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Topic 0: Course Overview
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Course Resources

Instructor: Jeremiah Blocki
Office Hours: Thursdays from 4:30-6:30PM

TA: Mohammad Hassan Ameri
Office Hours: TBD (Poll)

Course Web Page: Slides, homeworks and schedule 
https://www.cs.purdue.edu/homes/jblocki/courses/655_Spring23/inde
x.html
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https://www.cs.purdue.edu/homes/jblocki/courses/655_Spring23/index.html


Technology

• Brightspace
• Syllabus (You are responsible for reading and understanding course policies)
• Grades

• Gradescope
• Submit homework assignments
• View Graded Assignments and Exams

• Piazza
• Course Discussion Board
• Announcements/Questions
• Preferred method of communication
• https://piazza.com/purdue/spring2023/cs655/home
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https://piazza.com/purdue/spring2023/cs655/home


Grades

• Course Project: 30%
• Homework: 20%
• Midterm Exam: 15%
• Final Exam: 25%
• Course Presentation: 10%

Collaboration is permitted on homework assignments, but you completely 
understand your solutions and you must write the solutions entirely in your 
own words.

No collaboration on exams
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Expected Background

• Prerequisites: CS555 (or equivalent) and CS 526
• We will assume mathematical maturity

• Ability to Write Proofs
• Ability to Understand/Interpret Crypto Definitions
• Security Reductions
• Probability Theory
• Combinatorics
• Counting
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Course Topics (Tentative)

• The course will review several cutting edge research topics in the field of 
cryptography.

• Cryptography is a big field  There will be many interesting topics that we 
cannot cover.

• Tentative List of Topics: Concrete Security Analysis, Idealized Models, 
Preprocessing Attacks and Lower Bounds, Proofs of Space, Proofs of 
Sequential Work, Verifiable Delay Functions, Memory Tight Reductions, 
Memory Hard Functions, Oblivious RAM, Obfuscation + Applications, 
Differential Privacy, Functional Secret Sharing, Quantum Random Oracle 
Model + Compressed Oracles, Differential Privacy, Fully Homomorphic 
Encryption
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Homeworks (20%)

• There will be between 4 to 6 homework assignments. Homeworks must be submitted 
via Gradescope before the stated deadline.

• You should typeset your assignment (preferably using LaTeX). It is ok to include 
handdrawn figures in your pdf.

• You are encouraged to collaborate with others, but you must completely understand 
your solution and you should cite any resources that you use

• Late Policy:
• On Time: No penalty
• < 1 Day Late: 10-point penalty
• < 2 Days Late: 25-point penalty
• > 2 days late: no credit
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Course Presentation (10%)

• Pick a recent paper (last 15 years) from a cryptography conference and give a 
15 minute presentation in class

• 12 minutes for presentation + 3 minutes for questions

• Suggested conferences include CRYPTO, EUROCRYPT, TCC, ASIACRYPT. 

• If you would like to pick a crypto paper from another venue (e.g., S&P, CCS) 
you will need to verify that the focus of the paper is crypto and then request 
permission from the instructor.
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Course Project (30%)

• Project Proposal: 5%
• Progress Report: 5%
• Final Project Report: 10%
• Final Project Presentation: 10%

• We will provide some ideas for projects. You are also welcome to propose 
your own topics.

• Example: New security analysis of ___ construction 
• Example Twists: Tighter Security Analysis in Ideal Model? Memory-Tight Reduction? Security 

proof in Quantum Random Oracle Model?
• Implementation: pick a recent crypto construction and implement it
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Topic 1: Review
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• Two Key Concepts
• Polynomial time algorithm
• Negligible Function 

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)
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Asymptotic Approach to Security
Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is an integer 
N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Which functions below are negligible?
• 𝑓𝑓 𝑛𝑛 = 2−𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛−5

• 𝑓𝑓 𝑛𝑛 = 2−10001000𝑛𝑛1000

• 𝑓𝑓 𝑛𝑛 = 21002− 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 2− log 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛− log 𝑛𝑛
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Concrete Security

“A scheme is (t,ε)-secure if every adversary running for time 
at most t succeeds in breaking the scheme with probability 
at most ε”

