Advanced Cryptography CS 655

Week 11:

- Indistinguishability Obfuscation + Applications

[^0]
Course Progress Report

- Due: Thursday, March 23 @ 11:59PM via E-mail
- Pages: 5-6
- Contents:
- Motivation
- Define the problem(s) you are working on clearly
- Related Work
- Preliminary Results
- What have you tried?
- What barriers have you encountered (if any)?

Obfuscation

- An obfuscator takes as input a program/circuit C and a security parameter λ and outputs a new program/circuit $C^{\prime}=\operatorname{Obf}\left(1^{\lambda}, C\right)$
- Efficiency: The function obfuscate should run in polynomial time in the size of the input program/circuit $|\mathrm{C}|$ and in the size of security parameter λ
- Correctness: C^{\prime} should be equivalent to C i.e., for all inputs x we have

$$
C^{\prime}(x)=C(x)
$$

Security?

Virtual Blackbox Obfuscation

- VBB Security Definition: For all PPT attackers \mathcal{A} there exists a simulator \mathcal{S} such that for all programs $\left\{P_{n}\right\}$ and all security parameters λ

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\operatorname{Obf}\left(1^{\lambda}, P_{n}\right)\right)\right]-\operatorname{Pr}\left[\mathcal{S}^{P_{n}(\cdot)}\left(1^{\lambda},\left|P_{n}\right|\right)\right]\right| \leq \operatorname{negl}(\lambda)
$$

- Intuition: Anything an attacker could learn from the description of the obfuscated circuit $C^{\prime}=\operatorname{Obf}(\mathrm{C})$ the attacker could have learned if they had oracle access to the circuit $C(x)$ as a blackbox
- Pro: Very strong security notion for obfuscation! $)$
- Con: Impossible to achieve $;$

Virtual Blackbox Obfuscation

- VBB Security Definition: For all PPT attackers \mathcal{A} there exists a simulator \mathcal{S} such that for all programs $\left\{P_{n}\right\}$ and all security parameters λ

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\operatorname{Obf}\left(1^{\lambda}, P_{n}\right)\right)\right]-\operatorname{Pr}\left[\mathcal{S}^{P_{n}(\cdot)}\left(1^{\lambda},\left|P_{n}\right|\right)\right]\right| \leq \operatorname{negl}(\lambda)
$$

- Impossibility: Let $\alpha, \beta, \gamma \in\{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$
P_{\alpha, \beta, \gamma}(x)=\left\{\begin{array}{cl}
\beta & \text { if } x=\alpha \\
\gamma & \text { if } x(\alpha)=\beta \\
\perp & \text { otherwise }
\end{array}\right.
$$

View string x as description of a program. $x(\alpha)$ denotes the output of this program on input α

Virtual Blackbox Obfuscation

- Impossibility: Let $\alpha, \beta, \gamma \in\{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$
P_{\alpha, \beta, \gamma}(x)=\left\{\begin{array}{cl}
\beta & \text { if } x=\alpha \\
\gamma & \text { if } x(\alpha)=\beta \\
\perp & \text { otherwise }
\end{array}\right.
$$

- Observation 1 (blackbox queries hide $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$): If $\alpha, \beta, \gamma \in\{0,1\}^{\lambda}$ are uniformly random and $\mathcal{S}^{P_{n}(\cdot)}$ makes at most q queries then all of the responses will be \perp except with probability $2 q 2^{-\lambda}$
(Proof Sketch)
- $\operatorname{Pr}\left[x_{i}=\alpha \mid P_{\alpha, \beta, \gamma}\left(x_{1}\right)=\cdots=P_{\alpha, \beta, \gamma}\left(x_{i-1}\right)=\perp\right] \leq 2^{-\lambda}$
- $\operatorname{Pr}\left[x_{i}(\alpha)=\beta \mid P_{\alpha, \beta, \gamma}\left(x_{1}\right)=\cdots=P_{\alpha, \beta, \gamma}\left(x_{i-1}\right)=\perp\right] \leq 2^{-\lambda}$

