4/25/2019

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcements: Homework 6 and Practice Final Exam Solutions Posted

Course Evaluation Survey: Live until Sunday (4/28/2019) at 11:59PM. Your feedback
is valued!

Final Exam Logistics

« Time: Monday, April 29t at 8AM
* Location: PHYS 223 (adjacent building to FRNY)
* Duration: 2 hours

« Content: Cumulative, but more heavily focused on recent topics
(e.g., PSPACE, Approximation Algorithms, Randomized Algorithms,
Local Search etc...)

* No Electronics (calculator/phone/laptop/smartwatch etc...)

* Index Cards: We will allow you to bring two 3x5 index cards
(double side:

* Advice: Don’t expect to rely too heavily on your index card.
« Effort spent preparing the index cards will likely be most beneficial.

* Practice Exam (Partial Solutions)

Practice Problem 1 (MAX SAT)

* MAX SAT (n variables, k clauses)
* Each clause can have 1,2 or more literals

 Part A: Show that a random assignment satisfies at least
k/2 clauses in expectation.

Practice Problem 1

* MAX SAT (n variables, k clauses)
« Each clause can have 1,2 or more literals
* Part B: Suppose that we disallow directly contradictory
clauses e.g., if C = {x} is a clause then we cannot include
the clause C' = {¥}. Modify the random assignment such
that we satisfy at least 0.6k clauses in expectation.

» Tempting Idea: If (resp. {X}) is a clause then set x = 1
(resp. x = 0).
* Counter Example?

Practice Problem 1

* MAX SAT (n variables, k clauses)
* Each clause can have 1,2 or 3 literals
* Part B: Suppose that we disallow directly contradictory
clauses e.g., if C = {x} is a clause then we cannot include the
clause C' = {i}. Modify the random assignment such that we
satisfy at least 0.6k clauses in expectation.

* Tempting Idea: If {x} (resp. {x}) is a clause then set x = 1
(resp. x = 0).

* Counter Example? {x},{V},{Z},{x,y},{x,z},{y,z}

Practice Problem 1

* MAX SAT (n variables, k clauses)
* Each clause can have 1,2 or more literals

* Part B: Suppose that we disallow directly contradictory clauses e.g., if C = {x}isa

clause then we cannot include the clause ¢’ = {x}. Modify the random
assignment such that we satisfy at least 0.6k clauses in expectation.

* More Refined Analysis: Let y; (denote the number of clauses with exactly i
literals).
* Observe thatk = ¥, y;
* Linearity of Expectation: We satisfy%y1 + %yz + %y3 +o=k— Zi%clauses in
expectation
* Ify, < 0.6k then this s at least 3 0.6k + 0.4k = 0.6k clauses in expectation
* What do we do otherwise?

4/25/2019

Practice Problem 2

« Greedy Vertex Cover Algorithm

BuildVertexCover(G=(V,E))
* Initialize § = {}
* Find the node v with maximum degree in G
* Recursively find a vertex cover S’ for the graph G — {v}
« S' = BuildVertexCover(G — {v})
* Return S = S’ U {v}

« True or False: Greedy Vertex Cover always returns the optimal vertex
cover?

Practice Problem 2

« True or False: Greedy Vertex Cover always returns the optimal vertex
cover?

Practice Problem 2

* True or False: Greedy Vertex Cover always returns the optimal vertex
cover?

Practice Problem 2

« True or False: Greedy Vertex Cover always returns the optimal vertex
cover?

* Answer: False. Greedy returns vertex cover of size 4. OPT = 3.

Practice Problem 2’

* Greedy Triangle Cover Algorithm
BuildTriangleCover(G=(V,E))
* Initialize § = {}
 Find the node v incident to maximum number of triangles in G
* Recursively find a vertex cover S’ for the graph G — {v}
+ S' = BuildTriangleCover(G — {v})
* Return S = S" U {v}

* True or False: Greedy Triangle Cover always returns the optimal
triangle cover?

Practice Problem 2
* True or False: Greedy Triangle Cover always returns the optimal

triangle cover?.
Incident to k triangles J .

|
Incident to 2 triangles

Incident to 3 triangles

4/25/2019

Practice Problem 2

« True or False: Greedy Triangle Cover always returns the optimal
triangle cover?.

L)
°o oo
o e

~
Ny
cident to 1 triangle

Practice Problem 2

« True or False: Greedy Triangle Cover always returns the optimal

triangle cover?

