
CS 580-Spring 2019
Instructor: Jeremiah Blocki
TAs: Hamidreza Amini Khorasgani, Akash Kumar
I collaborated with (...). I affirm that I wrote the solutions in my own
words and that I understand the solutions I am submitting.
Name:

Homework 6
Due Date: April 23, 2019 at 11:59 PM on Gradescope.

Question 1

Given a graph G a triangle consists of a triple {u, v, w} such that all three edges {u, v}, {v, w}, {u,w} ∈
E(G) are in the graph. Let T (G) = {{u, v, w} : {u, v}, {v, w}, {u,w} ∈ E(G)} denote the
set of all triangles in G. We say that a subset S ⊆ V (G) is a triangle cover if for each triangle
t = {u, v, w} ∈ T (G) we have t∩S 6= ∅ i.e., S contains at least one of the three nodes u, v, w.
In the weighted version of the triangle cover problem we have a weight w(v) ≥ 0 associated
with each node v and we define w(S)

.
=
∑

v∈S w(v). The goal is find a triangle cover with
minimum weight.

1. Consider the unweighted version of the problem in which w(v) = 1 for every node v.
Find an algorithm that runs in time T (n, k) = O

(
3k × n10

)
where k is the size of the

minimum triangle cover. (Note: You might find a solution that is faster than the
given bound. The key requirement is that the dependence on n must be polynomial).

2. Find a 3-approximation algorithm for the weighted triangle cover problem. Your al-
gorithm should run in polynomial time and should output a triangle cover S with the
guarantee that w(S) ≤ 3× w(S∗) where S∗ denotes the optimal triangle cover.

Question 2

The Geography on Graphs Game is defined as follows: Given a directed graph G = (V,E)
and a start node s, two players alternate turns by following, if possible, an edge out of the
current node to an unvisited node. The player who loses is the first one who cannot move
to a node that hasnt been visited earlier. In other words, a player loses if it is his turn, the
game is currently at node v and for each directed edges of the form (v, w) ∈ E the node w
has already been visited. The Tripartite Geography on Graphs Game is defined in the same
way except that the input graph G must satisfy the property that the nodes V (G) can be
partitioned into sets A,B,C and E(G) ⊆ (A×B)∪ (C×A)∪ (B×C) i.e. any edge starting
at A ends in B, any edge starting in B ends in C and any edge starting in C ends in A. The
decision version of the problem is to decide whether or not player 1 can force a win with
optimal play.

1. Suppose that the graph G has no directed cycles. Show that the Geography on a Graph
decision problem is solvable in polynomial time.

2. Prove that the Tripartite Geography on Graph decision problem is PSPACE-Complete.
You may assume that the regular Geography on Graphs Game is PSPACE-Hard.

1



Question 3

It is NP-Hard to find a 3-coloring of a G (or determine that no 3-coloring exists). In this
problem we will design an polynomial time algorithm that is guaranteed to either output a
legal 4

√
n-coloring of the graph G or determine that G is not 3-colorable.

1. (Warmup) Begin by showing that any graph with maximum degree d can be colored
using d + 1 colors. (Hint: Go Greedy!)

2. Let v denote a vertex in G with deg(v) ≥
√
n. Call v a heavy vertex. Show that it is ei-

ther the case that (1) the subgraph G[N(v)] induced on N(v) = {u : u is adjacent to v}
is bipartite, or (2) the graph G is not 3-colorable.

3. Using the previous observation develop an algorithm which outputs a 4
√
n-coloring (or

determines that G is not 3-colorable). (Hint: As a first step try to eliminate all heavy
vertices.)

Bonus (5 points) Extend the previous ideas to design an polynomial time algorithm which is guaranteed
to either output a legal O

(
n1−1/k)-coloring of the graph G or determine that G is not

k-colorable for any constant k = O(1).

Question 4

The difficulty in 3-SAT comes from the fact that there are 2n possible assignments to the
input variables x1, x2, . . . , xn, and there’s no apparent way to search this space in polynomial
time. This intuitive picture, however, might create the misleading impression that the fastest
algorithms for 3-SAT actually require time 2n. In fact, though it’s somewhat counterintuitive
when you first hear it, there are algorithms for 3-SAT that run in significantly less than 2n

time in the worst case; in other words, they determine whether there’s a satisfying assignment
in less time than it would take to enumerate all possible settings of the variables.

