CS 580-Spring 2019 Instructor: Jeremiah Blocki TAs: Hamidreza Khorasgani, Akash Kumar I collaborated with (...). I affirm that I wrote the solutions in my own words and that I understand the solutions I am submitting.

Homework 1 Due Date: January 24, 2019 at 11:59PM on Gradescope.

Question 1

- 1. Show the following using induction. Consider the following graph $H_n = (V_n, E_n)$. Its vertex set is $V_n = \{0, 1\}^n$ that is every bitstring of length n is a vertex. A pair of vertices $u, v \in \{0, 1\}^n$ is connected by an edge (i.e., $\{u, v\} \in E_n$) if u and v differ in exactly one bit. For example, if n = 3 then u = (0, 0, 0) and v = (1, 0, 0) would be connected by an edge, but v and w = (1, 1, 1) were not connected by an edge. Use the principle of mathematical induction to show that the number of edges in the graph is $|E_n| = n2^{n-1}$.
- 2. *n* friends get together at a bar. It takes exactly 3 friends to participate in a cheer. Various (not necessarily all) triples of friends engage in cheers. For an individual x we use CheerCount(x) to denote the number of times individual x participates in a cheer. For $i \in \{0, 1, 2\}$, let $S_i = \{x : i = CheerCount(x) \mod 3\}$ denote the set of people x that have cheered i times or i + 3 times or i + 6 times etc... For example, if individual x participated in 8 cheers then $x \in S_2$ and if individual y participated in 12 cheers then $y \in S_0$. Show that the number $2|S_2| + |S_1|$ is a multiple of 3.

Question 2

Consider an instance I of the stable marriage problem with n men and n women. For a person (man or woman) x with preference list P_x define $P_x(1/2)$ to be the first n/2 persons (women/men) in the list P_x (to simplify notation we will assume that n is even). Suppose that we use Gale Shapley algorithm to find a stable matching. If a person (man or woman) x is paired off with another person $y \in P_x(1/2)$, the Gale Shapley matching is said to be good for x. Show that there is at least one person x such that Gale-Shapley matching is good for x. You may not make any assumptions about the preference lists.

Question 3

In class we introduced big-O notation $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n))$ and $f(n) \in \Theta(g(n))$. In computer science it is also common to use "little-o" notation. In particular, we say that $f(n) \in o(g(n))$ if for all positive constants c > 0 there exists a number N such that for all $n \ge N$ it holds that $f(n) < c \times g(n)$. Similarly, we say that $f(n) \in \omega(g(n))$ if for all positive constants c > 0 there exists a number N such that $f(n) \ge c \times g(n)$.

Formally prove or disprove each of the following claims. You may assume that for all $n \ge 2^{2^{2019}}$ we have $f(n) \ge 1$ and $g(n) \ge 1$.

- 1. $h(n) \in \Theta(\max\{f(n)^2, g(n)^2\})$ where $h(n) = f(n) \times g(n)$
- 2. $f(n) \in o(g(n))$ if and only if $g(n) \in \omega(f(n))$.
- 3. If $h(n) \in \Theta(\log n)$ where $h(n) = \ln f(n)$ then $f(n) \in O(n)$.
- 4. Suppose that $f(n) \in \omega(1)$ then $f(n) \in o(f(n)^2)$.
- 5. If $f(n) \notin O(g(n))$ then $g(n) \in O(f(n))$.
- 6. $f(n) \in o(g(n))$ implies that $h(n) \in O(2^{g(n)})$ where $h(n) = 2^{f(n)}$.
- 7. If $f(n) \in \Theta(h(n))$ and $g(n) \in o(h(n))$ then $f(n) \in \omega(g(n))$.

Question 4

Suppose that an *n*-node undirected graph G = (V, E) contains two nodes *s* and *t* such that the distance between *s* and *t* is strictly greater than n/2. Show that there exists some node $v \neq s, t$ such that deleting *v* from *G* destroys *all* paths from *s* to *t*. Give an algorithm running in time O(n + m) to find such a node.