
Advanced Cryptography
CS 655

Week 1:
• Course Overview & Policy
• Review
• Concrete Security Analysis

1Spring 2023

Topic 0: Course Overview

2

Course Resources

Instructor: Jeremiah Blocki
Office Hours: Thursdays from 4:30-6:30PM

TA: Mohammad Hassan Ameri
Office Hours: TBD (Poll)

Course Web Page: Slides, homeworks and schedule
https://www.cs.purdue.edu/homes/jblocki/courses/655_Spring23/inde
x.html

3

https://www.cs.purdue.edu/homes/jblocki/courses/655_Spring23/index.html

Technology

• Brightspace
• Syllabus (You are responsible for reading and understanding course policies)
• Grades

• Gradescope
• Submit homework assignments
• View Graded Assignments and Exams

• Piazza
• Course Discussion Board
• Announcements/Questions
• Preferred method of communication
• https://piazza.com/purdue/spring2023/cs655/home

4

https://piazza.com/purdue/spring2023/cs655/home

Grades

• Course Project: 30%
• Homework: 20%
• Midterm Exam: 15%
• Final Exam: 25%
• Course Presentation: 10%

Collaboration is permitted on homework assignments, but you completely
understand your solutions and you must write the solutions entirely in your
own words.

No collaboration on exams

5

Expected Background

• Prerequisites: CS555 (or equivalent) and CS 526
• We will assume mathematical maturity

• Ability to Write Proofs
• Ability to Understand/Interpret Crypto Definitions
• Security Reductions
• Probability Theory
• Combinatorics
• Counting

6

Course Topics (Tentative)

• The course will review several cutting edge research topics in the field of
cryptography.

• Cryptography is a big field There will be many interesting topics that we
cannot cover.

• Tentative List of Topics: Concrete Security Analysis, Idealized Models,
Preprocessing Attacks and Lower Bounds, Proofs of Space, Proofs of
Sequential Work, Verifiable Delay Functions, Memory Tight Reductions,
Memory Hard Functions, Oblivious RAM, Obfuscation + Applications,
Differential Privacy, Functional Secret Sharing, Quantum Random Oracle
Model + Compressed Oracles, Differential Privacy, Fully Homomorphic
Encryption

7

Homeworks (20%)

• There will be between 4 to 6 homework assignments. Homeworks must be submitted
via Gradescope before the stated deadline.

• You should typeset your assignment (preferably using LaTeX). It is ok to include
handdrawn figures in your pdf.

• You are encouraged to collaborate with others, but you must completely understand
your solution and you should cite any resources that you use

• Late Policy:
• On Time: No penalty
• < 1 Day Late: 10-point penalty
• < 2 Days Late: 25-point penalty
• > 2 days late: no credit

8

Course Presentation (10%)

• Pick a recent paper (last 15 years) from a cryptography conference and give a
15 minute presentation in class

• 12 minutes for presentation + 3 minutes for questions

• Suggested conferences include CRYPTO, EUROCRYPT, TCC, ASIACRYPT.

• If you would like to pick a crypto paper from another venue (e.g., S&P, CCS)
you will need to verify that the focus of the paper is crypto and then request
permission from the instructor.

9

Course Project (30%)

• Project Proposal: 5%
• Progress Report: 5%
• Final Project Report: 10%
• Final Project Presentation: 10%

• We will provide some ideas for projects. You are also welcome to propose
your own topics.

• Example: New security analysis of ___ construction
• Example Twists: Tighter Security Analysis in Ideal Model? Memory-Tight Reduction? Security

proof in Quantum Random Oracle Model?
• Implementation: pick a recent crypto construction and implement it

10

Topic 1: Review

11

Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial
time (ppt) adversary “succeeds” with negligible

probability.