Virtual Blackbox Obfuscation

- Impossibility: Let $\alpha, \beta, \gamma \in\{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$
P_{\alpha, \beta, \gamma}(x)=\left\{\begin{array}{cl}
\beta & \text { if } x=\alpha \\
\gamma & \text { if } x(\alpha)=\beta \\
\perp & \text { otherwise }
\end{array}\right.
$$

- Observation 2 (easy to extract α, β, γ from any obfuscation of $P_{\alpha, \beta, \gamma}$)
- Let $P=\operatorname{Obf}\left(1^{\lambda}, P_{\alpha, \beta, \gamma}(x)\right)$ and consider running P on input P .

$$
P(P)=P_{\alpha, \beta, \gamma}(P)=\gamma
$$

VBB Impossibility for Circuits

- Challenge: Cannot feed circuit as input to itself
- Impossibility for Circuits given Fully Homomorphic Encryption
- $C_{\alpha, \beta, \gamma}(x)=\left\{\begin{array}{cc}\mathrm{Enc}_{\mathrm{pk}}(\alpha) & \text { if } x=0 \\ \beta & \text { if } x=\alpha \\ \gamma & \text { if } \operatorname{Dec}_{\text {sk }}(x)=\beta \\ \perp & \text { otherwise }\end{array}\right.$
- Observation 1: Oracle access to $C_{\alpha, \beta, \gamma}$ will still hide α, β, γ
- Observation 2: Given $\mathrm{C}^{\prime}=\operatorname{Obf}\left(C_{\alpha, \beta, \gamma}\right)$ we can extract $\mathrm{Enc}_{\mathrm{pk}}(\alpha)$ and then obtain an encryption $\operatorname{Enc}_{\mathrm{pk}}(\beta)$ of β by evaluating C^{\prime} homomorphically on $\operatorname{Enc}_{\mathrm{pk}}(\alpha)$. Finally we can run $\mathrm{C}^{\prime}\left(\operatorname{Enc}_{\mathrm{pk}}(\beta)\right)=\gamma$

Indistinguishability Obfuscation

Two circuits C and C^{\prime} are equivalent if

1) They have the same size i.e., $|C|=\left|C^{\prime}\right|$ for all n
2) They have equivalent input/output behavior i.e., for all inputs x we have

$$
C(x)=C^{\prime}(x)
$$

Definition: For all pairs of equivalent circuits and all PPT distinguishers \mathcal{A} we have

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathrm{iO}\left(1^{\lambda}, C\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathrm{iO}\left(1^{\lambda}, C^{\prime}(x)\right)\right)=1\right]\right| \leq \operatorname{negl}(\lambda)
$$

Con: Weaker Promise ©

- Pro: Achievable! ©
- Con: Current constructions are not practically efficient. ©
- Pro: Still very useful ©

Indistinguishability Obfuscation: Best Possible

- "On Best Possible Obfuscation" [TCC’07]
- Suppose obfuscator iO satisfies security notion of Indististinguishability Obfuscation
- Suppose obfuscator Obf satisfies some other security notion
- Observe that

1) $\mathrm{Obf}^{\prime}(\mathrm{C}):=\mathrm{iO}(\mathrm{Obf}(\mathrm{C}))$ cannot be weaker obfuscation scheme than Obf
2) $\mathrm{C}^{\prime}=\operatorname{Obf}(\mathrm{C})$ is functionally equivalent to C
3) C^{\prime} is equivalent to $\operatorname{Pad}(C)$ i.e., pad description length of C so that circuits have the same size
4) $\mathrm{Obf}^{\prime}(\mathrm{C}):=\mathrm{iO}(\operatorname{Obf}(\mathrm{C}))$ is indistinguishable from $\mathrm{iO}(\mathrm{Pad}(\mathrm{C}))$ (by IO security)