• Example: t = 260 CPU cycles
• 9 years on a 4GHz processor
• < 1 minute on fastest supercomputer (in parallel)

• Full formal definition needs to specify “break”
• Important Metric in Practice

• Caveat 1: difficult to provide/prove such precise statements
• Caveat 2: hardware improves over time
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial 𝑝𝑝 . > 0 there is an integer N>0 such that for all n > N we 
have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Intuition: If we choose the security parameter n to be sufficiently large 
then we can make the adversaries success probability very small 
(negligibly small).
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Symmetric Key Building Blocks

• Pseudorandom Generator
• Pseudorandom Functions
• Pseudorandom Permutations + Block Ciphers
• Message Authentication Codes
• Hash Functions
• CPA-Secure Encryption
• Authenticated Encryption 
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Pseudorandom Generator (PRG) G
• Input: Short random seed s ∈ 0,1 𝑛𝑛

• Output: Longer “pseudorandom” string 𝐺𝐺 𝑠𝑠 ∈ 0,1 ℓ(𝑛𝑛) with ℓ 𝑛𝑛 > 𝑛𝑛
• ℓ 𝑛𝑛 is called expansion factor

• PRG Security: For all PPT attacker A there is a negligible function negl .
s.t

Prs∈ 0,1 𝑛𝑛 𝐴𝐴 𝐺𝐺 𝑠𝑠 = 1 − Pr𝑅𝑅∈ 0,1 ℓ(𝑛𝑛) 𝐴𝐴 𝑅𝑅 = 1 ≤ negl 𝑛𝑛

• Concrete Security: We say that 𝐺𝐺 . is a 𝑡𝑡 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure PRG if for all 
attackers running in time at most 𝑡𝑡 𝑛𝑛 we have

Prs∈ 0,1 𝑛𝑛 𝐴𝐴 𝐺𝐺 𝑠𝑠 = 1 − Pr𝑅𝑅∈ 0,1 ℓ(𝑛𝑛) 𝐴𝐴 𝑅𝑅 = 1 ≤ 𝜀𝜀 𝑛𝑛
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Pseudorandom Function (PRF)

A keyed function F: 0,1 ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 × 0,1 ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 → 0,1 ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 , 
which “looks random” without the secret key k.

• ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 - length of secret key k
• ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 - length of input
• ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 - length of output

• Typically, ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 =ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 =ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =n (unless otherwise specified)

• Computing FK(x) is efficient (polynomial-time)
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Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Question: How big is the set Funcn?
• Hint: Consider the lookup table.

• 2n entries in lookup table
• n bits per entry (𝑓𝑓 𝑥𝑥 )
• n2n bits to encode f∈Funcn

• Answer: Funcn = 2𝑛𝑛2𝑛𝑛 (by comparison only 𝒦𝒦 = 2𝑛𝑛 n-bit keys)
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𝑥𝑥 𝒇𝒇 𝒙𝒙
0 … 00 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎
0 … 01 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎
0 … 10 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎

… …
1 … 11 𝒇𝒇 𝟎𝟎…𝟎𝟎𝟎𝟎

2𝑛𝑛



PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a 
pseudorandom function if for all PPT distinguishers D there is a negligible 
function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Funcnas well as 

the randomness of D. 
• D is not given the secret k in the first probability (otherwise easy to 

distinguish…how?)
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PRF-Security as a Game
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m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟎𝟎𝒏𝒏
Truly random func R
ri = FK(mi)    if b=1

R(mi)    o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1



PRF Security Concrete Version

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a 
𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure pseudorandom if

𝐴𝐴𝐷𝐷𝐴𝐴𝑛𝑛,𝑜𝑜,𝑞𝑞, ≔ max
𝐷𝐷

𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 ≤ 𝜀𝜀 𝑛𝑛

Where 
𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 ∶= 𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜀𝜀 𝑛𝑛

And the maximum is taken over all distinguishers D running in time at 
most 𝒕𝒕 𝒏𝒏 and making at most 𝒒𝒒 𝒏𝒏 queries we have
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CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚 for uniform 𝑃𝑃 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑃𝑃, 𝑠𝑠
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑠𝑠

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.

23

How to begin proof?



