Advanced Cryptography CS 655

Week 11:

• Indistinguishability Obfuscation + Applications

Course Project Report: Due Thursday, March 23 @ 11:59PM via E-mail

Course Progress Report

- Due: Thursday, March 23 @ 11:59PM via E-mail
- Pages: 5-6
- Contents:
 - Motivation
 - Define the problem(s) you are working on clearly
 - Related Work
 - Preliminary Results
 - What have you tried?
 - What barriers have you encountered (if any)?

Obfuscation

- An obfuscator takes as input a program/circuit C and a security parameter λ and outputs a new program/circuit $C' = Obf(1^{\lambda}, C)$
- Efficiency: The function obfuscate should run in polynomial time in the size of the input program/circuit |C| and in the size of security parameter λ
- Correctness: C' should be equivalent to C i.e., for all inputs x we have C'(x) = C(x)

Security?

- VBB Security Definition: For all PPT attackers \mathcal{A} there exists a simulator \mathcal{S} such that for all programs $\{P_n\}$ and all security parameters λ $\left|\Pr\left[\mathcal{A}\left(\operatorname{Obf}(1^{\lambda}, P_n)\right)\right] - \Pr\left[\mathcal{S}^{P_n(\cdot)}(1^{\lambda}, |P_n|)\right]\right| \leq \operatorname{negl}(\lambda)$
- Intuition: Anything an attacker could learn from the description of the obfuscated circuit C' = Obf(C) the attacker could have learned if they had oracle access to the circuit C(x) as a blackbox
- Pro: Very strong security notion for obfuscation! ③
- **Con:** Impossible to achieve \otimes

• VBB Security Definition: For all PPT attackers \mathcal{A} there exists a simulator \mathcal{S} such that for all programs $\{P_n\}$ and all security parameters λ

$$\left|\Pr\left[\mathcal{A}\left(\mathrm{Obf}(1^{\lambda}, P_n)\right)\right] - \Pr[\mathcal{S}^{P_n(\cdot)}(1^{\lambda}, |P_n|)]\right| \leq \operatorname{negl}(\lambda)$$

• Impossibility: Let $\alpha, \beta, \gamma \in \{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$P_{\alpha,\beta,\gamma}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ \gamma & \text{if } x(\alpha) = \beta \\ \bot & \text{otherwise} \end{cases}$$

View string x as description of a program. $x(\alpha)$ denotes the output of this program on input α

• Impossibility: Let $\alpha, \beta, \gamma \in \{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$P_{\alpha,\beta,\gamma}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ \gamma & \text{if } x(\alpha) = \beta \\ \bot & \text{otherwise} \end{cases}$$

• Observation 1 (blackbox queries hide α, β, γ): If $\alpha, \beta, \gamma \in \{0,1\}^{\lambda}$ are uniformly random and $S^{P_n(\cdot)}$ makes at most q queries then all of the responses will be \bot except with probability $2q2^{-\lambda}$

(Proof Sketch)

•
$$\Pr[x_i = \alpha \mid P_{\alpha,\beta,\gamma}(x_1) = \dots = P_{\alpha,\beta,\gamma}(x_{i-1}) = \bot] \le 2^{-\lambda}$$

• $\Pr[x_i(\alpha) = \beta | P_{\alpha,\beta,\gamma}(x_1) = \dots = P_{\alpha,\beta,\gamma}(x_{i-1}) = \bot] \le 2^{-\lambda}$

• Impossibility: Let $\alpha, \beta, \gamma \in \{0,1\}^{\lambda}$ be uniformly random strings and define the following program

$$P_{\alpha,\beta,\gamma}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ \gamma & \text{if } x(\alpha) = \beta \\ \bot & \text{otherwise} \end{cases}$$

- Observation 2 (easy to extract α , β , γ from any obfuscation of $P_{\alpha,\beta,\gamma}$)
 - Let $P = Obf(1^{\lambda}, P_{\alpha,\beta,\gamma}(x))$ and consider running P on input P. $P(P) = P_{\alpha,\beta,\gamma}(P) = \gamma$ Obfuscation correctness $P(\alpha) = P_{\alpha,\beta,\gamma}(\alpha) = \beta$ $P(\alpha) = P_{\alpha,\beta,\gamma}(\alpha) = \beta$