Indistinguishability Obfuscation

- Constructing iO:

- "Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits" [FOCS'13]
- Many constructions based on new assumptions
- Many papers breaking assumptions (or constructions!) and many fixes
- Recent progress "Indistinguishability Obfuscation from Well-Founded Assumptions." [STOC'21]
- Constructs iO from sub-exponential security of well studies crypto assumptions
- Learning With Errors (LWE), Learning Parity with Noise (LPN) over prime fields, PRG in NCO, and Decision Linear (DLIN) assumption for symmetric bilinear groups of prime order
- Applications of iO (our focus): Witness Encryption, Short Signatures, Proofs of Human Work, Universal Samplers,

Powerful Tool for iO: Puncturable PRF

- Three algorithms KeyGen, Puncture, and Eval
- $F_{K}(x):=\operatorname{Eval}(K, x)$ is a pseudorandom function
- Puncture ($\mathrm{K}, \mathrm{x}^{\prime}$) takes as input a key K and an input x and outputs a new punctured key $K\left\{x^{\prime}\right\}$
- Correctness: $\operatorname{Eval}\left(\mathrm{K}\left\{\mathrm{x}^{\prime}\right\}, \mathrm{x}\right)=\operatorname{Eval}(\mathrm{K}, \mathrm{x})$ for all inputs $x \neq x^{\prime}$ and $\operatorname{Eval}\left(\mathrm{K}\left\{\mathrm{x}^{\prime}\right\}, \mathrm{x}^{\prime}\right)=\perp$
- Security: $K\left\{x^{\prime}\right\}$ leaks no information about $F_{K}(x)$ i.e., all PPT distinguishers \mathcal{A} we have

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathrm{K}\left\{\mathrm{x}^{\prime}\right\}, F_{K}\left(x^{\prime}\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathrm{K}\left\{\mathrm{x}^{\prime}\right\}, r\right)=1\right]\right| \leq \operatorname{negl}(\lambda)
$$

(where r is a random string)

- Intuition: $K\left\{x^{\prime}\right\}$ allows us to evaluate $F_{K}(x)$ on all inputs $x \neq x^{\prime}$ except for x^{\prime} while ensuring that $F_{K}\left(x^{\prime}\right)$ is still indistinguishable from random.

GGM: PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda)=2 \lambda$. Then there is a secure PRF.

$$
\text { Let } \left.\mathrm{G}(\mathrm{x})=\mathrm{G}_{0}(\mathrm{x}) \| \mathrm{G}_{1}(\mathrm{x}) \quad \text { (first/last } \lambda \text { bits of output }\right)
$$

$$
F_{K}\left(x_{1}, \ldots, x_{n}\right)=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right) \ldots\right)
$$

PRFs from PRGs

$$
\mathbf{G}(\mathbf{x}):=\overbrace{\mathbf{G}_{0}(\mathbf{x})}^{n \text {-bits }} \| \overbrace{\mathbf{G}_{1}(\mathbf{x})}^{\text {n-bits }}
$$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda)=2 \lambda$. Then there is a secure PRF.

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda)=2 \lambda$. Then there is a secure PRF.

Proof:

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

PRFs from PRGs

Claim 1: For any $t(\lambda)$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Proof Sketch (by Triangle Inequality): Fix j

$$
\begin{aligned}
& A d v_{j} \\
& =\mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{j+1}\left\|G\left(s_{j+2}\right) \ldots\right\| G\left(s_{t(\lambda)}\right)\right)\right]
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Proof Sketch

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right| \\
& \quad \leq \sum_{j<t(\lambda)} A d v_{j} \\
& \leq t(\lambda) \times \operatorname{negl}(\lambda)=\operatorname{negl}(\lambda) \quad(Q E D)
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\lambda)$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(\lambda)} A d v_{j} \\
& \leq t(\lambda) \times \operatorname{negl}(\lambda)=\operatorname{negl}(\lambda)
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(n)} A d v_{j} \\
& \leq t(n) \times \operatorname{negl}(n)=\operatorname{negl}(n)
\end{aligned}
$$

