Homework 4

Due date: Tuesday, April 25, 2023 at 11:59PM (Gradescope)

Question 1 (30 points)

Consider the Single-Server Private-Information Retrieval problem where Bob (server) has a database $D=\left\{x_{1}, \ldots, x_{n}\right\}$. Alice would like to retrieve the item x_{i} without revealing i to Bob. Formally, a solution consists of three PPT algorithms (Query, Respond, Recover). Here, Query takes as input a security parameter λ (unary), an index $i \in[n]$, and random coins R and outputs a query q and a hint s to be used later i.e., $(q, s)=$ Query $\left(1^{\lambda}, i ; R\right)$. Respond takes as input a query q and the database $D=\left\{x_{1}, \ldots, x_{n}\right\}$ and generates a response $r=\operatorname{Respond}(q, D)$. Finally, Recover (r, s) takes as input a response r and a hint s and outputs a value x.

Usage Intuitively, Alice is given i and generates $(q, s)=$ Query $\left(1^{\lambda}, i ; R\right)$. Alice sends the query q to Bob who will respond with $r=\operatorname{Respond}(q, D)$. Finally, Alice recovers $x_{i}=\operatorname{Recover}(r, s)$.

Correctness The scheme is correct if for any database D of n items x_{1}, \ldots, x_{n}, any security parameter λ and any random coins R and any index $i \in[n]$ we have $\operatorname{Recover}(r, s)=x_{i}$ where $(q, s)=\operatorname{Query}\left(1^{\lambda}, i ; R\right)$ and $r=\operatorname{Respond}(q, D)$.

Security The scheme is secure if for all PPT distinguishers \mathcal{A} there is a negligible function $\mu(\ldots)$ such that for all λ and all indices $i, j \in[n]$ we have

$$
\left|\operatorname{Pr}_{R}\left[\mathcal{A}\left(1^{\lambda}, q\right)=1:(q, s) \leftarrow \operatorname{Query}(i ; R)\right]-\operatorname{Pr}_{R}\left[\mathcal{A}\left(1^{\lambda}, q\right)=1:(q, s) \leftarrow \operatorname{Query}(j ; R)\right]\right| \leq \mu(\lambda) .
$$

Part A. Consider the Pallier construction described informally in the slides. Prove that this scheme is correct and secure and analyze the computational/communication overhead for both parties. The construction is described more formally below.

Query $\left(1^{\lambda}, i ;\left(R_{1}, R_{2}\right)\right)$ works as follows 1) Generate a Pallier Key $(p k, s k)=\operatorname{PKeyGen}\left(1^{\lambda}, R_{1}\right)$ using random coins $\left.R_{1}, 2\right)$ Set $c_{i}=\operatorname{Enc}_{p k}(1)$ and $c_{j}=\operatorname{Enc}_{p k}(0)$ for $j \neq i$, 3) Set $q=\left(p k, c_{1}, \ldots, c_{n}\right)$ and $s=s k$ and return (q, s).
$\operatorname{Respond}\left(q, x_{1}, \ldots, x_{n}\right)$ works as follows 1) parse q to extract ($p k, c_{1}, \ldots, c_{n}$) and extract N from the Pallier key $p k, 2$) compute $c_{j}^{\prime}=c_{j}^{x_{j}} \bmod N^{2}$ (Note: you may assume that $x_{j}<N$ for each $\left.\left.j \in[n]\right), 3\right)$ Compute $r=\prod_{j=1}^{n} c_{j}^{\prime} \bmod N^{2}$ and return r.
$\operatorname{Recover}(r, s) \doteq \operatorname{Dec}_{s}(r)$.

Answer:

Part B. Assume that we have Fully Homomorphic Encryption (FHE). Develop a secure PIR protocol which reduces the communication and computation overhead for Alice.

Answer:

...

Part c. Prove your construction in part B is secure.

> Answer:
\qquad

Resource and Collaborator Statement:
...

Question 2 (40 points)

Consider a quantum attacker \mathcal{A} who has quantum access to the random oracle $H:\{0,1\}^{2 \lambda} \rightarrow$ $\{0,1\}^{\lambda}$ and classical access to the oracle $H(K, \cdot)$ where $K \in\{0,1\}^{\lambda}$ is a uniformly random key (unknown to the attacker \mathcal{A}). In many applications it makes sense to assume that \mathcal{A} only has classical access to the latter oracle $H(K, \cdot)$ e.g., because the attacker can only observe the response $H(K, x)$ if it convinces the honest party to encrypt a classical message related to x. We define two hybrids: H_{0} and H_{1}. In H_{0} (real world) we pick K randomly the attacker gets quantum access to $H(\cdot)$ and classical access to the oracle $H(K, \cdot)$ as above. In H_{1} the attacker still gets quantum access to $H(\cdot)$, but the oracle $H(K, \cdot)$ is replaced by a truly random function $f:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ which is unrelated to $H(\cdot)$. Let p_{0} (resp. p_{1}) denote the probability that \mathcal{A} outputs 1 in hybrid H_{0} (resp. H_{0}) then the advantage of the attacker is $\operatorname{ADV}_{\mathcal{A}}=\left|p_{0}-p_{1}\right|$.

