Homework 3

Due date: Tuesday, April 11, 2023 at 11:59PM (Gradescope)

Question 1 (40 points)

Let $N=2^{n}$ and define the "Powers of Two Graph" (a folklore construction of a depth-robust graph) $G_{n}=(V, E)$ with nodes $V=[N]$ and the edge $E=\left\{\left(i-2^{j}, i\right): i \leq N\right.$ and $\left.i-2^{j} \geq 1\right\}$.

Part A. We say that a node $v \leq N$ is α-forward good with respect to a set S of deleted nodes, if for all $r>0$ the interval $[v, v+r-1]$ contains at most $\alpha \times r$ nodes in S. Suppose that v is α-forward good and let $U(j)$ denote the number of nodes in the interval $\left[v, v+2^{j}-1\right]$ that are not reachable from v in $G_{n}-S$. Similarly, let s_{j} denote the number of deleted nodes in the interval $\left[v, v+2^{j}-1\right]$. Use induction to prove that $U(j) \leq \sum_{i=0}^{j} s_{i} 2^{j-i} \leq j 2^{j} \alpha$.

Answer:

...

Part B. Suppose that $2^{j}<r<2^{j+1}$. Show that at least $r-2(j+1) r \alpha$ nodes in $[v, v+r-1]$ are reachable from v in $G_{n}-S$.

> Answer:
\qquad

Part C. We say that a node $w \leq N$ is α-backward good with respect to a set S of deleted nodes if for all $0<r \leq w$ the interval $[w-r+1, w]$ contains at most $\alpha \times r$ nodes in S. Show that if node w is α-backward good and node $v<w$ is α-forward good with respect to S with $\alpha=0.01 / n$ then there is a directed path connecting v to w in $G_{n}-S$.

Answer:

...

Part D. Show that G_{n} is (e, d)-depth robust with $e=\Omega(N / n)$ and $d=\Omega(N)$ and lower bound the cumulative pebbling $\operatorname{cost} \mathrm{CC}\left(G_{n}\right)$.

```
Answer:
```

Part E. Assume that G is (e, d)-depth-robust with $e>d$. Suppose that we delete $|S|=e / 2$ nodes from G. Show that the graph $G-S$ contains at least $e /(2 d)$ node disjoint paths of length d. (Hint: To get started, let $S_{0}=S$ and let $S_{1}=S_{0} \cup P$ where P is a directed path in $G-S_{0}$ containing exactly d nodes.)

```
Answer:
```

Part F. We say that a directed graph $G=(V=[N], E)$ is (e, d, f)-fractionally depth-robust if for any subset $|S| \leq e$ of at most e nodes there is a subset $T \subseteq[N] \backslash S$ of $|T| \geq f$ nodes such that for every node $v \in T$ the graph $G-S$ contains a directed path of length d ending at node v. Supposing that $N=2^{n}$ and G is $(\Omega(N), \Omega(N / n))$-depth robust show that G is (e, d, f)-fractionally depth-robust with $e=\Omega(N), d=\Omega(N / n)$ and $f=\Omega(N)$. (Hint: You should used what you proved in part E to get started.)

```
Answer:
```

. . .

Part G. Suppose that G is (e, d, f)-fractionally depth-robust and consider the pebbling challenge game used in the analysis of Proofs of Space. In particular, suppose that Alice can place $e^{\prime}<e$ pebbles on the graph G and then a challenger asks Alice to place pebbles on randomly selected nodes v_{1}, \ldots, v_{k}. Alice can place pebbles in parallel, but is not finished until she has placed pebbles on all of the challenge nodes v_{1}, \ldots, v_{k}. Upper bound the probability that Alice can complete the challenge within $d^{\prime}<d$ steps.

Answer:

\qquad

Resource and Collaborator Statement:
...

