CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

ents: Homework 6 and Practice Final Exam Solutions Posted

Course Evaluation Survey: Live until Sunday (4/28/2019) at 11:59PM, Your feedback is valued!

Final Exam Logistics

- Time: Monday, April 29th at 8AM
- Location: PHYS 223 (adjacent building to FRNY)
- Duration: 2 hours
- Content: Cumulative, but more heavily focused on recent topics (e.g., PSPACE, Approximation Algorithms, Randomized Algorithms, Local Search etc...)
- No Electronics (calculator/phone/laptop/smartwatch etc...)
- Index Cards: We will allow you to bring two 3x5 index cards (double sided)

 - Advice: Don't expect to rely too heavily on your index card.
 Effort spent preparing the index cards will likely be most beneficial.
- Practice Exam (Partial Solutions)

Practice Problem 1 (MAX SAT)

- MAX SAT (n variables, k clauses)
 - Each clause can have 1,2 or more literals
- Part A: Show that a random assignment satisfies at least k/2 clauses in expectation.

Practice Problem 1

- MAX SAT (n variables, k clauses)
 - · Each clause can have 1,2 or more literals
- Part B: Suppose that we disallow directly contradictory clauses e.g., if $C=\{x\}$ is a clause then we cannot include the clause $C'=\{\bar{x}\}$. Modify the random assignment such that we satisfy at least 0.6k clauses in expectation.
- Tempting Idea: If (resp. $\{\bar{x}\}$) is a clause then set x=1 (resp. x=0).
- Counter Example?

Practice Problem 1

- MAX SAT (n variables, k clauses) • Each clause can have 1,2 or 3 literals
- Part B: Suppose that we disallow directly contradictory clauses e.g., if $C=\{x\}$ is a clause then we cannot include the clause $C'=\{\bar{x}\}$. Modify the random assignment such that we satisfy at least 0.6k clauses in expectation.
- Tempting Idea: If $\{x\}$ (resp. $\{\bar{x}\}$) is a clause then set x=1(resp. x = 0).
- Counter Example? $\{\bar{x}\},\{\bar{y}\},\{\bar{z}\},\{x,y\},\{x,z\},\{y,z\}$

Practice Problem 1

- MAX SAT (n variables, k clauses)
 Each clause can have 1,2 or more literals
- Part B: Suppose that we disallow directly contradictory clauses e.g., if $C=\{x\}$ is a clause then we cannot include the clause $C'=\{\bar{x}\}$. Modify the random assignment such that we satisfy at least 0.6k clauses in expectation.
- More Refined Analysis: Let y_i (denote the number of clauses with exactly i literals). Observe that $\mathbf{k} = \sum_i y_i$

 - Linearity of Expectation: We satisfy $\frac{1}{2}y_1+\frac{3}{4}y_2+\frac{7}{8}y_3+\cdots=k-\sum_i\frac{y_i}{2^i}$ clauses in expectation $\text{If }y_1\leq 0.6k \text{ then this is at least }\frac{1}{2}0.6k+\frac{3}{4}0.4k=0.6k \text{ clauses in expectation.}$

Practice Problem 2

• Greedy Vertex Cover Algorithm

BuildVertexCover(G=(V,E))

- Initialize $S = \{\}$
- Find the node v with maximum degree in G
- Recursively find a vertex cover S' for the graph $G-\{v\}$
- $S' = \text{BuildVertexCover}(G \{v\})$
- Return $S = S' \cup \{v\}$
- True or False: Greedy Vertex Cover always returns the optimal vertex cover?

Practice Problem 2

• True or False: Greedy Vertex Cover always returns the optimal vertex cover?

Practice Problem 2

• True or False: Greedy Vertex Cover always returns the optimal vertex cover?

Practice Problem 2

• True or False: Greedy Vertex Cover always returns the optimal vertex cover?

• Answer: False. Greedy returns vertex cover of size 4. OPT = 3.

Practice Problem 2'

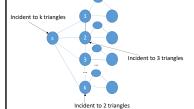
• Greedy **Triangle** Cover Algorithm

BuildTriangleCover(G=(V,E))

- Initialize $S = \{\}$
- Find the node v incident to maximum number of **triangles** in G
 - Recursively find a vertex cover S' for the graph $G \{v\}$
 - $S' = \text{BuildTriangleCover}(G \{v\})$
 - $\bullet \ \ \mathsf{Return} \ \mathcal{S} = \mathcal{S}' \cup \{v\}$
- True or False: Greedy Triangle Cover always returns the optimal triangle cover?