• Two Key Concepts
• Polynomial time algorithm
• Negligible Function

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)
12

Asymptotic Approach to Security
Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is an integer
N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Which functions below are negligible?
• 𝑓𝑓 𝑛𝑛 = 2−𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛−5

• 𝑓𝑓 𝑛𝑛 = 2−10001000𝑛𝑛1000

• 𝑓𝑓 𝑛𝑛 = 21002− 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 2− log 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛− log 𝑛𝑛

13

Concrete Security

“A scheme is (t,ε)-secure if every adversary running for time
at most t succeeds in breaking the scheme with probability
at most ε”

• Example: t = 260 CPU cycles
• 9 years on a 4GHz processor
• < 1 minute on fastest supercomputer (in parallel)

• Full formal definition needs to specify “break”
• Important Metric in Practice

• Caveat 1: difficult to provide/prove such precise statements
• Caveat 2: hardware improves over time

14

Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive
polynomial 𝑝𝑝 . > 0 there is an integer N>0 such that for all n > N we
have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Intuition: If we choose the security parameter n to be sufficiently large
then we can make the adversaries success probability very small
(negligibly small).

15

Symmetric Key Building Blocks

• Pseudorandom Generator
• Pseudorandom Functions
• Pseudorandom Permutations + Block Ciphers
• Message Authentication Codes
• Hash Functions
• CPA-Secure Encryption
• Authenticated Encryption

16

Pseudorandom Generator (PRG) G
• Input: Short random seed s ∈ 0,1 𝑛𝑛

• Output: Longer “pseudorandom” string 𝐺𝐺 𝑠𝑠 ∈ 0,1 ℓ(𝑛𝑛) with ℓ 𝑛𝑛 > 𝑛𝑛
• ℓ 𝑛𝑛 is called expansion factor

• PRG Security: For all PPT attacker A there is a negligible function negl .
s.t

Prs∈ 0,1 𝑛𝑛 𝐴𝐴 𝐺𝐺 𝑠𝑠 = 1 − Pr𝑅𝑅∈ 0,1 ℓ(𝑛𝑛) 𝐴𝐴 𝑅𝑅 = 1 ≤ negl 𝑛𝑛

• Concrete Security: We say that 𝐺𝐺 . is a 𝑡𝑡 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure PRG if for all
attackers running in time at most 𝑡𝑡 𝑛𝑛 we have

Prs∈ 0,1 𝑛𝑛 𝐴𝐴 𝐺𝐺 𝑠𝑠 = 1 − Pr𝑅𝑅∈ 0,1 ℓ(𝑛𝑛) 𝐴𝐴 𝑅𝑅 = 1 ≤ 𝜀𝜀 𝑛𝑛
17

Pseudorandom Function (PRF)

A keyed function F: 0,1 ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 × 0,1 ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 → 0,1 ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ,
which “looks random” without the secret key k.

• ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 - length of secret key k
• ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 - length of input
• ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 - length of output

• Typically, ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 =ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 =ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =n (unless otherwise specified)

• Computing FK(x) is efficient (polynomial-time)

18

Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Question: How big is the set Funcn?
• Hint: Consider the lookup table.

• 2n entries in lookup table
• n bits per entry (𝑓𝑓 𝑥𝑥)
• n2n bits to encode f∈Funcn

• Answer: Funcn = 2𝑛𝑛2𝑛𝑛 (by comparison only 𝒦𝒦 = 2𝑛𝑛 n-bit keys)

19

𝑥𝑥 𝒇𝒇 𝒙𝒙
0 … 00 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎
0 … 01 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎
0 … 10 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎

… …
1 … 11 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎

2𝑛𝑛

PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a
pseudorandom function if for all PPT distinguishers D there is a negligible
function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Funcnas well as

the randomness of D.
• D is not given the secret k in the first probability (otherwise easy to

distinguish…how?)

20

PRF-Security as a Game

21

m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟎𝟎𝒏𝒏
Truly random func R
ri = FK(mi) if b=1

R(mi) o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1

PRF Security Concrete Version

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a
𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure pseudorandom if

𝐴𝐴𝐷𝐷𝐴𝐴𝑛𝑛,𝑜𝑜,𝑞𝑞, ≔ max
𝐷𝐷

𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 ≤ 𝜀𝜀 𝑛𝑛

Where
𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 ∶= 𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜀𝜀 𝑛𝑛

And the maximum is taken over all distinguishers D running in time at
most 𝒕𝒕 𝒏𝒏 and making at most 𝒒𝒒 𝒏𝒏 queries we have

22

CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚 for uniform 𝑃𝑃 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑃𝑃, 𝑠𝑠
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑠𝑠

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.

23

How to begin proof?