Question 2 (30 points)

Recall that a point function $f_{\alpha, \beta}(x)$ outputs β if $x=\alpha$ and $f_{\alpha, \beta}(x)=0$ otherwise. Consider the following construction of a distributed point function. The setup algorithm picks a random Puncturable PRF key $K \in\{0,1\}^{\lambda}$ and sets $K_{0}=\mathrm{iO}\left(1^{\lambda}, C_{0}\right)$ to Alice and $K_{1}=$ iO $\left(1^{\lambda}, C_{1, \alpha, \beta}\right)$ to Bob where functionality of the circuits C_{0} and C_{1} are described as follows $C_{0}(x) \doteq F_{K}(x)$ and $C_{1, \alpha, \beta}(x)=F_{k}(x)$ if $x \neq \alpha$; otherwise if $x=\alpha$ we have $C_{1, \alpha, \beta}(x)=$ $F_{K}(x) \oplus \beta$. Consider the following security game: The attacker fixes $\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right)$ and a role $i \in\{0,1\}$ (indicating whether the attacker plays the role of Alice/Bob) and sends these values to the challenger. The challenger picks a random coin b, sets $(\alpha, \beta)=\left(\alpha_{b}, \beta_{b}\right)$ and then generates $K_{0}=\mathrm{iO}\left(C_{0}\right)$ and $K_{1}=\mathrm{iO}\left(C_{1, \alpha, \beta}\right)$ and sends K_{i} back the the attacker. Finally, the attacker outputs a guess b^{\prime}. The attacker wins if $b^{\prime}=b$ and we use $\operatorname{WIN}_{\mathcal{A}}(\lambda)$ to denote the event that the attacker \mathcal{A} wins when using securing parameter λ. The advantage of an attacker \mathcal{A} over random guessing is denoted $\operatorname{ADV}_{\mathcal{A}}(\lambda)=\operatorname{Pr}\left[\mathrm{WIN}_{\mathcal{A}}(\lambda)\right]-\frac{1}{2}$. We say that the DPF is secure if all PPT attackers \mathcal{A} there exists a negligible function $\mu(\lambda)$ upper bounding $\operatorname{ADV}_{\mathcal{A}}(\lambda)$.

Part A. (5 points) Explain how Alice and Bob can locally generate their shares of $f_{\alpha, \beta}(x)$ given any input x.

```
Answer:
```

Part B. (25 points) Prove that DPF construction is secure according to the above distribution. You may assume that the PPRF and iO constructions are both secure.

```
Answer:
```

...

Resource and Collaborator Statement:

Question 3 (30 points)

Alice wants to design a delegated signature scheme. In particular, the delegated signature scheme should implement four PPT algorithms (KeyGen, DelegateKey, Sign, Verify). KeyGen (1 ${ }^{\lambda}$) takes as input a security parameter (λ) and outputs a secret-public key pair $(s k, p k)$ and DelegateKey $(s k, x)$ takes as input a prefix x and the secret key $s k$ and outputs a key $s k_{x}$ which can be used to sign any message of the form $m=x \| y$. $\operatorname{Sign}(s k, m)$ outputs a signature σ such that $\operatorname{Verify}(p k, \sigma, m)=1$. If $m=x \| y$ then $\operatorname{Sign}\left(s k_{x}, m\right)$ outputs a signature σ such that Verify $(p k, \sigma, m)=1$. However, if x is not a prefix of m then $\operatorname{Sign}\left(s k_{x}, m\right)=\perp$.

Selective security game: In the selective security game, we fix a target message m^{*} and then the challenger \mathcal{C} generates $(s k, p k)$ and sends $p k$ to the attacker \mathcal{A}. The attacker may make $q=\operatorname{poly}(\lambda)$ queries to DelegateKey $(s k,$.$) but may not submit a query x_{i}$ which is a prefix of m^{*}. The game ends when the attacker outputs an attempted forgery for m^{*}. The scheme is secure, if for all PPT attackers there is a negligible function upper bounding the probability that the attacker wins.

Part A. Use indistinguishability obfuscation to design a secure delegated signature scheme according to the above game.

Answer:
...

Part B. Prove that your construction is secure according to the above definition of selective security.

> Answer:
...

$$
\begin{aligned}
& \text { Resource and Collaborator Statement: } \\
& \quad \ldots
\end{aligned}
$$