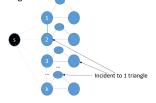
Practice Problem 2

 True or False: Greedy Triangle Cover always returns the optimal triangle cover?



Practice Problem 2

• True or False: Greedy Triangle Cover always returns the optimal triangle cover?



Practice Problem 2

• True or False: Greedy Triangle Cover always returns the optimal

Practice Problem 3 (Approximate Median)

- Suppose we are presented with a very large set S of n=|S| distinct real numbers and we want to approximate the median of these numbers by sampling, We say that a real number x is an ε -approximate median of S if at least $\begin{pmatrix} 1 & \varepsilon \\ 2 & -\varepsilon \end{pmatrix}$ numbers in S are less than x and at least $\begin{pmatrix} 1 & \varepsilon \\ 2 & -\varepsilon \end{pmatrix}$ numbers in S are less than x and at least $\begin{pmatrix} 1 & \varepsilon \\ 2 & -\varepsilon \end{pmatrix}$ numbers in S are less than x and at least $\begin{pmatrix} 1 & \varepsilon \\ 2 & -\varepsilon \end{pmatrix}$ numbers in S are less than x and at least $\begin{pmatrix} 1 & \varepsilon \\ 2 & -\varepsilon \end{pmatrix}$ numbers in S are less than S and S are less than S are less than S and S are less than S and S are less than S are less than S and S are less than S and S are less than S and S are less than S are less than S and S are less than S are less than S are less than S and S are less than S are less than S and S are less than S and S are less than S and S are less than S are less than S and S are l in S are greater than x.
- Suppose that we sub-sample $k=\frac{40}{2}$ points $y_1,...,y_k\in S$ from S (with replacement) and compute the median y_{med} of these points.
- Given that $0 < \varepsilon < \frac{1}{2}$ show that the probability y_{med} is not an ε –approximate median of S is at most $\gamma = 0.0001$.
- Hint 1: $(1-\varepsilon)\left(\frac{1}{2}+\varepsilon\right)k\geq \frac{k}{2}$ for positive numbers k>0 when $0<\varepsilon<\frac{1}{2}$
- Hint 2: $e^{-10} \le \frac{\gamma}{2} = 0.00005$ for positive numbers k > 0 when $0 < \varepsilon < \frac{1}{2}$

Practice Problem 3 (Approximate Median)

- Suppose that we sub-sample $k=\frac{100}{6}$ points $y_1,...,y_k \in S$ from S (with replacement) and compute the median y_{med} of these points.

 What is the probability that y_{med} is an approximate median of S?

 Definition Let x_{med} (see x_{med})
- **Definition**: Let x_{lowest} (resp. $x_{highest}$) denote the smallest (resp. largest) in S which is an ε —approximate median.
- Introduce Random Variable: z_i which is 1 if and only if $y_i \ge x_{lowest}$
- Observation 1: $\mathrm{E}[z_i] = \Pr[z_i = 1] = \frac{1}{2} + \varepsilon$

$$\begin{aligned} & \text{Pr}[y_{\text{med}} \geq x_{\text{lowest}}] = \text{Pr}\left[\sum_{i=1}^{k} z_i \geq \frac{k}{2}\right] = 1 - \text{Pr}\left[\sum_{i=1}^{k} z_i < \frac{k}{2}\right] \end{aligned}$$

Practice Problem 2 (Approximate Median)

Theorem. Suppose $X_1,...,X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \le E[X]$ and for any $0 < \delta < 1$, we have $\Pr[X < (1-\delta)\mu] < e^{-\delta^2 \mu/2}$ Theorem. Suppose $X_1,...,X_n$ are independent 0-1 random variables. Let $X=X_1+...+X_n$. Then for any $\mu \geq E[X]$ and for any $\delta>0$, we have $\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]$

Practice Problem 3 (Approximate Median)

