
CS 655-Spring 2023

Homework 1
Due date: February 7, 2023 at 11:59PM (Gradescope)

Question 1
Let FK(m) = H(K,m) for some hash function H : {0, 1}∗ → {0, 1}λ. Supposing that we
model H as a random oracle and that K ∈R {0, 1}λ is selected randomly. Prove that FK is
a (t, q, ε)-secure PRF in which the adversary is bounded in time t, q is the number of queries
to the random oracle and ε is the advantage of the adversary to break the security of PRF.
Try to make your bounds as tight as possible.

(Note: H(K, ·) is a random function. While the attacker does not know K the attacker
can also query the oracle H(·, ·) with any key K ′. Your security analysis should account for
this.)

Answer:
…

Resource and Collaborator Statement:
…

Question 2
Consider the fixed-length MAC scheme MACK(m) = FK(m) where F : {0, 1}λ1 ×{0, 1}n →
{0, 1}λ2 is a PRF, K ∈ {0, 1}λ1 is the secret key and m ∈ {0, 1}n is the message being
authenticated. We present two versions of the MAC security game below. In both security
games, the challenger picks a random λ1-bit key K for a (t, q, ε)-secure PRF FK : {0, 1}λ1 ×
{0, 1}n → {0, 1}λ2 . Assume that for all t, q, λ the PRF is (t, q, ε)-secure for ε = t+q

2λ1
.

Version 1

The standard MAC security from slides i.e., the attacker can submit as many queries to the
MAC oracle MACK(·) as he wants before outputting an attempted forgery. The attacker
wins if this is a forgery for a new message i.e., not queries to the MACK(·). We say that
the MAC scheme is (t, q1, ε)-secure if any attacker running in time t and making at most q1
queries to the MACK(·) can forge with advantage ε.

Version 2

The attacker can intersperse multiple queries to the MAC oracle MACK(·) with multiple
queries to a verification oracle VERK(·, ·) where K is a random key picked by the challenger.
The verification oracle takes a message m and a tag τ as input, and outputs 1 if τ =
MACK(m); otherwise 0. The attacker immediately wins the game if any query (m, τ) to
the verification oracle is valid and the message is fresh i.e., we had not queried MACK(m)

1

before. We say that the MAC scheme is (t, q1, q2, ε)-secure if any attacker running in time t,
making at most q1 (resp. q2) queries to the MAC (resp. verification) oracle wins the above
forgery game with probability at most ε.

Part A. Prove the tightest bound on MAC security under Version 1.

Part B. Prove the tightest bound on MAC security under Version 2.

Part C. Discuss the impact of key length (λ), tag length (λ2) and message length n on security
in both settings. In some settings, it can be desirable to have short MAC tags e.g.,
λ2 = 32 bits. What security guarantees can be provided under this setting (if any)?

Question 3
In AES-GCM the authentication tag is produced using the GHASH function. In particular,
the final authentication tag is EK(N) ⊕ GHASH(H,A,C) where N is the initial nonce, A
is the associated data and C is the ciphertext blocks, H = EK(0

λ) = EK(0
128) (here we set

λ = 128) and GHASH(H,A,C) is defined as follows. We say GHASH(H,A,C) = Xm+n+1

where the variable Xi for all i = 0, . . . ,m+ n+ 1 is defined as follows where m (resp. n) is
the number of 128-bit blocks in A (resp. C) (rounded up).

First, the associated data and the ciphertext are separately zero-padded to multiples of
128 bits and combined into a single message Si which is computed as follows.

Si =


Ai for i = 1, . . . ,m− 1

A∗
m||0128−v for i = m
Ci−m for i = m+ 1, . . . ,m+ n− 1

C∗
n||0128−u for i = m+ n

Len(A)||Len(C) for i = m+ n+ 1

(1)

in which we have Len(A) and Len(C) are 64-bit representation of bit lengths of the
associated data A and the ciphertext C, respectively, v = Len(A) mod 128 as the bit length
of the last block of the associated data A and similarly u = Len(C) mod 128 as the bit
length of the final block of the resulting ciphertext C. We highlight that x||x′ denotes the
concatenation of two bit strings x, x′.

As the last step, we have

Xi =
i∑

j=1

Sj ·H i−j+1 =

{
0 for i = 0(

Xi−1 ⊕ Si

)
·H for i = 1, . . . ,m+ n+ 1

Consider the following modifications of AES-GCM. For each modification explain whether
this version of AES-GCM is secure or not. You may assume that AES-GCM is an ideal cipher.

1. Set H = EK(N − 1)and compute the tag as EK(N)⊕GHASH(H,A,C) where N was
our initial nonce. Is the modified version of AES-GCM secure?

2. Pick H randomly and include it as part of the secret key. Compute the tag as EK(N)⊕
GHASH(H,A,C) as before.

2

3. Compute the tag as RO(A,C) where RO : {0, 1}∗ → {0, 1}λ is a random oracle.

4. Compute the tag as RO(K,A,C).

Answer:
…

Resource and Collaborator Statement:
…

Question 4
Suppose we are given a random oracle H : {0, 1}∗ → {0, 1}λ and we want to find a triple
collision i.e., distinct inputs x, y, z such that H(x) = H(y) = H(z). Design an algorithm
to find a triple collision. Your algorithm can only use space S = 2

λ
4 × (3λ) and should

succeed with probability at least 1
100

. For full credit, you should attempt to minimize the
total number of queries to the random oracle subject to the above constraints.

Answer:
…

Resource and Collaborator Statement:
…

3