CPA-Security Game (Single Message Version)
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m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟎𝟎𝒏𝒏

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑃𝑃2,𝐹𝐹𝑘𝑘 𝑃𝑃2 ⨁𝑚𝑚2

𝑃𝑃3,𝐹𝐹𝑘𝑘 𝑃𝑃3 ⨁𝑚𝑚3

m3

…

𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure if any attacker A running in time t and making at most q 
queries wins with probability at most 1

2
+ 𝜀𝜀 𝑛𝑛



Security Reduction

• Step 1: Assume for contraction that we have an attacker A that violates 
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then 

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which 
Fk is replaced by truly random f.



Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks 
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: By PRF security, we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹



Security Reduction
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• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹

where 𝑞𝑞 𝑛𝑛
2𝑛𝑛

+ 𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷,𝑛𝑛,𝑃𝑃𝑅𝑅𝐹𝐹 is negligible.



Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr PrivK𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the 
random string used to produce the challenge ciphertext 

𝑐𝑐 = 𝑃𝑃∗,𝑓𝑓 𝑃𝑃∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other 
ciphertexts 𝑐𝑐𝑃𝑃 = 𝑃𝑃𝑖𝑖 , 𝑓𝑓 𝑃𝑃𝑖𝑖 ⨁𝑚𝑚𝑖𝑖 . 
If r∗ ≠ r1,…,rqthen then c leaks no information about b (information 
theoretically). 
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Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r∗ ≠ r1,…,rq then then c leaks no information about b 
(information theoretically). We have 

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1 �r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
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Conclusion

Enck(m) = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

Deck( 𝑃𝑃, 𝑠𝑠 ) = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑠𝑠

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

30

PRF Security

Suggested Exercise: Work out concrete version of security proof



Concrete Version: 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure MAC

31

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀ 𝐴𝐴 with time(A) ≤ 𝑡𝑡 𝑛𝑛 , queries(A) ≤ 𝑞𝑞 𝑛𝑛
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜀𝜀(𝑛𝑛)



What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you 
Alice… - Bob

We need to 
break up -Bob
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Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy 
• But does not promise integrity
• Suppose Mallory intercepts 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚
• How can Mallory generate ciphertext for 𝑚𝑚′?

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• Authenticated Encryption: Requires Integrity and Secrecy
33



Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three 
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t 
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

34

Security Goal (Informal): Attacker should not be able to forge a valid tag t’ for new 
message m’ that s/he wants to send.



Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Informal): If F is a PRF then this is a secure (fixed-length) MAC for 
messages of length n.
Proof: Start with attacker who breaks MAC security and build an attacker 
who breaks PRF security (contradiction!)
Sufficient to start with attacker who breaks regular MAC security (why?)
Concrete security?
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Collision Experiment (𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 

36

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)= �1 𝑃𝑃𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑎𝑎𝑡𝑡𝑎𝐺𝐺𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝐺𝐺



Concrete Security (𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a 𝑡𝑡, 𝜀𝜀 −collision resistant hash function 
if  ∀ 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑐𝑐𝑘𝑘𝐺𝐺𝑃𝑃𝑠𝑠 𝐴𝐴 𝑃𝑃𝐺𝐺𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑟𝑟 𝑃𝑃𝑛𝑛 𝑡𝑡𝑃𝑃𝑚𝑚𝐺𝐺 𝑎𝑎𝑡𝑡 𝑚𝑚𝑎𝑎𝑠𝑠𝑡𝑡 𝑡𝑡(𝑛𝑛)

Pr 𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜀𝜀(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)= �1 𝑃𝑃𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑎𝑎𝑡𝑡𝑎𝐺𝐺𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝐺𝐺



Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3, Blake2B

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 
• Guarantee for protocol using H

If we know an explicit efficient algorithm A
breaking our protocol then there is an efficient
blackbox reduction transforming A into an efficient 
collision finding algorithm.
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a 
collision resistant hash function

𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen 
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑃𝑃 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚′ ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑃𝑃 for every previously requested message mi
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Hash and MAC Construction
Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a collision resistant hash function

𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6 (Concrete Version): If 𝑀𝑀𝑎𝑎𝑐𝑐 is 𝑡𝑡, 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 − secure and (GenH,H) is 𝑡𝑡, 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 −collision resistant then 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ is 