- Suppose that we sub-sample $k=\frac{100}{e^2}$ points $y_1,\dots,y_k\in S$ from S (with replacement) and compute the median y_{med} of these points.
 Introduce Random Variable: z_i which is 1 if and only if $y_i\geq x_{lowest}$
- Observation 1: $E[z_i] = Pr[z_i = 1] = \frac{1}{2} + \varepsilon$
- $\begin{array}{l} \bullet \text{ Observation 2: } \Pr[y_{med} \geq x_{lowest}] = 1 \Pr\left[\sum_{i=1}^k z_i < \frac{k}{2}\right] \\ \bullet \text{ Chernoff Bound: } \mu = \left(\frac{1}{2} + \varepsilon\right)k \rightarrow \frac{k}{2} \leq \mu(1-\varepsilon) \\ \end{array} \\ \begin{array}{l} \text{Hint 1: } (1-\varepsilon)\left(\frac{1}{2} + \varepsilon\right)k \geq \frac{k}{2} \text{ for positive numbers } k > 0 \text{ when } 0 < \varepsilon < \frac{1}{2} \\ \end{array}$

$$\Pr\left[\sum_{i=1}^k z_i < \frac{k}{2}\right] \leq \Pr\left[\sum_{i=1}^k z_i < \mu(1-\epsilon\;)\right] \leq e^{\frac{-\epsilon^2 \mu}{2}} \leq e^{\frac{-\epsilon^2 k}{4}} \leq e^{-10} = \frac{\gamma}{2}$$

Practice Problem 3 (Approximate Median)

- Suppose that we sub-sample $k=\frac{100}{g}$ points $y_1,...,y_k\in S$ from S (with replacement) and compute the median y_{med} of these points.
- Introduce Random Variable: z_i which is 1 if and only if $y_i > x_{lowest}$
- Observation 1: $E[z_i] = Pr[z_i = 1] = \frac{1}{2} + \varepsilon$
- Observation 2: $\Pr[y_{\text{med}} \ge x_{\text{lowest}}] = 1 \Pr\left[\sum_{i=1}^{k} z_i < \frac{k}{2}\right]$
- Conclusion:

$$Pr[y_{\text{med}} \ge x_{\text{lowest}}] \ge 1 - e^{-10} = 1 - \frac{\gamma}{2}$$

Similar Argument:

et:

$$\Pr[y_{\text{med}} \le x_{\text{highest}}] \ge 1 - e^{-10} = 1 - \frac{\gamma}{2}$$

Practice Problem 3 (Approximate Median)

- Suppose that we sub-sample $k=\frac{100}{e^2}$ points $y_1,\ldots,y_k\in\mathcal{S}$ from S (with replacement) and compute the median y_{med} of these points.
- Introduce Random Variable: z_i which is 1 if and only if $y_i \le$
- Observation 1: $E[z_i] = Pr[z_i = 1] = \frac{1}{2} + \varepsilon$

$$\begin{split} & \bullet \text{ Observation 2: } \Pr[y_{\text{med}} \leq x_{highest}] = 1 - \Pr\left[\sum_{i=1}^k z_i < \frac{k}{2}\right] \\ & \bullet \text{ Chernoff Bound: } \mu = \left(\frac{1}{2} + \varepsilon\right)k \to \frac{k}{2} \leq \mu(1-\varepsilon) \\ & \Pr\left[\sum_{i=1}^k z_i < \frac{k}{2}\right] \leq \Pr\left[\sum_{i=1}^k z_i < \mu(1-\varepsilon)\right] \leq e^{\frac{-\varepsilon^2 \mu}{2}} \leq e^{\frac{-\varepsilon^2 k}{4}} = e^{-10} \end{aligned}$$

Practice Problem 3 (Approximate Median)

$$\Pr[y_{\text{med}} \le x_{highest}] = 1 - \Pr\left[\sum_{i=1}^{k} z_i < \frac{k}{2}\right] \le 1 - e^{-10}$$

$$Pr[y_{\text{med}} \ge x_{\text{lowest}}] \ge 1 - e^{-10}$$

$$\Pr[y_{\text{med}} \text{ is not } \varepsilon - appx] \le 2e^{-10} \le 0.0001$$

