𝒐𝒐𝒕𝒕𝒐𝒐𝒏𝒏𝑷𝑷𝒐𝒐𝒊𝒊𝒔𝒔𝒏𝒏

Dec 𝑥𝑥, 𝐸𝐸 = c 𝑥𝑥
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Witness Encryption

• Idea: Use C as a public key and witness x as a secret key
𝑸𝑸𝒏𝒏𝑬𝑬 𝑪𝑪,𝒎𝒎 = 𝑬𝑬

𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 = 𝐦𝐦 if C x = 1; otherwise 𝐃𝐃𝐃𝐃𝐃𝐃 𝐱𝐱, 𝐃𝐃 =⊥
Security Analsis: If C x = 0 for all inputs x then  𝑸𝑸𝑪𝑪,𝒎𝒎 is equivalent to the 
trivial circuit 𝑸𝑸 𝒙𝒙 ≔⊥. 
iO Security 
Enc 𝐶𝐶,𝑚𝑚 = iO 1𝜆𝜆,𝑸𝑸𝑪𝑪,𝒎𝒎 cannot be distinguished from iO 1𝜆𝜆,𝑸𝑸
 Enc 𝐶𝐶,𝑚𝑚′ = iO 1𝜆𝜆,𝑸𝑸𝑪𝑪,𝒎𝒎′ cannot be distinguished from iO 1𝜆𝜆,𝑸𝑸𝑪𝑪,𝒎𝒎

𝑸𝑸𝑪𝑪,𝒎𝒎 𝒙𝒙 = �𝒎𝒎⊥
𝒊𝒊𝒊𝒊 𝑪𝑪 𝒙𝒙 = 𝟎𝟎
𝒐𝒐𝒕𝒕𝒐𝒐𝒏𝒏𝑷𝑷𝒐𝒐𝒊𝒊𝒔𝒔𝒏𝒏
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Functional Encryption

• Public Key Encryption: 𝐸𝐸 ≔ Encpk(𝑚𝑚)
• Secret Key Used to Decrypt: Decsk 𝐸𝐸 = 𝑚𝑚
• Can generate special Secret Key for Circuit C: 𝑠𝑠𝑘𝑘𝐶𝐶

• Correctness: DecskC 𝐸𝐸 = 𝐶𝐶 Decsk 𝐸𝐸 = 𝐶𝐶(𝑚𝑚)
• Security Goal (Intuition): Cannot learn “more” than 𝐶𝐶(𝑚𝑚)

Construction Idea (Over Simplified): 𝑠𝑠𝑘𝑘𝐶𝐶 = iO 1𝜆𝜆,𝑸𝑸𝑪𝑪
𝑸𝑸𝑪𝑪 Encpk(𝑚𝑚) = 𝑪𝑪(Encpk 𝑚𝑚 )

Full Construction/Proof: Uses Statistically Simulation Sound Non-Interactive 
Zero Knowledge Proofs.
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Application: Universal Sampler
[Hofheinz et al. 2016] 

Univ.Sample

R𝑑𝑑,𝛽𝛽=F(d,𝛽𝛽)Circuit: d

d(R𝑑𝑑,𝛽𝛽)

𝜷𝜷

𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑟𝑟𝐸𝐸𝐼𝐼:𝐹𝐹 𝑖𝑖𝑠𝑠 𝑡𝑡𝑟𝑟𝑡𝑡𝐸𝐸𝑡𝑡 𝑟𝑟𝐸𝐸𝑛𝑛𝐼𝐼𝑊𝑊𝑚𝑚

𝑇𝑇𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼 𝑃𝑃𝐸𝐸𝑟𝑟𝑡𝑡𝑡𝑡

𝑈𝑈𝑛𝑛𝑘𝑘𝑛𝑛𝑊𝑊𝑈𝑈𝑛𝑛 R𝑑𝑑,𝛽𝛽



Application: Universal Sampler
• Setup

• Input: 1𝜆𝜆 (e.g., size of crypo keys) and 
• Output: U (e.g., an obfuscated program)

• Sample
• Input: U, d, 𝛽𝛽

• d a polynomial size circuit
• 𝛽𝛽 randomness index

• Output: 𝐼𝐼 𝑟𝑟𝛽𝛽
• Ideal World: Secret random string chosen once and for all for each 

given 𝛽𝛽



Universal Sampler
[Hofheinz et al. 2016] 
• Construction in Random Oracle Model

• Crypto Assumptions: iO + OWF
• Random Oracle not queried inside iO

• Adaptive Security
• “delayed backdoor programming” via Random Oracle



Application: CAPTCHAs in Password Storage

CAPTCHA

+H(KWTER)
Universal Sampler

Username

jblocki

SHA1(123456KWTER89d978034a3f6)=1f88e
cdcb0c25e8ae1ed1c9ce6f2e2e6dcfb0e21

Hash

1f88ecdcb0c2
5e8ae1ed1c9
ce6f2e2e6dcf
b0e21

Salt

89d978034a3f6



PoH Construction

Circuit d

CAPTCHA

d 𝛽𝛽=(pwd,s)

Password: pwd
Salt: s

Sample

U

Random Oracle

d(R𝑑𝑑,𝛽𝛽)



Security Reduction

Main Theorem: Blackbox reduction transforms any ppt algorithm 
breaking PoH security into a ppt algorithm breaking CAPTCHA security.
(Assuming security of Universal Sampler)

Statement about human ignorance



Security Analysis

Thm (Informal): If UNI is adaptively secure universal sampler and CAPT 
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Thm (Informal): If UNI is adaptively secure universal sampler and CAPT 
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Costly to Crack: An adversary with m `human work units’ can crack 
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𝜆𝜆𝑚𝑚 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝𝑖𝑖 + 𝑛𝑛𝐼𝐼𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝐸𝐸𝐼𝐼

Standard CAPTCHA assumption: 
Adversary not given hashes answers to 

puzzles.

** Actually show blackbox reduction 
from ppt adversary breaking security of 

password scheme to ppt adversary 
breaking CAPTCHA security
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CAPTCHA

+H(KWTER)

Universal Sampler
CAPTCHA

+H(KWTER)

Universal Sampler
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