
CS 580-Spring 2019
Instructor: Jeremiah Blocki
TAs: Hamidreza Amini Khorasgani, Akash Kumar
I collaborated with (...). I affirm that I wrote the solutions in my own
words and that I understand the solutions I am submitting.

Homework 4
Due Date: March 8, 2019 at 11:59PM on Gradescope.

Question 1

1. Use Dinic’s algorithm to compute the maximum flow of the graph below. You should
show the level graph/blocking flow after every step of the algorithm. If you find that it
saves time you may scan handwritten pictures. (Alternatively, you may also copy-paste
the LaTeX source for the graph below)

s b c t

a

d

f

g

3 6 5

10
1

2

5

1
2

2

8

6

2

3

5

4

Figure 1: Flow Network

2. What is the minimum capacity s-t cut for the above flow network?

Question 2

1. Suppose we are given a bipartite graph G = (V = (L,R), E) where the left nodes
L = {u1, . . . , un} and the right nodes are R = {v1, . . . , vn} we want to determine
whether or not a perfect matching M∗ ⊆ E exists with |M∗| = n. Further suppose
that G contains the edge {ui, vi} ∈ E for each i ≤ n − log n, but for i > n − log n it
may or may not be the case that {ui, vi} ∈ E. Develop an O(|E| log n) time algorithm
to determine whether or not a perfect matching exists and explain why your algorithm
is correct.

2. Suppose that G does not have a perfect matching. Extend your algorithm from the
previous part to produce a short certificate C with |C| = O(n) which proves that G

1

does not have a perfect matching. You should also develop a linear time algorithm
A which validates the certificate in time O(|E| + n). You should prove that A(C,G)
always accepts honestly produced certificates (those output by your algorithm), but
that if G does have a perfect matching then for any certificate C A(C,G) always
rejects.

Question 3 (Network flow with taxation)

Recall that in the standard network flow problem we required that the for each vertex v
(excluding the source s and sink t) the sum of the flow into that vertex is equal to the
sum of flow out of that vertex. Suppose that we replace this conservation constraint with a
taxation constraint. In particular, suppose each vertex represents a country and that each
country v /∈ {s, t} has an associated tax-rate 0 < tv < 1 meaning that country v will keep
tv fraction of the goods flowing through node v. Given a flow network G = (V,E) with
maximum capacities c(e) on each edge e ∈ V and tax rates tv for each node v /∈ {s, t} our
goal is to find the maximum amount of goods that can be transported from s to t under these
taxation constraints. Write down a LP to solve this problem. You should explain why your
linear program is correct. (Note: A good explanation will always include a clear/intuitive
description of each variable and each constraint.)

Question 4

Suppose that we order the edge relaxations in each pass of the Bellman-Ford algorithm
as follows. Before the first pass, we assign an arbitrary linear order v1, v2, . . . , v|V | to the
vertices of the input graph G = (V,E). Then, we partition the edge set E into Ef∪Eb, where
Ef = {(vi, vj) ∈ E : i < j} and Eb = {(vi, vj) ∈ E : i > j}. (Assume that G contains no
self-loops, so that every edge is in either Eb or Ef). Define Gf = (V,Ef) and Gb = (V,Eb).

• Prove that Gf is acyclic with topological sort 〈v1, v2, . . . , v|V |〉 and that Gb is acyclic
with topological order 〈v|V |, v|V |−1, . . . , v1〉.

• Suppose that we implement each pass of the Bellman-Ford algorithm in the following
way. We visit each vertex in the order v1, v2, . . . , v|V | relaxing edges of Ef that leave
the vertex. We then visit each vertex in the order v|V |, v|V |−1, . . . , v1 relaxing edges of
Eb that leave the vertex.

• Prove that with this scheme, if G contains no negative-weight cycles that are reachable
from the source vertex s, then after only d|V |/2e passes over the edges, v.d = δ(s, v)
for all vertices v ∈ V . (Here, δ(s, v) represents the length of the shortest path from s
to v and v.d represents the distance we have computed in the algorithm.)

• Does this scheme improve the asymptotic running time of the Bellman-Ford algorithm?

2

(Bonus) 10 points

A set of positive integers P = {a1, a2, . . . , an} is given. Give an algorithm which out-
puts two subsets of P , S1 and S2 such that S1 ∪ S2 = P and S1 ∩ S2 = ∅ and d :=∣∣∣∑ai∈S1

ai −
∑

aj∈S2
aj

∣∣∣ is minimum (If S = ∅, we define
∑

ai∈S ai = 0). Your algorithm

should run in time O(nM) where M =
∑n

i=1 ai represents the summation of all numbers in
the set P .

3