Practice with ZPP and RP

- Notation: Given a randomized algorithm \mathcal{A} we write $y = \mathcal{A}(x;R)$ to denote the output of \mathcal{A} on input x fixing the random coins to be R.
- ZPP: A language X is in ZPP if there is an probabilistic polynomial time algorithm \mathcal{A} such that for all inputs x and all random strings R we have $\Pr[\mathcal{A}(x;R)=1 \mid x \in X]=1$ and $\Pr[\mathcal{A}(x;R)=0 \mid x \notin X]=1$.
- Show that $ZPP \subseteq NP$
- Certificate for $x \in X$: random string R such that $T(x;R) \le p(|x|)$
 - T(x;R) denotes running time of $\mathcal A$ on input x with fixed random coins R• Probabilistic polynomial time \Rightarrow $\mathbf E[T(x)] \le p(|x|) \Rightarrow$ Short R exists

Random Variable: Running time of ${\mathcal A}$ on input x

Practice with ZPP and RP

- Show that $ZPP \subseteq NP$
- Certificate for $x \in X$: random string R such that $T(x; R) \le p(|x|)$
 - T(x; R) denotes running time of \mathcal{A} on input x with fixed random coins R
- Probabilistic polynomial time \rightarrow $\mathbf{E}[\mathbf{T}(x)] \leq p(|x|) \rightarrow$ Short R exists
- Certifier runs $\mathcal{A}(x;R)$ for p(|x|)
 - If $\mathcal{A}(x;R)$ returns 1 then output 1 (accept the proof that $x \in X$)
 - If $\mathcal{A}(x; R)$ returns 0 then output 0 (reject the proof that $x \in X$)
 - If $\mathcal{A}(x;R)$ does not halt then output 0 (reject the proof that $x \in X$)

Practice with ZPP and RP

- Show that $ZPP \subseteq coNP$?
- Certificate for $x \notin X$: random string R such that $T(x; R) \le p(|x|)$
 - T(x;R) denotes running time of \mathcal{A} on input x with fixed random coins R• Probabilistic polynomial time \rightarrow $\mathbf{E}[T(x)] \le p(|x|) \rightarrow$ Short R exists
- Certifier runs $\mathcal{A}(x;R)$ for p(|x|)
 - If $\mathcal{A}(x;R)$ returns 1 then output 0 (reject the proof that $x \notin X$)
 - If $\mathcal{A}(x;R)$ returns 0 then output 1 (accept the proof that $x \notin X$)
 - If $\mathcal{A}(x;R)$ does not halt then output 0 (reject the proof that $x \notin X$)

Practice with ZPP and RP

- Show that $RP \subseteq NP$?
- A language X is in RP if there is an polynomial time algorithm $\mathcal A$ such that for all inputs x and all random strings R we have $\Pr[\mathcal A(x;R)=1 \mid x \in \mathbb C]$ $|X| \ge \frac{1}{2}$ and $\Pr[\mathcal{A}(x;R) = 0 \mid x \notin X] = 1$.
- Remark 1: For all x, R we have $T(x; R) \le p(|x|)$ (polynomial time)
- Remark 2: One sided error. Allowed make mistakes when $x \in X$ (but not when $x \notin X$).
- Certificate: R such that $\mathcal{A}(x;R)=1$
- Claim: If $x \notin X$ there is no valid certificate. Why?

More Complexity Theory

- Suppose that NP=PSPACE. Does it follow that NP=coNP?
- Answer: YES! PSPACE is closed under complementation.
- Though Question: What other complexity classes are closed under complementation?

ZPP and RP

- **Notation:** Given a randomized algorithm $\mathcal A$ we write $y=\mathcal A(x;R)$ to denote the output of $\mathcal A$ on input x fixing the random coins to be R.
- Running time is T(x; R) with fixed random coins R
- Remark: Once x and R are fixed the output of $\mathcal{A}(x;R)$ is deterministic as is $\mathrm{T}(\mathcal{A};R)$.
- By Contrast, $\mathcal{A}(x)$ and T(x) are both random variables.
- Probabilistic Polynomial Time: For all inputs x
- $\mathbf{E}[T(x)] \leq p(|x|)$
- **ZPP:** A language X is in ZPP if there is an probabilistic polynomial time algorithm \mathcal{A} such that for all inputs x and all random strings R we have $\Pr[\mathcal{A}(x;R)=1 \mid x \in X]=1$ and $\Pr[\mathcal{A}(x;R)=0 \mid x \notin X]=1$

