Homework 4 Due date: Tuesday, April 25, 2023 at 11:59PM (Gradescope)

Question 1 (30 points)

Consider the Single-Server Private-Information Retrieval problem where Bob (server) has a database $D = \{x_1, \ldots, x_n\}$. Alice would like to retrieve the item x_i without revealing ito Bob. Formally, a solution consists of three PPT algorithms (Query, Respond, Recover). Here, Query takes as input a security parameter λ (unary), an index $i \in [n]$, and random coins R and outputs a query q and a hint s to be used later i.e., $(q, s) = \text{Query}(1^{\lambda}, i; R)$. Respond takes as input a query q and the database $D = \{x_1, \ldots, x_n\}$ and generates a response r = Respond(q, D). Finally, Recover(r, s) takes as input a response r and a hint sand outputs a value x.

Usage Intuitively, Alice is given *i* and generates $(q, s) = \text{Query}(1^{\lambda}, i; R)$. Alice sends the query *q* to Bob who will respond with r = Respond(q, D). Finally, Alice recovers $x_i = \text{Recover}(r, s)$.

Correctness The scheme is correct if for any database D of n items x_1, \ldots, x_n , any security parameter λ and any random coins R and any index $i \in [n]$ we have $\operatorname{Recover}(r, s) = x_i$ where $(q, s) = \operatorname{Query}(1^{\lambda}, i; R)$ and $r = \operatorname{Respond}(q, D)$.

Security The scheme is secure if for all PPT distinguishers \mathcal{A} there is a negligible function $\mu(\ldots)$ such that for all λ and all indices $i, j \in [n]$ we have

$$\left|\Pr_{R}\left[\mathcal{A}\left(1^{\lambda},q\right)=1 \ : (q,s) \leftarrow \mathtt{Query}(i;R)\right] - \Pr_{R}\left[\mathcal{A}\left(1^{\lambda},q\right)=1 \ : (q,s) \leftarrow \mathtt{Query}(j;R)\right]\right| \leq \mu(\lambda) \ .$$

Part A. Consider the Pallier construction described informally in the slides. Prove that this scheme is correct and secure and analyze the computational/communication overhead for both parties. The construction is described more formally below.

Query $(1^{\lambda}, i; (R_1, R_2))$ works as follows 1) Generate a Pallier Key $(pk, sk) = \mathsf{PKeyGen}(1^{\lambda}, R_1)$ using random coins R_1 , 2) Set $c_i = \mathsf{Enc}_{pk}(1)$ and $c_j = \mathsf{Enc}_{pk}(0)$ for $j \neq i, 3$) Set $q = (pk, c_1, \ldots, c_n)$ and s = sk and return (q, s).

Respond (q, x_1, \ldots, x_n) works as follows 1) parse q to extract (pk, c_1, \ldots, c_n) and extract N from the Pallier key pk, 2) compute $c'_j = c_j^{x_j} \mod N^2$ (Note: you may assume that $x_j < N$ for each $j \in [n]$), 3) Compute $r = \prod_{j=1}^n c'_j \mod N^2$ and return r.

 $\operatorname{Recover}(r,s) \doteq \operatorname{Dec}_s(r).$

Answer:

Part B. Assume that we have Fully Homomorphic Encryption (FHE). Develop a secure PIR protocol which reduces the communication and computation overhead for Alice.

Answer:

Part c. Prove your construction in part B is secure.

Answer:

. . .

Resource and Collaborator Statement:

Question 2 (40 points)

Consider a quantum attacker \mathcal{A} who has quantum access to the random oracle $H : \{0, 1\}^{2\lambda} \to \{0, 1\}^{\lambda}$ and classical access to the oracle $H(K, \cdot)$ where $K \in \{0, 1\}^{\lambda}$ is a uniformly random key (unknown to the attacker \mathcal{A}). In many applications it makes sense to assume that \mathcal{A} only has classical access to the latter oracle $H(K, \cdot)$ e.g., because the attacker can only observe the response H(K, x) if it convinces the honest party to encrypt a classical message related to x. We define two hybrids: H_0 and H_1 . In H_0 (real world) we pick K randomly the attacker gets quantum access to $H(\cdot)$ and classical access to the oracle $H(K, \cdot)$ as above. In H_1 the attacker still gets quantum access to $H(\cdot)$, but the oracle $H(K, \cdot)$ is replaced by a truly random function $f : \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda}$ which is unrelated to $H(\cdot)$. Let p_0 (resp. p_1) denote the probability that \mathcal{A} outputs 1 in hybrid H_0 (resp. H_0) then the advantage of the attacker is $ADV_{\mathcal{A}} = |p_0 - p_1|$.