(QED, Claim 1)

Hybrid H_{1} and H_{2}

- Original Construction: Hybrid H_{1}

Hybrid H_{1} and H_{2}

- Modified Construction H_{2} : Pick r_{0} and r_{1} randomly instead of $\mathrm{r}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}(\mathrm{K})$

Hybrid H_{3}

- Modified Construction H_{3} : Pick $\mathrm{r}_{00}, r_{01}, r_{10}$ and r_{11} randomly instead of applying PRG

Hybrid H_{n}

- Truly Random Function: All output values r_{x} are picked randomly

Hybrid H_{1} vs H_{2}

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Claim 2: Attacker who makes $t(\lambda)$ queries to F_{k} (or f) cannot distinguish H_{2} from the real game (except with negligible probability).

Proof Intuition: Follows by Claim 1

Hybrid H_{i} vs H_{i}

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Claim 3: Attacker who makes $t(n)$ queries to $F_{k}(o r f)$ cannot distinguish H_{i} from H_{i-1} the real game (except with negligible probability).

Challenge: Cannot replace 2^{i} pseudorandom values with random strings at level i
$2^{i} \operatorname{negl}(\boldsymbol{\lambda})$ is not necessarily negligible if $i=\frac{\lambda}{2}$
Key Idea: Only need to replace $t(\boldsymbol{\lambda})$ values (note: $t(\boldsymbol{\lambda})$ negl $(\boldsymbol{\lambda})$ is negligible).

Hybrid H_{i}

- Red Leaf Nodes: Queried $\mathrm{F}_{\mathrm{k}}(\mathrm{x})$ (at most $\mathrm{t}(\mathrm{n})$ red leaf nodes)
- Red Internal Nodes: On path from red leaf node to root
- Level i: $\leq t(n)$ red nodes

Hybrid H_{1} vs H_{2}

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Claim 2: Attacker who makes $t(\lambda)$ oracle queries to our function cannot distinguish H_{i} from H_{i+1} (except with negligible probability).

Proof: Indistinguishability follows by Claim 1
Let $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{t}}$ denote the t queries. Let $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{t}}$ denote first i bits of each query.

$$
\left(H_{i+1} \text { vs } H_{i}: \text { replaced } G\left(r_{y_{i}}\right) \text { with } r_{y_{i} \| 0} \| r_{y_{i} \| 1}\right)
$$

Hybrid H_{i} vs H_{i}

Claim 1: For any $\mathrm{t}(\lambda)$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(\lambda)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(\lambda)}\right)\right)\right]\right|<\operatorname{negl}(\lambda)
$$

Claim 3: Attacker who makes $t(\boldsymbol{\lambda})$ queries to F_{k} (or f) cannot distinguish H_{i} from $\mathrm{H}_{\mathrm{i}-1}$ the real game (except with negligible probability).

Triangle Inequality: Attacker who makes $\mathrm{t}(\boldsymbol{\lambda})$ queries to F_{k} (or f) cannot distinguish H_{1} (real construction) from H_{n} (truly random function) except with negligible probability.

Punctured Key (Example)
n-bits $\quad n$-bits
$G(x):=G_{0}(x)| | G_{1}(x)$
$K\{011\}=\mathrm{G}_{1}(\mathrm{k}), \mathrm{G}_{0}\left(\mathrm{G}_{0}(\mathrm{k})\right)$ and $\mathrm{G}_{0}\left(\mathrm{G}_{1}\left(\mathrm{G}_{0}(\mathrm{k})\right)\right)$
$\mathrm{G}_{1}(\mathrm{k}) \Rightarrow$ Can evaluate $\mathrm{F}_{\mathrm{k}}\left(1 \mathrm{x}^{\prime}\right)$ for any input x^{\prime} in $\{0,1\}^{2}$