Feasible Subset Sum

- Feasible Subset Sum
 - Input: Set A = {a₁, ..., a_n} of positive integers and a positive integer B > 0.
 Feasible Subset: S ⊂ A is feasible if ∑_{x∈S} x ≤ B.
- Goal: Find feasible subset $S \subset A$ maximizing $\sum_{x \in S} x$
- Example: $A = \{8,2,4\}$ and $B = 11 \implies S = \{8,2\}$ is optimal.
- · Greedy Algorithm:
 - Initialize: S={}

 - For i=1,...,n If $a_i + \sum_{x \in S} x \le B$ then update $S = S \cup \{a_i\}$
- Part 1: Give an instance where greedy algorithm (above) is not a 2-

Feasible Subset Sum

· Greedy Algorithm:

- Initialize: S={}
- For i=1,...,n
 - If a_i + ∑_{x∈S} x ≤ B then update S = S ∪ {a_i}
- Part 1: Give an instance where greedy algorithm (above) is not a 2-approximation.
- **Example:** $A = \{2,8\}$ and B = 9
 - Greedy Solution: $S = \{2\}$, but optimal is $S^* = \{8\}$ (four times better)

Feasible Subset Sum

- Feasible Subset Sum
 - Input: Set $A=\{a_1,\dots,an\}$ of positive integers and a positive integer B>0 .
 - Feasible Subset: $S \subset A$ is feasible if $\sum_{x \in S} x \leq B$.
 - Goal: Find feasible subset $S \subset A$ maximizing $\sum_{x \in S} x$
- Example: $A = \{8,2,4\}$ and $B = 11 \implies S = \{8,2\}$ is optimal.
- · Greedy Algorithm:
 - Initialize: S={}

 - For i=1,...,n
 If $a_i + \sum_{x \in S} x \le B$ then update $S = S \cup \{a_i\}$
- Part 2: Modify the above algorithm to yield a 2-approximation.

Feasible Subset Sum

- · Greedy Algorithm:
 - Assumption we have eliminated any $a_i>B$ Sort $A=\{a_1,\dots,an\}$ so that $a_1>a_2\dots$ Initialize: $S_0=\{\}$

 - Initialize: $s_0=0$ For i=1,..., n If $a_i+\sum_{x\in S_{i-1}}x\leq B$ then update $S_i=S_{i-1}\cup\{a_i\}$; otherwise $S_i=S_{i-1}\cup\{a_i\}$ of $a_i+\sum_{x\in S_{i-1}}x\leq B$
- Analysis: We claim that either $S_n = A$ or $\sum_{x \in S_n} x \ge \frac{B}{2}$
- **Proof:** If $S_n \neq A$ we let j be first index such that $a_j + \sum_{x \in S_{j-1}} x > B$.

 - Case 1: $a_j < B$ we have $\sum_{x \in S_{j-1}} x > B a_j > \frac{B}{2} \Rightarrow \sum_{x \in S_n} x > \frac{B}{2}$ Case 2: $a_j > \frac{B}{2}$ then we already added some earlier item $a_i > a_j \Rightarrow a_j \Rightarrow$
 - $\sum_{x \in S_n} x > a_i > \frac{B}{2}$

Monotone Satisfiability Problem

- A monotone 3-SAT formula φ is specified by clauses C_1, \dots, C_k over variables $x_1, ..., x_n$ with the restriction that for each variable x_j its negation \bar{x}_j is never used in *any* clause.
- **Decision Problem 1:** Does φ have a satisfying assignment?
- Question 1: Is there a polynomial time algorithm to solve decision problem 1?

Monotone Satisfiability Problem

- A monotone 3-SAT formula arphi is specified by clauses C_1, \dots, C_k over variables x_1, \dots, x_n with the restriction that for each variable x_j its negation $\bar{x_j}$ is never used in *any*
- **Decision Problem 2:** Does φ have a satisfying assignment in which at most k-variables are set to 1?
- · Question 2: Show that this second decision problem is NP-Complete.
- Step 1?