Part A (10 points) As a warm-up suppose that $\mathcal{A}^{H(\cdot)}$ makes at most T queries to $H(\cdot)$ and only has access to the oracle $H(\cdot)$ i.e. \mathcal{A} makes no queries to $H(K, \cdot)$. Let $\psi_0^s, \psi_1^s, \ldots, \psi_T^s$ denote the states after each query to the random oracle $H(\cdot)$ when we run $\mathcal{A}^{H(\cdot)}(s)$ on initial input s. For each key $K' \in \{0,1\}^{\lambda}$ let $S_{K'} = \{(K',x) : x \in \{0,1\}^{\lambda}\}$. Given a quantum state $\phi = \sum_{x,y,z} \alpha_{x,y,z} | x, y, z \rangle$ let $QM(K', \phi) \doteq \sum_{x,y,z:x \in S_{K'}} |\alpha_{x,y,z}|^2$ denote the magnitude on basis states where we are making a query of the form $H(K', \cdot)$. We say that a key K' is ϵ -bad for the pair $(s, H(\cdot))$ if

$$\sum_{i=0}^{T-1} \mathrm{QM}(K',\psi_i^s) \geq \epsilon$$

Formally, let $K_{\epsilon,s,H} = \left\{ K' : \sum_{i=0}^{T-1} QM(K', \psi_i^s) \ge \epsilon \right\}$ denote the set of ϵ -bad keys K'. Fix any pair (s, H) and upper bound $|K_{\epsilon,s,H}|$ the number of ϵ -bad keys. Your upper bound should be a function of T and ϵ .

Answer:			

Part B. (10 points) Let $F : \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ be any function and let $H_{F,K}(\cdot)$ denote an oracle such that $H_{F,K}(K,x) = F(x)$ and $H_{F,K}(K',x) = H(K',x)$ whenever $K' \neq K$. Let $s_F \in \{0,1\}^{\lambda 2^{\lambda}}$ be a bit string describing the truth table of $F(\cdot)$.

Suppose that $K \notin \mathbb{K}_{\epsilon,s_F,H}$. Upper bound the Euclidean distance between $\psi_t^{s_F}$ (the final state when we run $\mathcal{A}^{H(\cdot)}(s_F)$) and $\psi_{t,K}^{s_F}$ (the final state when we run $\mathcal{A}^{H_{F,K}(\cdot)}(s_F)$)

Answer:

Part C. (10 points) Assume that the attacker \mathcal{A} makes at most q_1 quantum queries to $H(\cdot)$ and at most q_2 classical queries to the second oracle (either $H(K, \cdot)$ or $f(\cdot)$). Upper bound $ADV_{\mathcal{A}}$.

Answer:

Part D. (10 points) Consider the encryption scheme $\text{Enc}_K(m) = (r, H(K, r) \oplus m)$. Argue that the scheme is CPA-Secure in the Quantum Random Oracle Model.

Answer:

Resource and Collaborator Statement:

Question 3 (30 points)

In this problem we consider the Private Two-Server Keyword Search problem. Suppose that two servers B and C each hold a copy of the database $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ where x_1, \ldots, x_n denote distinct keywords and $y_1, \ldots, y_n \in \{0, 1\}^m \setminus \{0^m\}$ denote documents. Alice A would like to search for a specific keyword x and retrieve the associated document y if the pair $(x, y) \in D$ appears in the database. Alice does not want server B or C to learn the value of the query x. This rules out a naive protocol where Alice send x to either server. However, Alice does trust that servers B and C will not communicate.

Part A. Formalize the intuitive security property i.e., provide a formal security definition (Concrete/Asymptotic style definitions are both acceptable)

Answer:

Part B. Define a secure two-server protocol using Distributed Point Functions. For full credit you should make sure that Alice's computational/communication complexity remains as low as possible. Note: You may assume that the Distributed Point Function shares f_1 and f_2 of the point function $f_{\alpha,\beta}(\cdot)^1$ which, on input x, output additive shares $f_1(x)$ and $f_2(x)$ such that $f_1(x) + f_2(x) = f_{\alpha,\beta}(x) \mod 2^m$ for all inputs x.

Answer:			

Part C. Argue that your protocol is secure.

Answer:

Resource and Collaborator Statement:

¹Recall that the point function $f_{\alpha,\beta}(\cdot)$ is defined as follows $f_{\alpha,\beta}(\alpha) = \beta$ and $f_{\alpha,\beta}(x) = 0$ for all inputs $x \neq \alpha$.