Punctured Key (Example)
$G(x):=G_{0}(x)| | G_{1}(x)$
$K\{011\}=\mathrm{G}_{1}(\mathrm{k}), \mathrm{G}_{0}\left(\mathrm{G}_{0}(\mathrm{k})\right)$ and $\mathrm{G}_{0}\left(\mathrm{G}_{1}\left(\mathrm{G}_{0}(\mathrm{k})\right)\right)$
$\mathrm{G}_{0}\left(\mathrm{G}_{0}(\mathrm{k})\right) \rightarrow$ Can evaluate $\mathrm{F}_{\mathrm{k}}\left(00 \mathrm{x}^{\prime}\right)$ for any bit x^{\prime}

Punctured Key (Example)
$G(x):=G_{0}(x)| | G_{1}(x)$
$K\{011\}=\mathrm{G}_{1}(\mathrm{k}), \mathrm{G}_{0}\left(\mathrm{G}_{0}(\mathrm{k})\right)$ and $\mathrm{G}_{0}\left(\mathrm{G}_{1}\left(\mathrm{G}_{0}(\mathrm{k})\right)\right)$
$\mathrm{G}_{0}\left(\mathrm{G}_{1}\left(\mathrm{G}_{0}(\mathrm{k})\right)\right) \rightarrow$ Can evaluate $\mathrm{F}_{\mathrm{k}}(\mathbf{0 0 1)}$

GGM Puncturable PRF

- $\boldsymbol{F}_{K}:\{0,1\}^{n} \rightarrow\{\mathbf{0}, 1\}^{\lambda}$
- GGM tree has depth-proportional to length of PRF input n
- Punctured Key Stores: n pseudorandom strings of length λ
- Punctured Key $K\{x\}$ has size $O(n \lambda)$
- Security follows similar hybrid argument

Digital Signatures from iO

- Define a circuit $C_{K}(\sigma, m)= \begin{cases}1 & \text { if } \operatorname{Eval}(\mathrm{K}, \mathrm{m})=\sigma \\ 0 & \text { otherwise }\end{cases}$
- Key Generation: Pick a random Puncturable PRF key K and output public key $\mathrm{pk}=\mathrm{iO}\left(C_{K}\right)$ and secret key $\mathrm{sk}=\mathrm{K}$
- Signing: $\operatorname{Sign}(\mathrm{sk}, \mathrm{m})=\operatorname{Eval}(\mathrm{K}, \mathrm{m})=\sigma$
- Signature Verification: Just run obfuscated program pk(.,.) with inputs σ and m .

Digital Signatures from iO

- Define a circuit $C_{K}(\sigma, m)= \begin{cases}1 & \text { if } \operatorname{Eval}(\mathrm{K}, \mathrm{m})=\sigma \\ 0 & \text { otherwise }\end{cases}$
- Selective Signature Forgery Game: Fix a target message m^{*} and then generate (sk,pk).
- Attacker may make q queries to signing oracle $\operatorname{Sign}(\mathrm{sk}$, .) on any other message i.e., $m_{i} \neq m^{*}$ for all queries i .
- Attacker's goal: output forgery σ^{*} for m^{*}
- Selective Security \rightarrow Adaptive Security (Union bound over all target messages m^{*})
- Union bound trick requires sub-exponential security of iO + PPRF
- Standard Trick in many iO security proofs

Selective Security Proof: Hybrid Argument

$$
C_{K}(\sigma, m)=\left\{\begin{array}{lc}
1 & \quad \text { if } \operatorname{Eval}(\mathrm{K}, \mathrm{~m})=\sigma \\
0 & \text { otherwise }
\end{array}\right.
$$