Monotone Satisfiability Problem

- A monotone 3-SAT formula φ is specified by clauses $\mathcal{C}_1, \dots, \mathcal{C}_k$ over variables x_1, \dots, x_n with the restriction that for each variable x_i its negation \bar{x}_j is never used in any clause.
- Decision Problem 2: Does φ have a satisfying assignment in which at most k-variables are set to 1?
- Question 2: Show that this second decision problem is NP-Complete.
- Step 1: Show that decision problem 2 is in NP.
- Witness: satisfying assignment with at most k-variables set to 1.

Monotone Satisfiability Problem

- A monotone 3-SAT formula φ is specified by clauses C_1,\ldots,C_k over variables x_1,\ldots,x_n with the restriction that for each variable x_j its negation \bar{x}_j is never used in any clause.
- **Decision Problem 2:** Does φ have a satisfying assignment in which at most k-variables are set to 1?
- Question 2: Show that this second decision problem is NP-Complete.
- Step 2: Reduction from known NP-Complete Problem
- Hint: Try vertex cover

Monotone Satisfiability Problem

- A monotone 3-SAT formula φ is specified by clauses C_1,\ldots,C_k over variables x_1,\ldots,x_n with the restriction that for each variable x_j its negation $\tilde{x_j}$ is never used in any clause.
- **Decision Problem 2:** Does φ have a satisfying assignment in which at most k-variables are set to 1?
- **Question 2:** Show that this second decision problem is NP-Complete.
- Step 2: Reduction from known NP-Complete Problem
- Vertex Cover Instance: (G.k)
- Monotone 3-SAT Formula: φ_c

Monotone Satisfiability Problem

- A monotone 3-SAT formula φ is specified by clauses $\mathcal{C}_1, \dots, \mathcal{C}_k$ over variables x_1, \dots, x_n with the restriction that for each variable x_j its negation $\bar{x_j}$ is never used in any clause.
- Decision Problem 2: Does \(\phi \) have a satisfying assignment in which \(at \) most k-variables are set to 1?
- Question 2: Show that this second decision problem is NP-Complete.
- Step 2: Reduction from known NP-Complete Problem
- Vertex Cover Instance: (G,k)
- Monotone 3-SAT Formula: φ_G • Add Variable x_v for each node and clause $\ensuremath{\mathcal{C}}_e = \{x_u, x_v\}$ for each edge $e=\{u,v\}$

Monotone Satisfiability Problem

- Step 2: Reduction from known NP-Complete Problem
- Vertex Cover Instance: (G,k)
- Monotone 3-SAT Instance f(G,k): $\varphi_{\scriptscriptstyle G}$ and k
 - Build $\varphi_{\rm G}$: Add Variable x_v for each node and clause $\ C_e=\{x_u,x_v\}$ for each edge e={u,v}
- Claim 1: If G has a vertex cover of size k then $\varphi_{\mathcal{G}}$ has a satisfying assignment in which at most k variables are true.
 - Proof: Let S be vertex cover and then set $x_u=1$ for each node $u\in S$. For each clause \mathcal{C}_e we either have $u\in S$ or $v\in S$ and hence the clause is satisfied.

Monotone Satisfiability Problem

- Step 2: Reduction from known NP-Complete Problem
- Vertex Cover Instance: (G,k)
- Monotone 3-SAT Instance f(G,k): φ_G and k • Build φ_G : Add Variable x_v for each node and clause $\ C_e = \{x_u, x_v\}$ for
- - Proof: Given satisfying assignment we define a vertex cover S in which we add $u\in S$ if and only if $x_u=1$. For each clause \mathcal{C}_e we either have $x_u=1$ or $x_v=1$ and hence each edge e is covered by S.

More Reductions

- Suppose that we have a polynomial time Karp reduction from decision problem X to decision problem Y i.e $X \leq_P Y$.
- Which of the following claims are necessarily true?
- A. If Y is in PSPACE then X is in PSPACE
- B. If Y is PSPACE-Complete then X is in PSPACE
- C. If Y is NP-Complete then X is NP-Complete
- D. If Y is NP-Complete then X is NP-Hard
- E. If X is NP-Complete then Y is NP-Complete
- F. If Y is in P then X is in P
- $G. \ \ If Y is in ZPP then X is in ZPP.$