\}

opT=k

o’

O;P,Q
® o .’Q"
o Q‘

k+1 nodes in greedy triangle cover

Practice Problem 3 (Approximate Median)

Suppose we are presented with a very large set S of n = |S]| distinct real
numbers and we want to approximate the median of these numbers
sampling. We say that a real number x is an € —approxima dian of S if
at Ieast%— — &) numbers in S are less than x and at least (numbers
inS are glz'eater than x.

Suppose that we sub-sample k = pomts V1, e, Vi € S from S (with
replacement) and compute the medlan Ymea Of these points.

Given that 0 < & < = show that the probability ymgd is not an
& —approximate median of S is at most Y = 0.0001

Hint1: (1 —¢) (5)k > Efor positive numbers k > 0 when 0 < € < %
Hint2: e710 < g = 0.00005 for positive numbers k > 0 when 0 < ¢ < i

Practice Problem 3 (Approximate Median)

* Suppose that we sub-sample k = pomts V1, -, Yk € S from S (with
replacement) and compute the medlan Ymea Of these points.

* What is the probability that y,,.4 is an approximate median of S?

* Definition: Let X;oy st (resp. Xpignese) denote the smallest (resp.
largest) in § WhIC?\ is an € —approximate median.

* Introduce Random Variable: z; which is 1 if and only if y; = xjgese
« Observation 1: E[z;] = Pr[z; = 1] = %+ A
* Observation 2:

Pr[ymed = Xiowest] = Pr lz

NlW‘

Kk
k
=1-Pr Zzi<5
i=1

Practice Problem 2 (Approximate Median)

— Theorem. Suppose X, _, X, are independent 0-1 randem variables
Let X = X;+ _ + X, Then for any s < E[X] and for any 0« 5 « 1, we have

PrlX<(1-d)u] < e #'?

Theorem. Suppose X;, _.. X, are independent O-1 random variables. Let
Xz X+ _ + X, Then for any = E[X] and for any 5> 0, we hove

PX

Practice Problem 3 (Approximate Median)

* Suppose that we sub-sample k = pomts Y1, ., Yk € S from S (with
replacement) and compute the medlan Ymea Of these points.
* Introduce Random Variable: z; which is 1 if and only if y; > xjopest

* Observation 1: E[z;] = Pr[z; = 1] = %+ €
* Observation 2: Pr[ymed = Xjowest] = 1 — Pr [Z};l z; < lz(]
« Chernoff Bound: 1 = G+£)k —>§S ul—¢)

X k X &2y -2k y
PrZzi<E sPrZzi<y(1—e) <ezZ <e 4 59*10:2
i=1 i=1

. 1 3
Hint 1: (1—8)(;+€)k ngor
positive numbers k > 0 when 0 < & <%

4/25/2019

Practice Problem 3 (Approximate Median)

* Suppose that we sub-sample k = — pomts V1, -, Yk € S from S (with
replacement) and compute the metian Ymea of these points.

* Introduce Random Variable: z; which is 1 if and only if y; > xjopest
* Observation 1: E[z;] = Pr[z; = 1] = %+ £
* Observation 2: Pr[yyeq = Xiowest] = 1 — Pr [2%‘:1 z; < g]
* Conclusion:

_ Y
Pr[Ymed = Xiowest] 2 1 — €710 =1)

Similar Argument:

-)4
Pr[Ymed < Xnighese] = 1 — €710 =1 -3

Practice Problem 3 (Approximate Median)

* Suppose that we sub-sample k = —2 points ¥y, ..., yx € S from S
(with replacement) and compute tfie median Y,q of these points.

* Introduce Random Variable: z; which is 1 if and only if y; <
Xhighest

* Observation 1: E[z;] = Pr[z; = 1] = l+ 3
* Observation 2: Prymeq < Xpighest| = 1 — Pr [Zl 1% <]
* Chernoff Bound: y = —+£>k—> <u(1—e)

-2k
Pr[Zzl<— <PrIZzl<u(1—g) <e =5 <e & =e 10

Practice Problem 3 (Approximate Median)

* Conclusion

k -10
Pr[Ymed < Xnighest] = 1 —Pr 5 <3 <1-e

M=

i=1
-10
pr[Ymed = Xlowest] =1l-e

Pr[ymeq is not € — appx] < 2e~1°< 0.0001

Practice with ZPP and RP

* Notation: Given a randomized algorithm A we writey = A(x; R) to
denote the output of A on input x fixing the random coins to be R.

« ZPP: A language X is in ZPP if there is an probabilistic polynomial time
algorithm A such that for all inputs x and all random strings R we

have Pr[A(x;R) =1|x € X] =1and Pr[A(x;R) =0 |x ¢ X] = 1.