- Hybrid 1: Replace $\mathrm{pk}=i O\left(C_{K}\right)$ with $\mathrm{pk}=i O\left(C_{f, K}\right)$ where Define a circuit $C_{f, K}(\sigma, m)= \begin{cases}1 & \text { if } f(\operatorname{Eval}(\mathrm{~K}, \mathrm{~m}))=f(\sigma) \\ 0 & \text { otherwise }\end{cases}$

Note 1: If f is a one-way permutation then $C_{f, K}$ and C_{K} are equivalent
Note 2: Hybrid 1 is indistinguishable from Hybrid 0 (original game) due to iO security (since $C_{f, K}$ and C_{K} are equivalent circuits)

Selective Security Proof: Hybrid Argument

$$
C_{f, K}(\sigma, m)= \begin{cases}1 & \text { if } f(\operatorname{Eval}(\mathrm{~K}, \mathrm{~m}))=f(\sigma) \\ 0 & \text { otherwise }\end{cases}
$$

- Equivalent if f is a one-way permutation
- Hybrid 2: Replace $\mathrm{pk}=i O\left(C_{f, K}\right)$ with $\mathrm{pk}=i O\left(C_{K\left\{m^{*}\right\}, z^{*}}\right)$ where

$$
C_{K\left\{m^{*}\right\}, z^{*}}(\sigma, m)= \begin{cases}1 & \text { if }(f(\sigma), m)=\left(z^{*}, m^{*}\right) \\ 1 & \text { if Eval }\left(K\left\{m^{*}\right\}, \mathrm{m}\right)=\sigma \quad \text { otherwise } \\ 0 & \text { othere } z^{*}=f\left(\sigma^{*}\right) .\end{cases}
$$

Note: Hybrid 2 is indistinguishable from Hybrid 1 due to iO security (since $C_{K\left\{m^{*}\right\}, z^{*}}$ and $C_{f, K}$ are equivalent circuits)

Selective Security Proof: Hybrid Argument

- $C_{K\left\{m^{*}\right\}, z^{*}}(\sigma, m)=\left\{\begin{array}{ll}1 & \text { if }(f(\sigma), m)=\left(z^{*}, m^{*}\right) \\ 1 & \text { if Eval }\left(K\left\{m^{*}\right\}, \mathrm{m}\right)=\sigma \\ 0 & \text { otherwise }\end{array}\right.$ where $z^{*}=f\left(\sigma^{*}\right)$
- Hybrid 3: Replace $\mathrm{pk}=i O\left(C_{K\left\{m^{*}\right\}, z^{*}}\right)$ with $\mathrm{pk}=i O\left(C_{K\left\{m^{*}\right\}, f(r)}\right)$ where r is a uniformly random string and

$$
C_{K\left\{m^{*}\right\}, R}(\sigma, m)= \begin{cases}1 & \text { if }(f(\sigma), m)=\left(R, m^{*}\right) \\ 1 & \text { if } \operatorname{Eval}\left(K\left\{m^{*}\right\}, \mathrm{m}\right)=\sigma \text { where } R=f(r) \\ 0 & \text { otherwise }\end{cases}
$$

Note: Hybrid 3 is indistinguishable from Hybrid 1 due to security of the punctured PRF. Even if we reveal r attacker cannot distinguish random r from $\sigma^{*}=\operatorname{Eval}\left(K, m^{*}\right)$.

Selective Security Proof: Hybrid Argument

- Hybrid 2: Replace $\mathrm{pk}=i O\left(C_{K\left\{m^{*}\right\}, \sigma^{*}}\right)$ with $\mathrm{pk}=i O\left(C_{K\left\{m^{*}\right\}, f(r)}\right)$ where r is a uniformly random string and

Signature Forgery in Hybrid 3? Forging a signatures requires us to find some σ^{*} such that $f(r)=f\left(\sigma^{*}\right)$. Difficulty follows from security of OWP. Obfuscated program only contains $R=f(r)$ for uniformly random r.