𝑂𝑂(𝑡𝑡), 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 + 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 − 𝑠𝑠𝐺𝐺𝑐𝑐𝐺𝐺𝑃𝑃𝐺𝐺

Proof Intuition: When A succeeds we either get a hash collision (case 1) or a 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀
forgery (case 2)

𝐢𝐢𝐢𝐢 Pr case 2 > 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 we could violate 𝑡𝑡, 𝑞𝑞𝑀𝑀𝐴𝐴𝑀𝑀 , 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 − secure for 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

Simulate 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ attacker A

when attacker makes a query 𝑀𝑀𝑎𝑎𝑐𝑐 𝐾𝐾𝑀𝑀,𝑆𝑆
′ (𝑚𝑚) we 

1. compute  𝐻𝐻𝑠𝑠 𝑚𝑚 and 

2. forward  𝐻𝐻𝑠𝑠 𝑚𝑚 to 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀
oracle to get back 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚
A’s tag yields a 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾𝑀𝑀

forgery for new message with probability at least Pr case 2 > 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀
Similar argument I𝐢𝐢 Pr case 1 > 𝜀𝜀𝐻𝐻𝐴𝐴𝑆𝑆𝐻𝐻 we could violate 𝑡𝑡, 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻 −collision resistance for 𝐻𝐻𝑠𝑠 .
Therefore, A succeeds with probability at most 𝜀𝜀𝑀𝑀𝐴𝐴𝑀𝑀 + 𝜀𝜀𝐻𝐻𝑐𝑐𝑠𝑠𝐻
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Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = 𝑎𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = 𝑎𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string
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Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3) 
of fixed length (no Merkle-Damgård)
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Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often 
much more efficient (compared to provably secure construction is 
“standard model”

• Sometimes we only know how to design provably secure protocol in 
random oracle model
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Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate 

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are 
• Secure in random oracle model…
• But broken in the real world
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Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better 
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function 
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on 
schemes proven secure in the random oracle model”

45



Merkle Trees

𝐌𝐌𝐌𝐌𝐬𝐬 𝒙𝒙 ≔ hs 𝑥𝑥
𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢 ≔

hs 𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢−𝟎𝟎 ,𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟐𝟐𝐢𝐢−𝟎𝟎+𝟎𝟎, … , 𝐱𝐱𝟐𝟐𝐢𝐢

46

Theorem: Let (Gen, hs) be a collision resistant hash 
function then 𝐌𝐌𝐌𝐌𝐬𝐬 is collision resistant.

𝐱𝐱𝟎𝟎 𝐱𝐱𝟐𝟐



Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store 
only one hash value
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Ideal Cipher Model

• For each n-bit string K we pick a truly random permutation FK

• Public Oracles
• 𝑂𝑂 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾(𝑥𝑥)
• 𝑂𝑂−1 𝑃𝑃,𝑦𝑦 = 𝐹𝐹𝐾𝐾−1 (𝑥𝑥)

• Real World: Instantiate Ideal Cipher with a modern block cipher like AES

• Similar Pros/Cons to Random Oracle Model
• Pro: Powerful evidence of sound design
• Con: No blockcipher is an ideal cipher (even AES)
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Hash Functions from Ideal Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher 
then Davies-Meyer construction is a collision-resistant hash function 
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random 
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)
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Hash Functions from Block Ciphers

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: Suppose we have already made queries to the ideal cipher
• Submitted 𝑃𝑃1, 𝑥𝑥1 , … , 𝑃𝑃𝑞𝑞 , 𝑥𝑥𝑞𝑞 to 𝐹𝐹𝐾𝐾 to get 𝐹𝐹𝐾𝐾1 𝑥𝑥1 , … ,𝐹𝐹𝐾𝐾𝑞𝑞 𝑥𝑥𝑞𝑞
• Submitted 𝑃𝑃𝑞𝑞+1,𝑦𝑦1 , … , 𝑃𝑃2𝑞𝑞 ,𝑦𝑦𝑞𝑞 to 𝐹𝐹𝐾𝐾−1 . to get 𝑥𝑥𝑞𝑞+1 ≔ 𝐹𝐹𝐾𝐾𝑞𝑞+1

−1 𝑦𝑦1 , … , 𝑥𝑥2𝑞𝑞 ≔ 𝐹𝐹𝐾𝐾2𝑞𝑞
−1 𝑦𝑦𝑞𝑞 . 