CPA-Security Game (Single Message Version)

24

m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟎𝟎𝒏𝒏

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑃𝑃2,𝐹𝐹𝑘𝑘 𝑃𝑃2 ⨁𝑚𝑚2

𝑃𝑃3,𝐹𝐹𝑘𝑘 𝑃𝑃3 ⨁𝑚𝑚3

m3

…

𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q
queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛

Security Reduction

• Step 1: Assume for contraction that we have an attacker A that violates
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

25

Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which
Fk is replaced by truly random f.

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

26

Analysis: By PRF security, we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

Security Reduction

27

• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

where 𝑞𝑞 𝑛𝑛
2𝑛𝑛

+ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 is negligible.

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr PrivK𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the
random string used to produce the challenge ciphertext

𝑐𝑐 = 𝑃𝑃∗,𝑓𝑓 𝑃𝑃∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other
ciphertexts 𝑐𝑐𝑃𝑃 = 𝑃𝑃𝑖𝑖 , 𝑓𝑓 𝑃𝑃𝑖𝑖 ⨁𝑚𝑚𝑖𝑖 .
If r∗ ≠ r1,…,rqthen then c leaks no information about b (information
theoretically).

28

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r∗ ≠ r1,…,rq then then c leaks no information about b
(information theoretically). We have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1 �r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

29

Conclusion

Enck(m) = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

Deck(𝑃𝑃, 𝑠𝑠) = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑠𝑠

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

30

PRF Security

Suggested Exercise: Work out concrete version of security proof

Concrete Version: 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure MAC

31

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀ 𝐴𝐴 with time(A) ≤ 𝑡𝑡 𝑛𝑛 , queries(A) ≤ 𝑞𝑞 𝑛𝑛
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜀𝜀(𝑛𝑛)

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you
Alice… - Bob

We need to
break up -Bob

32

Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy
• But does not promise integrity
• Suppose Mallory intercepts 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚
• How can Mallory generate ciphertext for 𝑚𝑚′?

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• Authenticated Encryption: Requires Integrity and Secrecy
33

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

34

Security Goal (Informal): Attacker should not be able to forge a valid tag t’ for new
message m’ that s/he wants to send.

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Informal): If F is a PRF then this is a secure (fixed-length) MAC for
messages of length n.
Proof: Start with attacker who breaks MAC security and build an attacker
who breaks PRF security (contradiction!)
Sufficient to start with attacker who breaks regular MAC security (why?)
Concrete security?

35

Collision Experiment (𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

36

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)= �1 𝑃𝑃𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑎𝑎𝑡𝑡𝑎𝐺𝐺𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝐺𝐺

Concrete Security (𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

37

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a 𝑡𝑡, 𝜀𝜀 −collision resistant hash function
if ∀ 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑐𝑐𝑘𝑘𝐺𝐺𝑃𝑃𝑠𝑠 𝐴𝐴 𝑃𝑃𝐺𝐺𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑟𝑟 𝑃𝑃𝑛𝑛 𝑡𝑡𝑃𝑃𝑚𝑚𝐺𝐺 𝑎𝑎𝑡𝑡 𝑚𝑚𝑎𝑎𝑠𝑠𝑡𝑡 𝑡𝑡(𝑛𝑛)

Pr 𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜀𝜀(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)= �1 𝑃𝑃𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑎𝑎𝑡𝑡𝑎𝐺𝐺𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝐺𝐺

Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3, Blake2B

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm
• Guarantee for protocol using H

If we know an explicit efficient algorithm A
breaking our protocol then there is an efficient
blackbox reduction transforming A into an efficient
collision finding algorithm.

38

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a
collision resistant hash function

𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑃𝑃 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑃𝑃 for every previously requested message mi

39

Hash and MAC Construction
Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a collision resistant hash function

𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6 (Concrete Version): If 𝑀𝑀𝑎𝑎𝑐𝑐 is 𝑡𝑡, 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 − secure and (GenH,H) is 𝑡𝑡, 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 −collision resistant then 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ is

𝑂𝑂(𝑡𝑡), 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 + 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 − 𝑠𝑠𝐺𝐺𝑐𝑐𝐺𝐺𝑃𝑃𝐺𝐺

Proof Intuition: When A succeeds we either get a hash collision (case 1) or a 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀
forgery (case 2)

𝐢𝐢𝐢𝐢 Pr case 2 > 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 we could violate 𝑡𝑡, 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 − secure for 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