VBB Impossibility for Circuits

- Challenge: Cannot feed circuit as input to itself
- Impossibility for Circuits given Fully Homomorphic Encryption

•
$$C_{\alpha,\beta,\gamma}(x) = \begin{cases} \operatorname{Enc}_{\mathrm{pk}}(\alpha) & \text{if } x = 0 \\ \beta & \text{if } x = \alpha \\ \gamma & \text{if } \operatorname{Dec}_{\mathrm{sk}}(x) = \beta \\ \bot & \text{otherwise} \end{cases}$$

- **Observation 1:** Oracle access to $C_{\alpha,\beta,\gamma}$ will still hide α,β,γ
- **Observation 2:** Given $C' = Obf(C_{\alpha,\beta,\gamma})$ we can extract $Enc_{pk}(\alpha)$ and then obtain an encryption $Enc_{pk}(\beta)$ of β by evaluating C' homomorphically on $Enc_{pk}(\alpha)$. Finally we can run $C'(Enc_{pk}(\beta)) = \gamma$

Indistinguishability Obfuscation

Two circuits C and C' are equivalent if

1) They have the same size i.e., |C| = |C'| for all n

2) They have equivalent input/output behavior i.e., for all inputs x we have C(x) = C'(x)

Definition: For all pairs of equivalent circuits and all PPT distinguishers \mathcal{A} we have $\left| \Pr\left[\mathcal{A}\left(iO(1^{\lambda}, C) \right) = 1 \right] - \Pr\left[\mathcal{A}\left(iO(1^{\lambda}, C'(x)) \right) = 1 \right] \right| \le \operatorname{negl}(\lambda)$

Con: Weaker Promise \otimes

- Pro: Achievable! ③
 - Con: Current constructions are not practically efficient. 😕
- Pro: Still very useful 🙂

Indistinguishability Obfuscation: Best Possible

- ``On Best Possible Obfuscation" [TCC'07]
- Suppose obfuscator iO satisfies security notion of Indististinguishability Obfuscation
- Suppose obfuscator Obf satisfies some other security notion
- Observe that
- 1) $Obf'(C) \coloneqq iO(Obf(C))$ cannot be weaker obfuscation scheme than Obf
- 2) C' = Obf(C) is functionally equivalent to C
- 3) C' is equivalent to Pad(C) i.e., pad description length of C so that circuits have the same size
- 4) $Obf'(C) \coloneqq iO(Obf(C))$ is indistinguishable from iO(Pad(C)) (by IO security)

Indistinguishability Obfuscation

- Constructing iO:
 - ``Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits" [FOCS'13]
 - Many constructions based on new assumptions
 - Many papers breaking assumptions (or constructions!) and many fixes
 - Recent progress "Indistinguishability Obfuscation from Well-Founded Assumptions." [STOC'21]
 - Constructs iO from sub-exponential security of well studies crypto assumptions
 - Learning With Errors (LWE), Learning Parity with Noise (LPN) over prime fields, PRG in NCO, and Decision Linear (DLIN) assumption for symmetric bilinear groups of prime order
- Applications of iO (our focus): Witness Encryption, Short Signatures, Proofs of Human Work, Universal Samplers,

Powerful Tool for iO: Puncturable PRF

- Three algorithms KeyGen, Puncture, and Eval
- $F_K(x) \coloneqq Eval(K, x)$ is a pseudorandom function
- Puncture(K, x') takes as input a key K and an input x and outputs a new punctured key K{x'}
 - Correctness: $Eval(K{x'}, x) = Eval(K, x)$ for all inputs $x \neq x'$ and $Eval(K{x'}, x') = \bot$
 - Security: $K\{x'\}$ leaks no information about $F_K(x)$ i.e., all PPT distinguishers \mathcal{A} we have $\left|\Pr\left[\mathcal{A}\left(K\{x'\}, F_K(x')\right) = 1\right] \Pr\left[\mathcal{A}\left(K\{x'\}, r\right) = 1\right]\right| \le \operatorname{negl}(\lambda)$

(where r is a random string)

• Intuition: $K\{x'\}$ allows us to evaluate $F_K(x)$ on all inputs $x \neq x'$ except for x' while ensuring that $F_K(x')$ is still indistinguishable from random.