Short Signatures from iO

- The signature is just a PRF output \rightarrow we can hope for λ-bit signatures with λ-bit security
- Advantage of the iO based signature construction ©
- Length of Public Key will be much longer longer (obfuscated program) ©
- Not practically efficient (unless we get practically efficient iO) $:+$

Short Signature Schemes

- RSA-FDH: $\omega(k)$-bits
- EC-DSA: 4k-bits
- Schnorr: 4k-bits
- Short Schnorr Signature: 3k-bits
- Suggested in Schnorr's original paper
- Eurocrypt 2022: provides k-bit security in idealized models (GGM+Random Oracle)
- BLS: 2k-bits

- Bilinear Pairings for Verification
- Shorter signatures, but higher computational overhead
- iO Based Signatures: k bits
- Purely Theoretical Construction
- No practical instantiation of indistinguishability obfuscation!

Witness Encryption

Recap: NP-Complete problems.

- Consider an NP-Complete problem e.g., CIRCUIT-SAT
- Instance: Circuit $C:\{0,1\}^{n} \rightarrow\{0,1\}$
- Decision Problem: Does there exist some input x such that $C(x)=1$?
- NP Certifier: Given witness x it is easy to verify that the circuit is satisfiable e.g., $C(x)=1$
- NP Hard: Polynomial time reduction from any other decision problem in NP (e.g., SAT, 3COLOR, CLIQUE) reduces to CIRCUIT-SAT.

Witness Encryption

- Idea: Use C as a public key and witness x as a secret key

$$
\begin{gathered}
\boldsymbol{E n c}(\boldsymbol{C}, \boldsymbol{m})=\boldsymbol{c} \\
\operatorname{Dec}(\boldsymbol{x}, \boldsymbol{c})=\boldsymbol{m} \text { if } C(x)=0
\end{gathered}
$$

- Any party can encrypt message using C.
- Ciphertext can only be decrypted if we know a witness x.
- If no witness exists then ciphertext is "permanently locked" i.e., attacker cannot distinguish between $\operatorname{Enc}(C, m)$ and $\operatorname{Enc}\left(C, m^{\prime}\right)$

Witness Encryption

- Idea: Use C as a public key and witness x as a secret key

$$
\operatorname{Enc}(C, m)=c
$$

$$
\operatorname{Dec}(x, \mathbf{c})=\mathbf{m} \text { if } C(x)=1 ; \text { otherwise } \operatorname{Dec}(x, \mathbf{c})=\perp
$$

Construction:

$$
\operatorname{Enc}(C, m)=\operatorname{iO}\left(1^{\lambda}, \boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}}\right)
$$

Where $\boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}}$ is a circuit such that

$$
D_{C, m}(x)= \begin{cases}m & \text { if } C(x)=0 \\ \perp & \text { otherwise }\end{cases}
$$

Witness Encryption

- Idea: Use C as a public key and witness x as a secret key

$$
\operatorname{Enc}(C, m)=c
$$

$$
\operatorname{Dec}(\mathbf{x}, \mathbf{c})=\mathbf{m} \text { if } \mathrm{C}(\mathrm{x})=1 \text {; otherwise } \operatorname{Dec}(\mathbf{x}, \mathbf{c})=\perp
$$

Construction:

$$
\begin{gathered}
\operatorname{Enc}(C, m)=\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}}\right) \\
\boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}}(\boldsymbol{x})= \begin{cases}\boldsymbol{m} & \text { if } \boldsymbol{C}(\boldsymbol{x})=\mathbf{0} \\
\perp & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
\operatorname{Dec}(x, c)=c(x)
$$

Witness Encryption

- Idea: Use C as a public key and witness x as a secret key

$$
\operatorname{Enc}(C, m)=c
$$

$$
\operatorname{Dec}(\mathbf{x}, \mathbf{c})=\mathbf{m} \text { if } C(x)=1 \text {; otherwise } \operatorname{Dec}(\mathbf{x}, \mathbf{c})=\perp
$$