Simulate 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ attacker A

when attacker makes a query 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ (𝑚𝑚) we

1. compute 𝐻𝐻𝑠𝑠 𝑚𝑚 and

2. forward 𝐻𝐻𝑠𝑠 𝑚𝑚 to 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀
oracle to get back 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚
A’s tag yields a 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

forgery for new message with probability at least Pr case 2 > 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀
Similar argument I𝐢𝐢 Pr case 1 > 𝜀𝜀𝐻𝐻𝐴𝐴𝑆𝑆𝐻𝐻 we could violate 𝑡𝑡, 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 −collision resistance for 𝐻𝐻𝑠𝑠 .
Therefore, A succeeds with probability at most 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 + 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻

40

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = 𝑎𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = 𝑎𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string

41

Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

42

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

• Sometimes we only know how to design provably secure protocol in
random oracle model

43

Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are
• Secure in random oracle model…
• But broken in the real world

44

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on
schemes proven secure in the random oracle model”

45

Merkle Trees

𝐌𝐌𝐌𝐌𝐬𝐬 𝒙𝒙 ≔ hs 𝑥𝑥
𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢 ≔

hs 𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢−𝟎𝟎 ,𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟐𝟐𝐢𝐢−𝟎𝟎+𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢

46

Theorem: Let (Gen, hs) be a collision resistant hash
function then 𝐌𝐌𝐌𝐌𝐬𝐬 is collision resistant.

𝐱𝐱𝟎𝟎 𝐱𝐱𝟐𝟐

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store
only one hash value

47

Ideal Cipher Model

• For each n-bit string K we pick a truly random permutation FK

• Public Oracles
• 𝑂𝑂 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾(𝑥𝑥)
• 𝑂𝑂−1 𝑃𝑃,𝑦𝑦 = 𝐹𝐹𝐾𝐾−1 (𝑥𝑥)

• Real World: Instantiate Ideal Cipher with a modern block cipher like AES

• Similar Pros/Cons to Random Oracle Model
• Pro: Powerful evidence of sound design
• Con: No blockcipher is an ideal cipher (even AES)

48

Hash Functions from Ideal Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher
then Davies-Meyer construction is a collision-resistant hash function
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

49

Hash Functions from Block Ciphers

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: Suppose we have already made queries to the ideal cipher
• Submitted 𝑃𝑃1, 𝑥𝑥1 , … , 𝑃𝑃𝑞𝑞 , 𝑥𝑥𝑞𝑞 to 𝐹𝐹𝐾𝐾 to get 𝐹𝐹𝐾𝐾1 𝑥𝑥1 , … ,𝐹𝐹𝐾𝐾𝑞𝑞 𝑥𝑥𝑞𝑞
• Submitted 𝑃𝑃𝑞𝑞+1,𝑦𝑦1 , … , 𝑃𝑃2𝑞𝑞 ,𝑦𝑦𝑞𝑞 to 𝐹𝐹𝐾𝐾−1 . to get 𝑥𝑥𝑞𝑞+1 ≔ 𝐹𝐹𝐾𝐾𝑞𝑞+1

−1 𝑦𝑦1 , … , 𝑥𝑥2𝑞𝑞 ≔ 𝐹𝐹𝐾𝐾2𝑞𝑞
−1 𝑦𝑦𝑞𝑞 .

𝐻𝐻 𝑃𝑃𝑖𝑖 , 𝑥𝑥𝑖𝑖 is known for all i ≤ 2𝑞𝑞 (but 𝐻𝐻 𝑃𝑃, 𝑥𝑥 is unknown at all other input points).
Now suppose we make a new query 𝑃𝑃, 𝑥𝑥 ∉ 𝑃𝑃1, 𝑥𝑥1 , … , 𝑃𝑃2𝑞𝑞 , 𝑥𝑥2𝑞𝑞 : 𝐹𝐹𝐾𝐾 𝑥𝑥 sampled uniformly from 2𝜆𝜆 − 2𝑞𝑞
possible choices.
 Collides with H 𝑃𝑃𝑖𝑖 , 𝑥𝑥𝑖𝑖 with probability at most 1