Here well develop one such algorithm, which solves instances of 3-SAT in O(p(n) · (
√

3)n)
time for some polynomial p(n). Note that the main term in this running time is (

√
3)n,

which is bounded by 1.74n.

(a) For a truth assignment Φ for the variables x1, x2, . . . , xn, we use Φ(xi) to denote the
value assigned by Φ to xi. (This can be either 0 or 1.) If Φ and Φ′ are each truth
assignments, we define the distance between Φ and Φ′ to be the number of variables
xi for which they assign different values, and we denote this distance by d(Φ,Φ′). In
other words, d(Φ,Φ′) = |{i : Φ(xi) 6= Φ′(xi)}|.
A basic building block for our algorithm will be the ability to answer the following
kind of question: Given a truth assignment Φ and a distance d, we’d like to know
whether there exists a satisfying assignment Φ′ such that the distance from Φ to Φ′ is
at most d. Consider the following algorithm, Explore(Φ, d), that attempts to answer
this question.

Prove that Explore(Φ, d) returns “yes” if and only if there exists a satisfying assignment
Φ′ such that the distance from Φ to Φ′ is at most d. Also, give an analysis of the running
time of Explore(Φ, d) as a function of n and d.

2



Algorithm 1 Explore(Φ, d)

1: if Φ is a satisfying assignment then
2: return “yes”
3: else if if d = 0 then
4: return “no”
5: else
6: Let Ci be a clause that is not satisfied by Φ (i.e., all three terms in Ci evaluate to

false)
7: Let Φ1 denote the assignment obtained from Φ by taking the variable that occurs in

the first term of clause Ci and inverting its assigned value
8: Define Φ2 and Φ3 analogously in terms of the second and third terms of the clause Ci

9: Recursively invoke: Explore(Φ1, d− 1), Explore(Φ2, d− 1), Explore(Φ3, d− 1)
10: if any of these three calls return “yes” then
11: return “yes”
12: else
13: return “no”
14: end if
15: end if

(b) Clearly any two assignments Φ and Φ′ have distance at most n from each other, so
one way to solve the given instance of 3-SAT would be to pick an arbitrary starting
assignment Φ and then run Explore(Φ, n). However, this will not give us the running
time we want.

Instead, we will need to make several calls to Explore, from different starting points Φ,
and search each time out to more limited distances. Describe how to do this in such a
way that you can solve the instance of 3-SAT in a running time of only O(p(n) ·(

√
3)n).

Bonus (10 points)

The Hitting Set problem is similar to the Set Cover problem. An instance is given by a list
S1, . . . , Sn ⊆ 1, ,m = U of n subsets of a universe U of size |U | = m. In the Set Cover
problem we want to find a minimum size subset of sets S ⊆ 1, , n which covers the universe
U i.e.,

⋃
i∈S Si = U . In the Hitting Set problem we are given an absolute upper bound k

on the number of sets in S and we are asked to maximize the number of elements covered
by S i.e., |Covered(S)| where Covered(S) =

⋃
i∈S Si. In the Weighted Hitting Set problem

there is a weight w(u) for each item u ∈ U we are asked to find S with |S| ≤ k maximizing
score(S) =

∑
x∈Covered(S) w(x). The search version of the Weighted Hitting Set problem is

NP-Hard (you dont need to prove this).

1. Let V ∗ = Covered(S∗) denote the items covered by the optimal solution the Weighted
Hitting Set problem|S∗| ≤ k. Given another hitting set solution P ⊆ {1, . . . , n} we
define Uncovered(V ∗, P )

.
= V ∗ \Covered(P ) to be the set of items covered by S∗ but

not by P . We let uwP =
∑

x∈Uncovered(V ∗,P ) w(x) denote the total weight of uncovered

3



elements in V ∗. Show that for any subset P ( {1, . . . , n} there exists some j 6∈ P s.t.∑
i∈Sj∩Uncovered(V ∗,P ) w(i) ≥ uwP

k
.

2. Develop a greedy algorithm that always returns a weighted hitting set solution S such
that score(S) ≥ (1 − 1/e) × score(S∗). (Hint: Go greedy! You may use without
proof the fact that (1− 1/k)k <= e−1 for all integers k, x > 0. )

4