GGM: PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda) = 2\lambda$. Then there is a secure PRF.

Let $G(x) = G_0(x) ||G_1(x)$ (first/last λ bits of output)

$$F_{K}(x_{1},\ldots,x_{n})=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right)\ldots\right)$$

PRFs from PRGs $G(x):=G_0(x) || G_1(x)$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda) = 2\lambda$. Then there is a secure PRF.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(\lambda) = 2\lambda$. Then there is a secure PRF.

Proof:

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$

Claim 1: For any $t(\lambda)$ and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$

Proof Sketch (by Triangle Inequality): Fix j $Adv_{j} = \left| Pr \left[A \left(r_{1} \parallel \cdots \parallel r_{j+1} \parallel G(s_{j+2}) \ldots \parallel G(s_{t(\lambda)}) \right) \right]$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$ Proof Sketch

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| \\ &\leq \sum_{\substack{j < t(\lambda) \\ \leq t(\lambda) \times negl(\lambda) = negl(\lambda)}} Adv_j \end{aligned}$$

Claim 1: For any
$$t(\lambda)$$
 and any PPT attacker A we have
 $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$
Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| \\ &\leq \sum_{j < t(\lambda)} Adv_j \\ &\leq t(\lambda) \times \operatorname{negl}(\lambda) = \operatorname{negl}(\lambda) \end{aligned}$$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$ Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ & \leq \sum_{j < t(n)} Adv_j \\ & \leq t(n) \times negl(n) = negl(n) \end{aligned}$$

(QED, Claim 1)

Hybrid H₁ and H₂

• Original Construction: Hybrid H₁

Hybrid H₁ and H₂

• Modified Construction H_2 : Pick r_0 and r_1 randomly instead of $r_i = G_i(K)$

Hybrid H₃

 Modified Construction H₃: Pick r₀₀, r₀₁, r₁₀ and r₁₁ randomly instead of applying PRG

Hybrid H_n

• Truly Random Function: All output values r_x are picked randomly

Hybrid H₁ vs H₂

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(\lambda)$

Claim 2: Attacker who makes $t(\lambda)$ queries to F_k (or f) cannot distinguish H_2 from the real game (except with negligible probability).

Proof Intuition: Follows by Claim 1

Hybrid H_i vs H_i

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(n)$

Claim 3: Attacker who makes t(n) queries to F_k (or f) cannot distinguish H_i from H_{i-1} the real game (except with negligible probability).

Challenge: Cannot replace 2ⁱ pseudorandom values with random strings at level i $2^i \operatorname{negl}(\lambda)$ is not necessarily negligible if $i = \frac{\lambda}{2}$ Key Idea: Only need to replace $t(\lambda)$ values (note: $t(\lambda)\operatorname{negl}(\lambda)$ is negligible).

Hybrid H_i

- Red Leaf Nodes: Queried $F_k(x)$ (at most t(n) red leaf nodes)
- Red Internal Nodes: On path from red leaf node to root

Hybrid H₁ vs H₂

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$

Claim 2: Attacker who makes $t(\lambda)$ oracle queries to our function cannot distinguish H_i from H_{i+1} (except with negligible probability).

Proof: Indistinguishability follows by Claim 1

Let x_1, \dots, x_t denote the t queries. Let y_1, \dots, y_t denote first i bits of each query.

 $(H_{i+1} \text{ vs } H_i : \text{ replaced } G(r_{y_i}) \text{ with } r_{y_i \parallel 0} \parallel r_{y_i \parallel 1})$

Hybrid H_i vs H_i

Claim 1: For any t(λ) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(\lambda)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(\lambda)}))] \right| < negl(\lambda)$

Claim 3: Attacker who makes $t(\lambda)$ queries to F_k (or f) cannot distinguish H_i from H_{i-1} the real game (except with negligible probability).