2𝜆𝜆−2𝑞𝑞

 Collides with H 𝑃𝑃𝑞𝑞+𝑖𝑖 , 𝑥𝑥𝑞𝑞+𝑖𝑖 with probability at most 1
2𝜆𝜆−2𝑞𝑞

 H 𝑃𝑃, 𝑥𝑥 Collides with prior query with probability at most 2q
2𝜆𝜆−2𝑞𝑞

50

Hash Functions from Block Ciphers

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis:

Fact 1: Query q+1 to ideal cipher yields collision (with prior query) with
probability at most q

2𝜆𝜆−𝑞𝑞

Fact 2: The probability of finding a collision within q queries is at most
∑𝑖𝑖≤𝑞𝑞

i
2𝜆𝜆−𝑖𝑖

≤ q(q−1)/2
2𝜆𝜆−𝑞𝑞

51

A Broken Attempt

𝐻𝐻 𝑃𝑃1,𝑃𝑃2, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾1
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾2

𝑥𝑥2 ⨁𝑃𝑃1⨁𝑃𝑃2
Collision Attack: Pick arbitrary keys 𝑃𝑃0 ≠ 𝑃𝑃1
Step 1: Query x1 ≔ 𝐹𝐹𝐾𝐾0

−1 0𝑛𝑛 and x2 ≔ 𝐹𝐹𝐾𝐾0

−1 1𝑛𝑛
Step 2: Query w1 ≔ 𝐹𝐹𝐾𝐾1

−1 0𝑛𝑛 and w2 ≔ 𝐹𝐹𝐾𝐾1

−1 1𝑛𝑛

𝐻𝐻 𝑃𝑃0,𝑃𝑃0, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾0
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾0

𝑥𝑥2 ⨁𝑃𝑃0⨁𝑃𝑃0 = 0𝑛𝑛⨁1𝑛𝑛

= 𝐹𝐹𝐾𝐾1
𝑜𝑜1 ⨁𝐹𝐹𝐾𝐾1

𝑜𝑜2 = 𝐻𝐻 𝑃𝑃1,𝑃𝑃1,𝑜𝑜1,𝑜𝑜2

Exploits the fact that we can query inverse oracle 𝐹𝐹𝐾𝐾−1

52

Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Permnas well as

the randomness of D.
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse

53

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x) (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟎𝟎, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟎𝟎 𝑲𝑲 …

54

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

55

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)

n-bits n-bits

PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

56

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof Sketch (by Triangle Inequality): Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟎𝟎 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

57

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof Sketch
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕 𝒏𝒏

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 (𝑸𝑸𝑸𝑸𝑸𝑸)

58

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

59

PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

(QED, Claim 1)

60

Hybrid H1 and H2

• Original Construction: Hybrid H1

61

61

K

r0 = G0(K) r1 = G1(K)

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Hybrid H1 and H2

• Modified Construction H2: Pick r0 and r1 randomly instead of ri = Gi(K)

62

62

r0 r1

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Hybrid H3

• Modified Construction H3: Pick r00 , r01 , r10 and r11 randomly instead
of applying PRG

63

63

____ ____

r00 r01

……

r10
r11

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Hybrid Hn

• Truly Random Function: All output values rx are picked randomly

64

64

____ ____

____ ____

…r00…0

____ ____

r11…1…

0

0

0

0

… rx … …

0 00

1

1

1

1

1

1

1

Hybrid H1 vs H2

66

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) queries to Fk (or f) cannot
distinguish H2 from the real game (except with negligible
probability).

Proof Intuition: Follows by Claim 1

Hybrid Hi vs Hi

67

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish Hi from Hi -1
the real game (except with negligible probability).

Challenge: Cannot replace 2i pseudorandom values with random strings at level i
2𝑖𝑖 negl 𝑛𝑛 is not necessarily negligible if 𝑃𝑃 = 𝑛𝑛

2
Key Idea: Only need to replace t(n) values (note: 𝑡𝑡 𝑛𝑛 negl 𝑛𝑛 is negligible).

Hybrid Hi
• Red Leaf Nodes: Queried Fk(x) (at most t(n) red leaf nodes)
• Red Internal Nodes: On path from red leaf node to root
• Level i: ≤ 𝑡𝑡(𝑛𝑛) red nodes

68

68

____ ____

____ ____

…r00…0

____ ____

r11…1…

0

0

0

0

… rx … …

0 00

1

1

1

1

1

1

1

Hybrid H1 vs H2

69

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) oracle queries to our function cannot
distinguish Hi from Hi+1 (except with negligible probability).