𝐻𝐻 𝑃𝑃𝑖𝑖 , 𝑥𝑥𝑖𝑖 is known for all i ≤ 2𝑞𝑞 (but 𝐻𝐻 𝑃𝑃, 𝑥𝑥 is unknown at all other input points).  
Now suppose we make a new query 𝑃𝑃, 𝑥𝑥 ∉ 𝑃𝑃1, 𝑥𝑥1 , … , 𝑃𝑃2𝑞𝑞 , 𝑥𝑥2𝑞𝑞 :  𝐹𝐹𝐾𝐾 𝑥𝑥 sampled uniformly from 2𝜆𝜆 − 2𝑞𝑞
possible choices. 
 Collides with H 𝑃𝑃𝑖𝑖 , 𝑥𝑥𝑖𝑖 with probability at most 1

2𝜆𝜆−2𝑞𝑞

 Collides with H 𝑃𝑃𝑞𝑞+𝑖𝑖 , 𝑥𝑥𝑞𝑞+𝑖𝑖 with probability at most 1
2𝜆𝜆−2𝑞𝑞

 H 𝑃𝑃, 𝑥𝑥 Collides with prior query with probability at most  2q
2𝜆𝜆−2𝑞𝑞
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Hash Functions from Block Ciphers

𝐻𝐻 𝑃𝑃, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: 

Fact 1: Query q+1 to ideal cipher yields collision (with prior query) with 
probability at most  q

2𝜆𝜆−𝑞𝑞

Fact 2: The probability of finding a collision within q queries is at most  
∑𝑖𝑖≤𝑞𝑞

i
2𝜆𝜆−𝑖𝑖

≤ q(q−1)/2
2𝜆𝜆−𝑞𝑞
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A Broken Attempt

𝐻𝐻 𝑃𝑃1,𝑃𝑃2, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾1
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾2

𝑥𝑥2 ⨁𝑃𝑃1⨁𝑃𝑃2
Collision Attack: Pick arbitrary keys 𝑃𝑃0 ≠ 𝑃𝑃1
Step 1: Query x1 ≔ 𝐹𝐹𝐾𝐾0

−1 0𝑛𝑛 and x2 ≔ 𝐹𝐹𝐾𝐾0

−1 1𝑛𝑛
Step 2: Query w1 ≔ 𝐹𝐹𝐾𝐾1

−1 0𝑛𝑛 and w2 ≔ 𝐹𝐹𝐾𝐾1

−1 1𝑛𝑛

𝐻𝐻 𝑃𝑃0,𝑃𝑃0, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾0
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾0

𝑥𝑥2 ⨁𝑃𝑃0⨁𝑃𝑃0 = 0𝑛𝑛⨁1𝑛𝑛

= 𝐹𝐹𝐾𝐾1
𝑜𝑜1 ⨁𝐹𝐹𝐾𝐾1

𝑜𝑜2 = 𝐻𝐻 𝑃𝑃1,𝑃𝑃1,𝑜𝑜1,𝑜𝑜2

Exploits the fact that we can query inverse oracle 𝐹𝐹𝐾𝐾−1
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Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Permnas well as 

the randomness of D. 
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟎𝟎, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟎𝟎 𝑲𝑲 …
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

55

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))

G(x):= G0(x) || G1(x)  

n-bits n-bits



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof Sketch (by Triangle Inequality): Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟎𝟎 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof Sketch
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕 𝒏𝒏

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 (𝑸𝑸𝑸𝑸𝑸𝑸)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

(QED, Claim 1)
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Hybrid H1 and H2

• Original Construction: Hybrid H1

61

61

K

r0 = G0(K) r1 = G1(K)

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid H1 and H2

• Modified Construction H2: Pick r0 and r1 randomly instead of ri = Gi(K)
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____

r0 r1

r00=G0(r0) r01= G1(r0)

……

r10= G0(r1) r10= G1(r1)

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid H3

• Modified Construction H3: Pick r00 , r01 , r10 and r11 randomly instead 
of applying PRG
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____

____ ____

r00 r01

……

r10
r11

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1



Hybrid Hn

• Truly Random Function: All output values rx are picked randomly
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____

____ ____

____ ____

…r00…0

____ ____

r11…1…

0

0

0

0

… rx … …

0 00

1

1

1

1

1

1

1



Hybrid H1 vs H2
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) queries to Fk (or f) cannot 
distinguish H2 from the real game (except with negligible 
probability).