Triangle Inequality: Attacker who makes $t(\lambda)$ queries to F_k (or f) *cannot* distinguish H_1 (real construction) from H_n (truly random function) except with negligible probability.

Punctured Key (Example) $G(x) := G_0(x) || G_1(x)$

$K{011} = G_1(k), G_0(G_0(k)) \text{ and } G_0(G_1(G_0(k)))$

 $G_1(k) \rightarrow Can evaluate F_k(1x')$ for any input x' in $\{0,1\}^2$

Punctured Key (Example) $G(x) := G_0(x) || G_1(x)$

$K{011} = G_1(k), G_0(G_0(k)) \text{ and } G_0(G_1(G_0(k)))$ $G_0(G_0(k)) \rightarrow \text{Can evaluate } F_k(00x') \text{ for any bit } x'$

Punctured Key (Example) $G(x) := G_0(x) || G_1(x)$

 $K{011} = G_1(k), G_0(G_0(k)) \text{ and } G_0(G_1(G_0(k)))$ $G_0(G_1(G_0(k))) \rightarrow \text{Can evaluate } F_k(001)$

GGM Puncturable PRF

- F_K : $\{\mathbf{0},\mathbf{1}\}^n \rightarrow \{\mathbf{0},\mathbf{1}\}^\lambda$
- GGM tree has depth-proportional to length of PRF input n
- Punctured Key Stores: n pseudorandom strings of length λ
- Punctured Key $K{x}$ has size $O(n \lambda)$
- Security follows similar hybrid argument

Digital Signatures from iO

• Define a circuit
$$C_K(\sigma, m) = \begin{cases} 1 & \text{if Eval}(K, m) = \sigma \\ 0 & \text{otherwise} \end{cases}$$

- **Key Generation:** Pick a random Puncturable PRF key K and output public key $pk = iO(C_K)$ and secret key sk = K
- Signing: Sign(sk, m) = $Eval(K, m) = \sigma$
- Signature Verification: Just run obfuscated program pk(.,.) with inputs σ and m.

Digital Signatures from iO

• Define a circuit
$$C_K(\sigma, m) = \begin{cases} 1 & \text{if Eval}(K, m) = \sigma \\ 0 & \text{otherwise} \end{cases}$$

- Selective Signature Forgery Game: Fix a target message m^* and then generate (sk,pk).
 - Attacker may make q queries to signing oracle Sign(sk,·) on any other message i.e., $m_i \neq m^*$ for all queries i.
 - Attacker's goal: output forgery σ^* for m^*
- Selective Security → Adaptive Security (Union bound over all target messages m^{*})
 - Union bound trick requires sub-exponential security of iO + PPRF
 - Standard Trick in many iO security proofs

Selective Security Proof: Hybrid Argument

$$C_{K}(\sigma,m) = \begin{cases} 1 & \text{if Eval}(K,m) = \sigma \\ 0 & \text{otherwise} \end{cases}$$

• **Hybrid 1:** Replace $pk = iO(C_K)$ with $pk = iO(C_{f,K})$ where Define a circuit $C_{f,K}(\sigma,m) = \begin{cases} 1 & \text{if } f(\text{Eval}(K,m)) = f(\sigma) \\ 0 & \text{otherwise} \end{cases}$

Note 1: If f is a one-way permutation then $C_{f,K}$ and C_K are equivalent **Note 2:** Hybrid 1 is indistinguishable from Hybrid 0 (original game) due to iO security (since $C_{f,K}$ and C_K are equivalent circuits)

Selective Security Proof: Hybrid Argument

$$C_{f,K}(\sigma,m) = \begin{cases} 1 & \text{if } f(\text{Eval}(K,m)) = f(\sigma) \\ 0 & \text{otherwise} \end{cases}$$