Proof: Indistinguishability follows by Claim 1
Let x1,…xt denote the t queries. Let y1,…,yt denote first i bits of each

query.
(Hi+1 vs Hi : replaced 𝑮𝑮 𝑷𝑷𝒚𝒚𝒊𝒊 with 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟎𝟎 ∥ 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟎𝟎)

Hybrid Hi vs Hi

70

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish
Hi from Hi -1 the real game (except with negligible probability).

Triangle Inequality: Attacker who makes t(n) queries to Fk (or f) cannot
distinguish H1 (real construction) from Hn (truly random function)
except with negligible probability.

Authenticated Encryption

Encryption: Hides a message from the attacker

Message Authentication Codes: Prevents attacker from tampering
with message

71

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

72

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

73

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Game is very
similar to MAC-

Forge game

Call Π an authenticated
encryption scheme if it is
CCA-secure and any PPT
attacker wins Encforge

with negligible probability

Building Authenticated Encryption

Attempt 4: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let 𝑃𝑃 =

𝑃𝑃𝐸𝐸 ,𝑃𝑃𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Secure?

74

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure encryption

scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following construction is an

authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof?
Two Tasks:

Encforge𝐴𝐴,Π
CCA-Security

75

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following

construction is an authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof Intuition: Suppose that we have already shown that any PPT attacker
wins Encforge𝐴𝐴,Π with negligible probability.

Why does CCA-Security now follow from CPA-Security?
CCA-Attacker has decryption oracle, but cannot exploit it! Why?
Always sees ⊥ “invalid ciphertext” when he query with unseen ciphertext

76

Proof Sketch

1. Let ValidDecQuery be event that attacker submits new/valid ciphertext
to decryption oracle

2. Show Pr[ValidDecQuery] is negl(n) for any PPT attacker
• Hint: Follows from strong security of MAC since

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c

• This also implies unforgeability (even if we gave the attacker 𝑃𝑃𝐸𝐸!).

3. Show that attacker who does not issue valid decryption query wins CCA-
security game with probability ½ + negl(n)
• Hint: otherwise we can use A to break CPA-security
• Hint 2: simulate decryption oracle by always returning ⊥ when given new ciphertext

77

	Advanced Cryptography�CS 655
	Topic 0: Course Overview
	Course Resources
	Technology
	Grades
	Expected Background
	Course Topics (Tentative)
	Homeworks (20%)
	Course Presentation (10%)
	Course Project (30%)
	Topic 1: Review
	Asymptotic Approach to Security
	Asymptotic Approach to Security
	Concrete Security
	Asymptotic Approach to Security
	Symmetric Key Building Blocks
	Pseudorandom Generator (PRG) G
	Pseudorandom Function (PRF)
	Truly Random Function
	PRF Security
	PRF-Security as a Game
	PRF Security Concrete Version
	CPA-Secure Encryption
	CPA-Security Game (Single Message Version)
	Security Reduction
	Security Reduction
	Security Reduction
	Finishing Up
	Finishing Up
	Conclusion
	Concrete Version: 𝑡 𝑛 ,𝑞 𝑛 ,𝜀(𝑛) -secure MAC
	What Does It Mean to “Secure Information”
	Message Authentication Codes
	Message Authentication Code Syntax
	Strong MAC Construction (Fixed Length)
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Concrete Security (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice
	Hash and MAC Construction
	Hash and MAC Construction
	Merkle-Damgård Transform
	Random Oracle Model
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Merkle Trees
	Merkle Trees
	Ideal Cipher Model
	Hash Functions from Ideal Block Ciphers
	Hash Functions from Block Ciphers
	Hash Functions from Block Ciphers
	A Broken Attempt
	Pseudorandom Permutation
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	PRFs from PRGs
	Hybrid H1 and H2
	Hybrid H1 and H2
	Hybrid H3
	Hybrid Hn
	Hybrid H1 vs H2
	Hybrid Hi vs Hi
	Hybrid Hi
	Hybrid H1 vs H2
	Hybrid Hi vs Hi
	Authenticated Encryption
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Proof Sketch

