Homework 1
 Due date: February 7, 2023 at 11:59PM (Gradescope)

Question 1

Let $F_{K}(m)=H(K, m)$ for some hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$. Supposing that we model H as a random oracle and that $K \in_{R}\{0,1\}^{\lambda}$ is selected randomly. Prove that F_{K} is a (t, q, ϵ)-secure PRF in which the adversary is bounded in time t, q is the number of queries to the random oracle and ϵ is the advantage of the adversary to break the security of PRF. Try to make your bounds as tight as possible.
(Note: $H(K, \cdot)$ is a random function. While the attacker does not know K the attacker can also query the oracle $H(\cdot, \cdot)$ with any key K^{\prime}. Your security analysis should account for this.)

```
Answer:
```


Resource and Collaborator Statement:

Question 2

Consider the fixed-length MAC scheme $\mathbb{M A C}_{K}(m)=F_{K}(m)$ where $F:\{0,1\}^{\lambda_{1}} \times\{0,1\}^{n} \rightarrow$ $\{0,1\}^{\lambda_{2}}$ is a PRF, $K \in\{0,1\}^{\lambda_{1}}$ is the secret key and $m \in\{0,1\}^{n}$ is the message being authenticated. We present two versions of the MAC security game below. In both security games, the challenger picks a random λ_{1}-bit key K for a (t, q, ϵ)-secure $\operatorname{PRF} F_{K}:\{0,1\}^{\lambda_{1}} \times$ $\{0,1\}^{n} \rightarrow\{0,1\}^{\lambda_{2}}$. Assume that for all t, q, λ the PRF is (t, q, ϵ)-secure for $\epsilon=\frac{t+q}{2^{\lambda_{1}}}$.

Version 1

The standard MAC security from slides i.e., the attacker can submit as many queries to the MAC oracle $\mathbb{M A C}_{K}(\cdot)$ as he wants before outputting an attempted forgery. The attacker wins if this is a forgery for a new message i.e., not queries to the $\mathbb{M} \mathbb{A} \mathbb{C}_{K}(\cdot)$. We say that the MAC scheme is $\left(t, q_{1}, \epsilon\right)$-secure if any attacker running in time t and making at most q_{1} queries to the $\mathbb{M A C}_{K}(\cdot)$ can forge with advantage ϵ.

Version 2

The attacker can intersperse multiple queries to the MAC oracle $\mathbb{M A} \mathbb{C}_{K}(\cdot)$ with multiple queries to a verification oracle $\mathbb{V E} \mathbb{R}_{K}(\cdot, \cdot)$ where K is a random key picked by the challenger. The verification oracle takes a message m and a tag τ as input, and outputs 1 if $\tau=$ $\mathbb{M A} \mathbb{C}_{K}(m)$; otherwise 0 . The attacker immediately wins the game if any query (m, τ) to the verification oracle is valid and the message is fresh i.e., we had not queried $\mathbb{M A} \mathbb{C}_{K}(m)$
before. We say that the MAC scheme is $\left(t, q_{1}, q_{2}, \epsilon\right)$-secure if any attacker running in time t, making at most q_{1} (resp. q_{2}) queries to the MAC (resp. verification) oracle wins the above forgery game with probability at most ϵ.

Part A. Prove the tightest bound on MAC security under Version 1.
Part B. Prove the tightest bound on MAC security under Version 2.
Part C. Discuss the impact of key length (λ), tag length $\left(\lambda_{2}\right)$ and message length n on security in both settings. In some settings, it can be desirable to have short MAC tags e.g., $\lambda_{2}=32$ bits. What security guarantees can be provided under this setting (if any)?

Question 3

In AES-GCM the authentication tag is produced using the GHASH function. In particular, the final authentication tag is $E_{K}(N) \oplus G H A S H(H, A, C)$ where N is the initial nonce, A is the associated data and C is the ciphertext blocks, $H=E_{K}\left(0^{\lambda}\right)=E_{K}\left(0^{128}\right)$ (here we set $\lambda=128)$ and $\operatorname{GHASH}(H, A, C)$ is defined as follows. We say $\operatorname{GHASH}(H, A, C)=X_{m+n+1}$ where the variable X_{i} for all $i=0, \ldots, m+n+1$ is defined as follows where m (resp. n) is the number of 128 -bit blocks in A (resp. C) (rounded up).

First, the associated data and the ciphertext are separately zero-padded to multiples of 128 bits and combined into a single message S_{i} which is computed as follows.

$$
S_{i}=\left\{\begin{array}{cc}
A_{i} & \text { for } i=1, \ldots, m-1 \tag{1}\\
A_{m}^{*} \| 0^{128-v} & \text { for } i=m \\
C_{i-m} & \text { for } i=m+1, \ldots, m+n-1 \\
C_{n}^{*}| | 0^{128-u} & \text { for } i=m+n \\
\operatorname{Len}(A)| | \operatorname{Len}(C) & \text { for } i=m+n+1
\end{array}\right.
$$

in which we have $\operatorname{Len}(A)$ and $\operatorname{Len}(C)$ are 64 -bit representation of bit lengths of the associated data A and the ciphertext C, respectively, $v=\operatorname{Len}(A) \bmod 128$ as the bit length of the last block of the associated data A and similarly $u=\operatorname{Len}(C) \bmod 128$ as the bit length of the final block of the resulting ciphertext C. We highlight that $x \| x^{\prime}$ denotes the concatenation of two bit strings x, x^{\prime}.

As the last step, we have

$$
X_{i}=\sum_{j=1}^{i} S_{j} \cdot H^{i-j+1}=\left\{\begin{array}{cc}
0 & \text { for } i=0 \\
\left(X_{i-1} \oplus S_{i}\right) \cdot H & \text { for } i=1, \ldots, m+n+1
\end{array}\right.
$$

Consider the following modifications of AES-GCM. For each modification explain whether this version of AES-GCM is secure or not. You may assume that AES-GCM is an ideal cipher.

1. Set $H=E_{K}(N-1)$ and compute the tag as $E_{K}(N) \oplus \operatorname{GHASH}(H, A, C)$ where N was our initial nonce. Is the modified version of AES-GCM secure?
2. Pick H randomly and include it as part of the secret key. Compute the tag as $E_{K}(N) \oplus$ $G H A S H(H, A, C)$ as before.
3. Compute the tag as $\operatorname{RO}(A, C)$ where $\mathrm{RO}:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ is a random oracle.
4. Compute the tag as $\mathrm{RO}(K, A, C)$.

Answer:
...

Resource and Collaborator Statement:
...

Question 4

Suppose we are given a random oracle $H:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ and we want to find a triple collision i.e., distinct inputs x, y, z such that $H(x)=H(y)=H(z)$. Design an algorithm to find a triple collision. Your algorithm can only use space $S=2^{\frac{\lambda}{4}} \times(3 \lambda)$ and should succeed with probability at least $\frac{1}{100}$. For full credit, you should attempt to minimize the total number of queries to the random oracle subject to the above constraints.

Answer:
...

Resource and Collaborator Statement:
...