Part A (10 points) As a warm-up suppose that $\mathcal{A}^{H(\cdot)}$ makes at most T queries to $H(\cdot)$ and only has access to the oracle $H(\cdot)$ i.e. \mathcal{A} makes no queries to $H(K, \cdot)$. Let $\psi_{0}^{s}, \psi_{1}^{s}, \ldots, \psi_{T}^{s}$ denote the states after each query to the random oracle $H(\cdot)$ when we run $\mathcal{A}^{H(\cdot)}(s)$ on initial input s. For each key $K^{\prime} \in\{0,1\}^{\lambda}$ let $S_{K^{\prime}}=\left\{\left(K^{\prime}, x\right): x \in\{0,1\}^{\lambda}\right\}$. Given a quantum state $\phi=\sum_{x, y, z} \alpha_{x, y, z}|x, y, z\rangle$ let $\mathrm{QM}\left(K^{\prime}, \phi\right) \doteq \sum_{x, y, z: x \in S_{K^{\prime}}}\left|\alpha_{x, y, z}\right|^{2}$ denote the magnitude on basis states where we are making a query of the form $H\left(K^{\prime}, \cdot\right)$. We say that a key K^{\prime} is ϵ-bad for the pair $(s, H(\cdot))$ if

$$
\sum_{i=0}^{T-1} \mathrm{QM}\left(K^{\prime}, \psi_{i}^{s}\right) \geq \epsilon
$$

Formally, let $\mathrm{K}_{\epsilon, s, H}=\left\{K^{\prime}: \sum_{i=0}^{T-1} \mathrm{QM}\left(K^{\prime}, \psi_{i}^{s}\right) \geq \epsilon\right\}$ denote the set of ϵ-bad keys K^{\prime}. Fix any pair (s, H) and upper bound $\left|\mathrm{K}_{\epsilon, s, H}\right|$ the number of ϵ-bad keys. Your upper bound should be a function of T and ϵ.

Answer:

Part B. (10 points) Let $F:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ be any function and let $H_{F, K}(\cdot)$ denote an oracle such that $H_{F, K}(K, x)=F(x)$ and $H_{F, K}\left(K^{\prime}, x\right)=H\left(K^{\prime}, x\right)$ whenever $K^{\prime} \neq K$. Let $s_{F} \in\{0,1\}^{\lambda 2^{\lambda}}$ be a bit string describing the truth table of $F(\cdot)$.
Suppose that $K \notin \mathrm{~K}_{\epsilon, s_{F}, H}$. Upper bound the Euclidean distance between $\psi_{t}^{s_{F}}$ (the final state when we run $\left.\mathcal{A}^{H(\cdot)}\left(s_{F}\right)\right)$ and $\psi_{t, K}^{s_{F}}$ (the final state when we run $\left.\mathcal{A}^{H_{F, K}(\cdot)}\left(s_{F}\right)\right)$

Answer:

Part C. (10 points) Assume that the attacker \mathcal{A} makes at most q_{1} quantum queries to $H(\cdot)$ and at most q_{2} classical queries to the second oracle (either $H(K, \cdot)$ or $f(\cdot)$). Upper bound $\mathrm{ADV}_{\mathcal{A}}$.

> Answer:

Part D. (10 points) Consider the encryption scheme $\operatorname{Enc}_{K}(m)=(r, H(K, r) \oplus m)$. Argue that the scheme is CPA-Secure in the Quantum Random Oracle Model.
Answer:
...

Resource and Collaborator Statement:

```
...
```


Question 3 (30 points)

In this problem we consider the Private Two-Server Keyword Search problem. Suppose that two servers B and C each hold a copy of the database $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ where x_{1}, \ldots, x_{n} denote distinct keywords and $y_{1}, \ldots, y_{n} \in\{0,1\}^{m} \backslash\left\{0^{m}\right\}$ denote documents. Alice A would like to search for a specific keyword x and retrieve the associated document y if the pair $(x, y) \in D$ appears in the database. Alice does not want server B or C to learn the value of the query x. This rules out a naive protocol where Alice send x to either server. However, Alice does trust that servers B and C will not communicate.

Part A. Formalize the intuitive security property i.e., provide a formal security definition (Concrete/Asymptotic style definitions are both acceptable)

Answer:

...

Part B. Define a secure two-server protocol using Distributed Point Functions. For full credit you should make sure that Alice's computational/communication complexity remains as low as possible. Note: You may assume that the Distributed Point Function shares f_{1} and f_{2} of the point function $f_{\alpha, \beta}(\cdot)^{1}$ which, on input x, output additive shares $f_{1}(x)$ and $f_{2}(x)$ such that $f_{1}(x)+f_{2}(x)=f_{\alpha, \beta}(x) \bmod 2^{m}$ for all inputs x.

Answer:

...

Part C. Argue that your protocol is secure.

Answer:

...

Resource and Collaborator Statement:

[^0]
[^0]: ${ }^{1}$ Recall that the point function $f_{\alpha, \beta}(\cdot)$ is defined as follows $f_{\alpha, \beta}(\alpha)=\beta$ and $f_{\alpha, \beta}(x)=0$ for all inputs $x \neq \alpha$.