Security Analsis: If $\mathrm{C}(\mathrm{x})=0$ for all inputs x then $\boldsymbol{D}_{C, m}$ is equivalent to the trivial circuit $\boldsymbol{D}(\boldsymbol{x}):=\perp$.

iO Security

$\rightarrow \operatorname{Enc}(C, m)=\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}_{C, m}\right)$ cannot be distinguished from $\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}\right)$
$\rightarrow \operatorname{Enc}\left(C, m^{\prime}\right)=\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}_{\prime}}\right)$ cannot be distinguished from $\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}_{\boldsymbol{C}, \boldsymbol{m}}\right)$

$$
D_{C, m}(x)= \begin{cases}m & \text { if } C(x)=0 \\ \perp & \text { otherwise }\end{cases}
$$

Functional Encryption

- Public Key Encryption: $c:=\operatorname{Enc}_{\mathrm{pk}}(m)$
- Secret Key Used to Decrypt: $\operatorname{Dec}_{\mathbf{s k}}(c)=m$
- Can generate special Secret Key for Circuit C: $s k_{C}$
- Correctness: $\operatorname{Dec}_{\text {sk }_{\mathrm{C}}}(c)=C\left(\operatorname{Dec}_{\mathrm{sk}}(c)\right)=C(m)$
- Security Goal (Intuition): Cannot learn "more" than $C(m)$

Construction Idea (Over Simplified): $s k_{C}=\mathrm{iO}\left(1^{\lambda}, \boldsymbol{D}_{C}\right)$

$$
\boldsymbol{D}_{\boldsymbol{C}}\left(\operatorname{Enc}_{\mathrm{pk}}(m)\right)=\boldsymbol{C}\left(\operatorname{Enc}_{\mathrm{pk}}(m)\right)
$$

Full Construction/Proof: Uses Statistically Simulation Sound Non-Interactive Zero Knowledge Proofs.

Application: Universal Sampler

[Hofheinz et al. 2016]

Application: Universal Sampler

- Setup
- Input: 1^{λ} (e.g., size of crypo keys) and
- Output: U (e.g., an obfuscated program)
- Sample
- Input: $\mathrm{U}, \mathrm{d}, \beta$
- d a polynomial size circuit
- β randomness index
- Output: $d\left(r_{\beta}\right)$
- Ideal World: Secret random string chosen once and for all for each given β

Universal Sampler [Hofheinz et al. 2016]

- Construction in Random Oracle Model
- Crypto Assumptions: iO + OWF
- Random Oracle not queried inside iO
- Adaptive Security
- "delayed backdoor programming" via Random Oracle

Application: CAPTCHAs in Password Storage

PoH Construction

Password: pwd

Security Reduction

Main Theorem: Blackbox reduction transforms any ppt algorithm breaking PoH security into a ppt algorithm breaking CAPTCHA security. (Assuming security of Universal Sampler)

Statement about human ignorance

Security Analysis

Thm (Informal): If UNI is adaptively secure universal sampler and CAPT is computer uncrackable CAPTCHA then password authentication scheme is costly to crack.

Costly to Crack: An adversary with m human work units can crack users password with probability at most

$$
\lambda_{m}=\sum_{i=1}^{m} p_{i}+\text { negligible }
$$

Security Analysis

Thm (Informal):
is computer unc
scheme is costly

Standard CAPTCHA assumption:
 Adversary not given hashes answers to CAPT puzzles.

Costly to Crack: An adversary with m `human work units' can crack users password with probability at most

$$
\lambda_{m}=\sum_{i=1}^{m} p_{i}+\text { negligible }
$$

Security Analysis

> Costly to Crack ^**Actually show blackbox reduction ack users passworo from ppt adversary breaking security of password scheme to ppt adversary breaking CAPTCHA security

PoH for E-mails

Thanks for Listening

[^0]: Course Project Report: Due Thursday, March 23 @ 11:59PM via E-mail

