Homework 3 Due date: Tuesday, April 11, 2023 at 11:59PM (Gradescope)

Question 1 (40 points)

Let $N = 2^n$ and define the "Powers of Two Graph" (a folklore construction of a depth-robust graph) $G_n = (V, E)$ with nodes V = [N] and the edge $E = \{(i-2^j, i) : i \leq N \text{ and } i-2^j \geq 1\}$.

Part A. We say that a node $v \leq N$ is α -forward good with respect to a set S of deleted nodes, if for all r > 0 the interval [v, v + r - 1] contains at most $\alpha \times r$ nodes in S. Suppose that v is α -forward good and let U(j) denote the number of nodes in the interval $[v, v + 2^j - 1]$ that are not reachable from v in $G_n - S$. Similarly, let s_j denote the number of deleted nodes in the interval $[v, v + 2^j - 1]$. Use induction to prove that $U(j) \leq \sum_{i=0}^j s_i 2^{j-i} \leq j 2^j \alpha$.

Answer:

Part B. Suppose that $2^j < r < 2^{j+1}$. Show that at least $r - 2(j+1)r\alpha$ nodes in [v, v + r - 1] are reachable from v in $G_n - S$.

Answer:

Part C. We say that a node $w \leq N$ is α -backward good with respect to a set S of deleted nodes if for all $0 < r \leq w$ the interval [w - r + 1, w] contains at most $\alpha \times r$ nodes in S. Show that if node w is α -backward good and node v < w is α -forward good with respect to S with $\alpha = 0.01/n$ then there is a directed path connecting v to w in $G_n - S$.

Answer:

Part D. Show that G_n is (e, d)-depth robust with $e = \Omega(N/n)$ and $d = \Omega(N)$ and lower bound the cumulative pebbling cost $\mathsf{CC}(G_n)$.

Answer:

Part E. Assume that G is (e, d)-depth-robust with e > d. Suppose that we delete |S| = e/2 nodes from G. Show that the graph G - S contains at least e/(2d) node disjoint paths of length d. (**Hint:** To get started, let $S_0 = S$ and let $S_1 = S_0 \cup P$ where P is a directed path in $G - S_0$ containing exactly d nodes.)

Answer:

Part F. We say that a directed graph G = (V = [N], E) is (e, d, f)-fractionally depth-robust if for any subset $|S| \leq e$ of at most e nodes there is a subset $T \subseteq [N] \setminus S$ of $|T| \geq f$ nodes such that for every node $v \in T$ the graph G - S contains a directed path of length d ending at node v. Supposing that $N = 2^n$ and G is $(\Omega(N), \Omega(N/n))$ -depth robust show that G is (e, d, f)-fractionally depth-robust with $e = \Omega(N), d = \Omega(N/n)$ and $f = \Omega(N)$. (**Hint:** You should used what you proved in part E to get started.)

Answer:

Part G. Suppose that G is (e, d, f)-fractionally depth-robust and consider the pebbling challenge game used in the analysis of Proofs of Space. In particular, suppose that Alice can place e' < e pebbles on the graph G and then a challenger asks Alice to place pebbles on randomly selected nodes v_1, \ldots, v_k . Alice can place pebbles in parallel, but is not finished until she has placed pebbles on *all* of the challenge nodes v_1, \ldots, v_k . Upper bound the probability that Alice can complete the challenge within d' < d steps.

Answer:

Resource and Collaborator Statement:

Question 2 (30 points)

Recall that a point function $f_{\alpha,\beta}(x)$ outputs β if $x = \alpha$ and $f_{\alpha,\beta}(x) = 0$ otherwise. Consider the following construction of a distributed point function. The setup algorithm picks a random Puncturable PRF key $K \in \{0,1\}^{\lambda}$ and sets $K_0 = \mathbf{i0}(1^{\lambda}, C_0)$ to Alice and $K_1 = \mathbf{i0}(1^{\lambda}, C_{1,\alpha,\beta})$ to Bob where functionality of the circuits C_0 and C_1 are described as follows $C_0(x) \doteq F_K(x)$ and $C_{1,\alpha,\beta}(x) = F_k(x)$ if $x \neq \alpha$; otherwise if $x = \alpha$ we have $C_{1,\alpha,\beta}(x) = F_K(x) \oplus \beta$. Consider the following security game: The attacker fixes $(\alpha_0, \beta_0), (\alpha_1, \beta_1)$ and a role $i \in \{0, 1\}$ (indicating whether the attacker plays the role of Alice/Bob) and sends these values to the challenger. The challenger picks a random coin b, sets $(\alpha, \beta) = (\alpha_b, \beta_b)$ and then generates $K_0 = \mathbf{i0}(C_0)$ and $K_1 = \mathbf{i0}(C_{1,\alpha,\beta})$ and sends K_i back the the attacker. Finally, the attacker outputs a guess b'. The attacker wins if b' = b and we use $WIN_{\mathcal{A}}(\lambda)$ to denote the event that the attacker \mathcal{A} wins when using securing parameter λ . The advantage of an attacker \mathcal{A} over random guessing is denoted $ADV_{\mathcal{A}}(\lambda) = Pr[WIN_{\mathcal{A}}(\lambda)] - \frac{1}{2}$. We say that the DPF is secure if all PPT attackers \mathcal{A} there exists a negligible function $\mu(\lambda)$ upper bounding $ADV_{\mathcal{A}}(\lambda)$.

Part A. (5 points) Explain how Alice and Bob can locally generate their shares of $f_{\alpha,\beta}(x)$ given any input x.

Answer:			

Part B. (25 points) Prove that DPF construction is secure according to the above distribution. You may assume that the PPRF and i0 constructions are both secure.

Answer:

. . .

. . .

Resource and Collaborator Statement:

Question 3 (30 points)

Alice wants to design a delegated signature scheme. In particular, the delegated signature scheme should implement four PPT algorithms (KeyGen, DelegateKey, Sign, Verify). KeyGen (1^{λ}) takes as input a security parameter (λ) and outputs a secret-public key pair (sk, pk) and DelegateKey(sk, x) takes as input a prefix x and the secret key sk and outputs a key sk_x which can be used to sign any message of the form m = x||y. Sign(sk, m) outputs a signature σ such that Verify $(pk, \sigma, m) = 1$. If m = x||y then Sign (sk_x, m) outputs a signature σ such that Verify $(pk, \sigma, m) = 1$. However, if x is not a prefix of m then Sign $(sk_x, m) = \bot$.

Selective security game: In the selective security game, we fix a target message m^* and then the challenger C generates (sk, pk) and sends pk to the attacker A. The attacker may make $q = poly(\lambda)$ queries to DelegateKey(sk, .) but may not submit a query x_i which is a prefix of m^* . The game ends when the attacker outputs an attempted forgery for m^* . The scheme is secure, if for all PPT attackers there is a negligible function upper bounding the probability that the attacker wins.

Part A. Use indistinguishability obfuscation to design a secure delegated signature scheme according to the above game.

Answer:		

Part B. Prove that your construction is secure according to the above definition of selective security.

Answer:

Resource and Collaborator Statement:

4