
CS 655-Spring 2023

Homework 4
Due date: Tuesday, April 25, 2023 at 11:59PM (Gradescope)

Question 1 (30 points)

Consider the Single-Server Private-Information Retrieval problem where Bob (server) has
a database D = {x1, . . . , xn}. Alice would like to retrieve the item xi without revealing i
to Bob. Formally, a solution consists of three PPT algorithms (Query, Respond, Recover).
Here, Query takes as input a security parameter λ (unary), an index i ∈ [n], and random
coins R and outputs a query q and a hint s to be used later i.e., (q, s) = Query(1λ, i;R).
Respond takes as input a query q and the database D = {x1, . . . , xn} and generates a
response r = Respond(q,D). Finally, Recover(r, s) takes as input a response r and a hint s
and outputs a value x.

Usage Intuitively, Alice is given i and generates (q, s) = Query(1λ, i;R). Alice sends
the query q to Bob who will respond with r = Respond(q,D). Finally, Alice recovers
xi = Recover(r, s).

Correctness The scheme is correct if for any databaseD of n items x1, . . . , xn, any security
parameter λ and any random coins R and any index i ∈ [n] we have Recover(r, s) = xi where
(q, s) = Query(1λ, i;R) and r = Respond(q,D).

Security The scheme is secure if for all PPT distinguishers A there is a negligible function
µ(. . .) such that for all λ and all indices i, j ∈ [n] we have∣∣∣Pr
R

[
A
(
1λ, q

)
= 1 : (q, s)← Query(i;R)

]
− Pr

R

[
A
(
1λ, q

)
= 1 : (q, s)← Query(j;R)

]∣∣∣ ≤ µ(λ) .

Part A. Consider the Pallier construction described informally in the slides. Prove that this
scheme is correct and secure and analyze the computational/communication overhead
for both parties. The construction is described more formally below.

Query(1λ, i; (R1, R2)) works as follows 1) Generate a Pallier Key (pk, sk) = PKeyGen(1λ, R1)
using random coins R1, 2) Set ci = Encpk(1) and cj = Encpk(0) for j ̸= i, 3) Set
q = (pk, c1, . . . , cn) and s = sk and return (q, s).

Respond(q, x1, . . . , xn) works as follows 1) parse q to extract (pk, c1, . . . , cn) and extract
N from the Pallier key pk, 2) compute c′j = c

xj

j mod N2 (Note: you may assume that
xj < N for each j ∈ [n]), 3) Compute r =

∏n
j=1 c

′
j mod N2 and return r.

Recover(r, s)
.
= Decs(r).
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Answer:

. . .

Part B. Assume that we have Fully Homomorphic Encryption (FHE). Develop a secure PIR
protocol which reduces the communication and computation overhead for Alice.

Answer:

. . .

Part c. Prove your construction in part B is secure.

Answer:

. . .

Resource and Collaborator Statement:
. . .
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Question 2 (40 points)

Consider a quantum attackerA who has quantum access to the random oracleH : {0, 1}2λ →
{0, 1}λ and classical access to the oracle H(K, ·) where K ∈ {0, 1}λ is a uniformly random
key (unknown to the attacker A). In many applications it makes sense to assume that A only
has classical access to the latter oracle H(K, ·) e.g., because the attacker can only observe
the response H(K, x) if it convinces the honest party to encrypt a classical message related
to x. We define two hybrids: H0 and H1. In H0 (real world) we pick K randomly the
attacker gets quantum access to H(·) and classical access to the oracle H(K, ·) as above. In
H1 the attacker still gets quantum access to H(·), but the oracle H(K, ·) is replaced by a
truly random function f : {0, 1}λ → {0, 1}λ which is unrelated to H(·). Let p0 (resp. p1)
denote the probability that A outputs 1 in hybrid H0 (resp. H0) then the advantage of the
attacker is ADVA = |p0 − p1|.

Part A (10 points) As a warm-up suppose that AH(·) makes at most T queries to H(·) and only
has access to the oracle H(·) i.e. A makes no queries to H(K, ·). Let ψs

0, ψ
s
1, . . . , ψ

s
T

denote the states after each query to the random oracle H(·) when we run AH(·)(s) on
initial input s. For each key K ′ ∈ {0, 1}λ let SK′ = {(K ′, x) : x ∈ {0, 1}λ}. Given a
quantum state ϕ =

∑
x,y,z αx,y,z |x, y, z⟩ let QM(K ′, ϕ)

.
=

∑
x,y,z:x∈SK′ |αx,y,z|2 denote the

magnitude on basis states where we are making a query of the form H(K ′, ·). We say
that a key K ′ is ϵ-bad for the pair (s,H(·)) if

T−1∑
i=0

QM(K ′, ψs
i ) ≥ ϵ .

Formally, let Kϵ,s,H =
{
K ′ :

∑T−1
i=0 QM(K ′, ψs

i ) ≥ ϵ
}
denote the set of ϵ-bad keys K ′. Fix

any pair (s,H) and upper bound |Kϵ,s,H | the number of ϵ-bad keys. Your upper bound
should be a function of T and ϵ.

Answer:

. . .

Part B. (10 points) Let F : {0, 1}λ → {0, 1}λ be any function and let HF,K(·) denote an oracle
such that HF,K(K, x) = F (x) and HF,K(K

′, x) = H(K ′, x) whenever K ′ ̸= K. Let

sF ∈ {0, 1}λ2
λ
be a bit string describing the truth table of F (·).

Suppose that K ̸∈ Kϵ,sF ,H . Upper bound the Euclidean distance between ψsF
t (the final

state when we run AH(·)(sF )) and ψ
sF
t,K (the final state when we run AHF,K(·)(sF ))

Answer:

. . .

Part C. (10 points) Assume that the attacker A makes at most q1 quantum queries to H(·) and
at most q2 classical queries to the second oracle (either H(K, ·) or f(·)). Upper bound
ADVA.

3



Answer:

. . .

Part D. (10 points) Consider the encryption scheme EncK(m) = (r,H(K, r)⊕m). Argue that
the scheme is CPA-Secure in the Quantum Random Oracle Model.

Answer:

. . .

Resource and Collaborator Statement:
. . .
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Question 3 (30 points)

In this problem we consider the Private Two-Server Keyword Search problem. Suppose that
two servers B and C each hold a copy of the database D = {(x1, y1), . . . , (xn, yn)} where
x1, . . . , xn denote distinct keywords and y1, . . . , yn ∈ {0, 1}m \{0m} denote documents. Alice
A would like to search for a specific keyword x and retrieve the associated document y if
the pair (x, y) ∈ D appears in the database. Alice does not want server B or C to learn the
value of the query x. This rules out a naive protocol where Alice send x to either server.
However, Alice does trust that servers B and C will not communicate.

Part A. Formalize the intuitive security property i.e., provide a formal security definition (Con-
crete/Asymptotic style definitions are both acceptable)

Answer:

. . .

Part B. Define a secure two-server protocol using Distributed Point Functions. For full credit
you should make sure that Alice’s computational/communication complexity remains
as low as possible. Note: You may assume that the Distributed Point Function shares
f1 and f2 of the point function fα,β(·) 1 which, on input x, output additive shares f1(x)
and f2(x) such that f1(x) + f2(x) = fα,β(x) mod 2m for all inputs x.

Answer:

. . .

Part C. Argue that your protocol is secure.

Answer:

. . .

Resource and Collaborator Statement:
. . .

1Recall that the point function fα,β(·) is defined as follows fα,β(α) = β and fα,β(x) = 0 for all inputs
x ̸= α.
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