Proof Intuition: Follows by Claim 1



Hybrid Hi vs Hi
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish Hi from Hi -1 
the real game (except with negligible probability).

Challenge: Cannot replace 2i pseudorandom values with random strings at level i
2𝑖𝑖 negl 𝑛𝑛 is not necessarily negligible if 𝑃𝑃 = 𝑛𝑛

2
Key Idea: Only need to replace t(n) values (note:  𝑡𝑡 𝑛𝑛 negl 𝑛𝑛 is negligible).



Hybrid Hi
• Red Leaf Nodes: Queried Fk(x)   (at most t(n) red leaf nodes)
• Red Internal Nodes: On path from red leaf node to root
• Level i: ≤ 𝑡𝑡(𝑛𝑛) red nodes
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…r00…0

____ ____

r11…1…

0

0

0

0

… rx … …

0 00

1

1

1

1

1

1
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Hybrid H1 vs H2
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) oracle queries to our function cannot 
distinguish Hi from Hi+1 (except with negligible probability).

Proof: Indistinguishability follows by Claim 1 
Let x1,…xt denote the t queries. Let y1,…,yt denote first i bits of each 

query.
(Hi+1 vs Hi : replaced 𝑮𝑮 𝑷𝑷𝒚𝒚𝒊𝒊 with 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟎𝟎 ∥ 𝑷𝑷𝒚𝒚𝒊𝒊∥𝟎𝟎)



Hybrid Hi vs Hi

70

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟎𝟎 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟎𝟎 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish 
Hi from Hi -1 the real game (except with negligible probability).

Triangle Inequality: Attacker who makes t(n) queries to Fk (or f) cannot 
distinguish H1 (real construction) from Hn (truly random function) 
except with negligible probability.  



Authenticated Encryption

Encryption: Hides a message from the attacker

Message Authentication Codes: Prevents attacker from tampering 
with message
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Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛)) 
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mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛)) 
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mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑐𝑐 ≠⊥
𝑐𝑐 s.t 𝑐𝑐 ∉ 𝑐𝑐1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Game is very 
similar to MAC-

Forge game

Call Π an authenticated 
encryption scheme if it is 
CCA-secure and any PPT 
attacker wins Encforge

with negligible probability 



Building Authenticated Encryption

Attempt 4: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure 

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let 𝑃𝑃 =

𝑃𝑃𝐸𝐸 ,𝑃𝑃𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Secure?
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Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure encryption 

scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following construction is an 

authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof?
Two Tasks: 

Encforge𝐴𝐴,Π
CCA-Security
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Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure 

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Then the following 

construction is an authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof Intuition: Suppose that we have already shown that any PPT attacker 
wins Encforge𝐴𝐴,Π with negligible probability. 

Why does CCA-Security now follow from CPA-Security?
CCA-Attacker has decryption oracle, but cannot exploit it! Why?
Always sees ⊥ “invalid ciphertext” when he query with unseen ciphertext
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Proof Sketch

1. Let ValidDecQuery be event that attacker submits new/valid ciphertext 
to decryption oracle

2. Show Pr[ValidDecQuery] is negl(n) for any PPT attacker
• Hint: Follows from strong security of MAC since 

𝐸𝐸𝑛𝑛𝑐𝑐𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c

• This also implies unforgeability (even if we gave the attacker 𝑃𝑃𝐸𝐸!).

3. Show that attacker who does not issue valid decryption query wins CCA-
security game with probability ½ + negl(n)
• Hint: otherwise we can use A to break CPA-security
• Hint 2: simulate decryption oracle by always returning ⊥ when given new ciphertext
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