* Show that ZPP & NP

* Certificate for x € X: random string R such that T(x; R) < p(|x])
* T(x; R) denotes running time of <A on input x with fixed random coins R
* Probabilistic polynomial time => E[T(x)] < p(|x|) = Short R exists

Random Variable: Running time of A on input x

Practice with ZPP and RP

* Show that ZPP € NP

* Certificate for x € X: random string R such that T(x; R) < p(|x])
* T(x; R) denotes running time of A on input x with fixed random coins R
* Probabilistic polynomial time = E[T(x)] < p(|x|) = Short R exists

* Certifier runs A (x; R) for p(|x])
 If A(x; R) returns 1 then output 1 (accept the proof that x € X)
« If A(x; R) returns 0 then output O (reject the proof that x € X)
* If A(x; R) does not halt then output 0 (reject the proof that x € X)

Practice with ZPP and RP

* Show that ZPP S coNP?

« Certificate for x & X: random string R such that T(x; R) < p(|x])
* T(x; R) denotes running time of <A on input x with fixed random coins R
* Probabilistic polynomial time > E[T(x)] < p(|x|) = Short R exists

* Certifier runs A (x; R) for p(|x|)
« If A(x; R) returns 1 then output 0 (reject the proof that x & X)
* If A(x; R) returns 0 then output 1 (accept the proof that x & X)
* If A(x; R) does not halt then output O (reject the proof that x & X)

4/25/2019

Practice with ZPP and RP

* Show that RP € NP?

* Alanguage X is in RP if there is an polynomial time algorithm A such that
for alllinputs x and all random strings R we have Pr[A(x;R) = 1|x €
X] Zzand PrlA(x;R)=0|x ¢ X] =1.

* Remark 1: For all x, R we have T(x; R) < p(|x]) (polynomial time)

* Remark 2: One sided error. Allowed make mistakes when x € X (but not
when x € X).

* Certificate: R such that A(x; R) = 1
* Claim: If x X there is no valid certificate. Why?

More Complexity Theory
« Suppose that NP=PSPACE. Does it follow that NP=coNP?
« Answer: YES! PSPACE is closed under complementation.

* Though Question: What other complexity classes are closed under
complementation?

ZPP and RP

* Notation: Given a randomized algorithm A we write y = A(x; R) to
denote the output of A on input x fixing the random coins to be R.

* Running time is T(x; R) with fixed random coins R

. Re_lmark: Once x and R are fixed the output of A(x; R) is deterministic as
is ;

* By Contrast, A (x) and T(x) are both random variables.

* Probabilistic Polynomial Time: For all inputs x

* E[T()] < p(IxD

* ZPP: A language X is in ZPP if there is an probabilistic polynomial time

algorithm A such that for all inputs x and all random strings R we have
Prg[c/l(x;R) =1|x€X]=1andPr[A(x;R) = lee)ﬁ =1

Feasible Subset Sum

* Feasible Subset Sum
* Input: Set A = {ay, ..., a, } of positive integers and a positive integer B > 0.
* Feasible Subset: S c A is feasible if Yxesx < B.
* Goal: Find feasible subset S € A maximizing ¥ yes X
* Example: A = {8,2,4}and B = 11 =» S = {8,2} is optimal.
* Greedy Algorithm:
* Initialize: S={}
* Fori=1,..,n
* Ifa;+ Yyesx < B thenupdate S = S U {a;}
* Part 1: Give an instance where greedy algorithm (above) is not a 2-
approximation.

Feasible Subset Sum

* Greedy Algorithm:

« Initialize: S={}

* Fori=1,..,n

* Ifa; + Yyesx < B then update S = S U {a;}
* Part 1: Give an instance where greedy algorithm
(above) is not a 2-approximation.

* Example: A = {2,8}and B =9

* Greedy Solution: S = {2}, but optimal is S "= {8} (four

times better)

Feasible Subset Sum

* Feasible Subset Sum
* Input: Set A = {a,, ..., an} of positive integers and a positive integer
B> 0.

* Feasible Subset: S c A is feasible if ¥y egx < B.
* Goal: Find feasible subset § € A maximizing ¥ es X
* Example: A = {8,2,4}and B = 11 = S = {8,2} is optimal.
* Greedy Algorithm:
« Initialize: S={}
* Fori=1,..,n
* Ifa; + ¥yes X < B then update S = S U {a;}
* Part 2: Modify the above algorithm to yield a 2-approximation.