- Equivalent if f is a one-way permutation
- Hybrid 2: Replace $pk = iO(C_{f,K})$ with $pk = iO(C_{K\{m^*\},z^*})$ where $C_{K\{m^*\},z^*}(\sigma,m) = \begin{cases} 1 & \text{if } (f(\sigma),m) = (z^*,m^*) \\ 1 & \text{if Eval}(K\{m^*\},m) = \sigma & \text{where } z^* = f(\sigma^*) \\ 0 & \text{otherwise} \end{cases}$

Note: Hybrid 2 is indistinguishable from Hybrid 1 due to iO security (since $C_{K\{m^*\},z^*}$ and $C_{f,K}$ are equivalent circuits)

Selective Security Proof: Hybrid Argument

•
$$C_{K\{m^*\},z^*}(\sigma,m) = \begin{cases} 1 & \text{if } (f(\sigma),m) = (z^*,m^*) \\ 1 & \text{if Eval}(K\{m^*\},m) = \sigma & \text{where } z^* = f(\sigma^*) \\ 0 & \text{otherwise} \end{cases}$$

• Hybrid 3: Replace $pk = iO(C_{K\{m^*\},z^*})$ with $pk = iO(C_{K\{m^*\},f(r)})$ where r is a uniformly random string and

$$C_{K\{m^*\},R}(\sigma,m) = \begin{cases} 1 & \text{if } (f(\sigma),m) = (R,m^*) \\ 1 & \text{if Eval}(K\{m^*\},m) = \sigma \text{ where } R = f(r) \\ 0 & \text{otherwise} \end{cases}$$

Note: Hybrid 3 is indistinguishable from Hybrid 1 due to security of the punctured PRF. Even if we reveal r attacker cannot distinguish random r from $\sigma^* = \text{Eval}(K, m^*)$.

Selective Security Proof: Hybrid Argument

• Hybrid 2: Replace $pk = iO(C_{K\{m^*\},\sigma^*})$ with $pk = iO(C_{K\{m^*\},f(r)})$ where r is a uniformly random string and $C_{K\{m^*\},R}(\sigma,m) = \begin{cases} 1 & \text{if } (f(\sigma),m) = (R,m^*) \\ 1 & \text{if } Eval(K\{m^*\},m) = \sigma & where R = f(r) \\ 0 & \text{otherwise} \end{cases}$

Signature Forgery in Hybrid 3? Forging a signatures requires us to find some σ^* such that $f(r) = f(\sigma^*)$. Difficulty follows from security of OWP. Obfuscated program only contains R = f(r) for uniformly random r.

Short Signatures from iO

- The signature is just a PRF output \rightarrow we can hope for λ -bit signatures with λ -bit security
- Advantage of the iO based signature construction 😳
- ullet Length of Public Key will be much longer longer (obfuscated program) \odot
- Not practically efficient (unless we get practically efficient iO) 😕

Short Signature Schemes

- **RSA-FDH**: $\omega(k)$ -bits
- EC-DSA: 4k-bits
- Schnorr: 4k-bits
- Short Schnorr Signature: 3k-bits
 - Suggested in Schnorr's original paper
 - **Eurocrypt 2022:** provides k-bit security in idealized models (GGM+Random Oracle)
- BLS: 2k-bits
 - Bilinear Pairings for Verification
 - Shorter signatures, but higher computational overhead
- iO Based Signatures: k bits
 - Purely Theoretical Construction
 - No practical instantiation of indistinguishability obfuscation!

Recap: NP-Complete problems.

- Consider an NP-Complete problem e.g., CIRCUIT-SAT
- Instance: Circuit $C: \{0,1\}^n \rightarrow \{0,1\}$
- **Decision Problem:** Does there exist some input x such that C(x) = 1?
- NP Certifier: Given witness x it is easy to verify that the circuit is satisfiable e.g., C(x) = 1
- NP Hard: Polynomial time reduction from *any* other decision problem in NP (e.g., SAT, 3COLOR, CLIQUE) reduces to CIRCUIT-SAT.

- Idea: Use C as a public key and witness x as a secret key Enc(C,m) = cDec(x,c) = m if C(x) = 0
- Any party can encrypt message using C.
- Ciphertext can only be decrypted if we know a witness x.
- If no witness exists then ciphertext is "permanently locked" i.e., attacker cannot distinguish between Enc(C,m) and Enc(C,m')

• Idea: Use C as a public key and witness x as a secret key Enc(C,m) = c $Dec(x,c) = m \text{ if } C(x) = 1; \text{ otherwise } Dec(x,c) = \bot$

Construction:

$$\operatorname{Enc}(\mathcal{C},m) = \mathrm{iO}(1^{\lambda}, \boldsymbol{D}_{\mathcal{C},m})$$

Where $D_{C,m}$ is a circuit such that

$$D_{C,m}(x) = \begin{cases} m & if C(x) = 0 \\ \bot & otherwise \end{cases}$$

• Idea: Use C as a public key and witness x as a secret key Enc(C,m) = cDec(x,c) = m if C(x) = 1; otherwise $Dec(x,c) = \bot$

Construction:

Enc(C,m) = iO(1^{$$\lambda$$}, D_{C,m})
D_{C,m}(x) =
$$\begin{cases} m & if C(x) = 0\\ \bot & otherwise \end{cases}$$

$$Dec(x,c) = c(x)$$

• Idea: Use C as a public key and witness x as a secret key Enc(C, m) = cDec(x, c) = m if C(x) = 1; otherwise $Dec(x, c) = \bot$

Security Analsis: If C(x) = 0 for all inputs x then $D_{C,m}$ is equivalent to the trivial circuit $D(x) := \bot$.

iO Security

Functional Encryption

- Public Key Encryption: $c \coloneqq Enc_{pk}(m)$
- Secret Key Used to Decrypt: $Dec_{sk}(c) = m$
- Can generate special Secret Key for Circuit C: sk_C
 - Correctness: $\operatorname{Dec}_{\operatorname{sk}_{C}}(c) = C(\operatorname{Dec}_{\operatorname{sk}}(c)) = C(m)$
 - Security Goal (Intuition): Cannot learn "more" than C(m)

Construction Idea (Over Simplified): $sk_C = iO(1^{\lambda}, D_C)$ $D_C(Enc_{pk}(m)) = C(Enc_{pk}(m))$

Full Construction/Proof: Uses Statistically Simulation Sound Non-Interactive Zero Knowledge Proofs.

Application: Universal Sampler [Hofheinz et al. 2016]

Application: Universal Sampler

- Setup
 - Input: 1^{λ} (e.g., size of crypo keys) and
 - Output: U (e.g., an obfuscated program)
- Sample
 - Input: U, d, β
 - d a polynomial size circuit
 - β randomness index
 - Output: $d(r_{\beta})$
 - Ideal World: Secret random string chosen once and for all for each given β

Universal Sampler [Hofheinz et al. 2016]

- Construction in Random Oracle Model
- Crypto Assumptions: iO + OWF
 - Random Oracle not queried inside iO
- Adaptive Security
 - "delayed backdoor programming" via Random Oracle

Application: CAPTCHAs in Password Storage

PoH Construction

Security Reduction

Main Theorem: Blackbox reduction transforms any **ppt** algorithm breaking PoH security into a **ppt** algorithm breaking CAPTCHA security. (Assuming security of Universal Sampler)

Statement about human ignorance

Security Analysis

Thm (Informal): If UNI is adaptively secure universal sampler and CAPT is computer uncrackable CAPTCHA then password authentication scheme is *costly to crack*.

Costly to Crack: An adversary with *m human work units* can crack users password with probability at most

$$\lambda_m = \sum_{i=1}^m p_i + negligible$$

Security Analysis

Costly to Crack: An adversary with m `human work units' can crack users password with probability at most

$$\lambda_m = \sum_{i=1}^m p_i + negligible$$

Security Analysis

Thm (Informal): is computer unc scheme is *costly* Standard CAPTCHA assumption: Adversary not given hashes answers to puzzles.

CAPT

Costly to Crack users password from ppt adversary breaking security of password scheme to ppt adversary breaking CAPTCHA security

PoH for E-mails