4/25/2019

Feasible Subset Sum

* Greedy Algorithm:

* Assumption we have eliminated any a; > B

* SortA = {a,,..,an} sothata, > a, ..
* Initialize: So={}
* Fori

. If u['lnzxesu X < Bthen update S; = S;_; U {a}; otherwise S; = S;_;
* Analysis: We claim that either S, = A or T yeg, X =2
* Proof: If S, # A we let j be first index such that a; + ers, ,X>B.
* Caseliq; < B we haverEs L X>B—a;>=> ﬁzxgsnx >
+ Case2:a; > —then we already added some earller item a; > a =
Z x>a;> 7

XESy

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses Cj, ..., Cy
over variables x, ..., x, with the restriction that for each
variable x; its negation X; is never used in any clause.

« Decision Problem 1: Does ¢ have a satisfying assignment?

* Question 1: Is there a polynomial time algorithm to solve
decision problem 1?

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses
Cy, ..., C, over variables x, ..., x, with the restriction that
for each variable X;j its negation X; is never used in any
clause.

* Decision Problem 2: Does ¢ have a satisfying assignment in
which at most k-variables are set to 1?

* Question 2: Show that this second decision problem is NP-
Complete.

* Step 1?

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses C;, ..., Cj, over
variables x;, ..., X, with the restriction that for each variable x; its
negation X; is never used in any clause.

« Decision Problem 2: Does ¢ have a satisfying assignment in
which at most k-variables are set to 1?

* Question 2: Show that this second decision problem is NP-
Complete.

« Step 1: Show that decision problem 2 is in NP.
* Witness: satisfying assignment with at most k-variables set to 1.

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses Cj, ..., Cy
over variables x4, ..., X, with the restriction that for each
variable x; its negation X; is never used in any clause.

« Decision Problem 2: Does ¢ have a satisfying assignment in
which at most k-variables are set to 1?

* Question 2: Show that this second decision problem is NP-
Complete.

* Step 2: Reduction from known NP-Complete Problem
* Hint: Try vertex cover

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses Cj, ..., Cj, over
variables x;, ..., x, with the restriction that for each variable x; its
negation ; is never used in any clause.

* Decision Problem 2: Does ¢ have a satisfying assignment in which
at most k-variables are set to 1?

* Question 2: Show that this second decision problem is NP-
Complete.

« Step 2: Reduction from known NP-Complete Problem
* Vertex Cover Instance: (G,k)
* Monotone 3-SAT Formula: ¢

4/25/2019

Monotone Satisfiability Problem

* A monotone 3-SAT formula ¢ is specified by clauses Cj, ..., Cy over
variables x;, ..., X, with the restriction that for each variable x; its
negation X; is never used in any clause.

* Decision Problem 2: Does ¢ have a satisfying assignment in which at
most k-variables are set to 1?

* Question 2: Show that this second decision problem is NP-Complete.

« Step 2: Reduction from known NP-Complete Problem
* Vertex Cover Instance: (G k)

* Monotone 3-SAT Formula: ¢

. Ad{d Variable x,, for each node and clause C, = {x,, x,,} for each edge
e={u,v,

Monotone Satisfiability Problem

« Step 2: Reduction from known NP-Complete Problem
* Vertex Cover Instance: (G,k)

* Monotone 3-SAT Instance f(G,k): ¢, and k
* Build ¢;: Add Variable x;, for each node and clause C, =
{xy, x,,} for each edge e={u,v}
* Claim 1: If G has a vertex cover of size k then ¢; has a
satisfying assignment in which at most k variables are true.
* Proof: Let S be vertex cover and then set x,, = 1 for each node u €

S. For each clause C, we either have u € S or v € S and hence the
clause is satisfied.

Monotone Satisfiability Problem

* Step 2: Reduction from known NP-Complete Problem
* Vertex Cover Instance: (G k)

* Monotone 3-SAT Instance f(G,k): ¢; and k
* Build ¢;: Add Variable x,, for each node and clause C, = {x,, x,,} for
each edge e={u,v}
* Claim 2: If ¢ has a satisfying assignment in which at most k
variables are true then G has a vertex cover of size k.
* Proof: Given satisfying assignment we define a vertex cover S in
which we add u € S'if and only if x,, = 1. For each clause C, we
either have x,, = 1 or x,, = 1 and hence each edge e is covered by S.

More Reductions

* Suppose that we have a polynomial time Karp reduction from decision
problem X to decision problem Yi.e X <p Y.

* Which of the following claims are necessarily true?
If Y is in PSPACE then X is in PSPACE

If Y is PSPACE-Complete then X is in PSPACE

If Y is NP-Complete then X is NP-Complete

If Y is NP-Complete then X is NP-Hard

If X is NP-Complete then Y is NP-Complete

If Y isin P then Xisin P

If Yis in ZPP then X is in ZPP.

GmMmoUoO®>

