CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

7.12 Baseball Elin	nination
"See that thing in the paper last week about Eim. Some reporter asked him to figure out the math the pennant race. You know, one team wins so m remaining games, the other teams win this numbu number. What are the myriad possibilities? Whe edge?" "The hell does he know?" "Apparently not much. He picked the Dodgers to eliminate the Giants last Friday." - Don DeLillo, Underworld	stein? ematics of any of their er or that o's got the DECEMBED THE TELEME

	Team	Wins	Losses	To play		Again	st = r _{ij}	
	i	wi	l li	ri	Atl	Phi	NY	Mon
	Atlanta	83	71	8	-	1	6	1
	Philly	80	79	3	1	-	0	2
N	Jew York	78	78	6	6	0	-	0
٨	Nontreal	77	82	3	1	2	0	-

Team	Wins	Losses	To play		Again	st = r _{ij}	
i	wi	l l _i	ri	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-
:h teams have o hilly can win 83 f Atlanta loses	a chance o , but still a game, t	o <mark>f finishin</mark> eliminate hen some	ng the seas ed e other tea	on wit m wins	h most one.	wins?	

Team	Wins	Losses	To play		Again	st = r _{ij}	
	wi	l,	ri	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Nontreal	77	82	3	1	2	0	-

Remark. Answer depends not just on how many games already won and left to play, but also on whom they're against.

Team	Wins	Losses	To play		Ag	ainst =	r _{ij}	
i	wi	l _i	ri	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-
ich teams hav Detroit could	re a chan finish se	ce of fir ason wit	hishing the th 49 + 27	seaso = 76 (on with wins.	n most	wins?	ı

Ie	am	Wins	Losses	To play		Ag	ainst =	r _{ij}	
	i	wi	l _i	ri	NY	Bal	Bos	Tor	Det
N	IY	75	59	28	-	3	8	7	3
Balti	more	71	63	28	3	-	2	7	4
Bos	ton	69	66	27	8	2	-	0	0
Tor	onto	63	72	27	7	7	0	-	-
Det	roit	49	86	27	3	4	0	0	-
hich team Detroit	is have a could fini	chance sh seas	of finist on with 4	ning the se 49 + 27 = 3	ason v 76 win	vith m s.	ost wi	ns?	
Have alr Must wir	of elimin eady won at least team in l	ation. R w(R) = r(R) = 2 R wins a	R = {NY, 278 gam 27 more. t least 3	Bal, Bos, T ies. 105/4 > 76	or}	c			

If $\frac{W(T) + g(T)}{|T|} > w_z + g_z$ then z is eliminated (by subset T).

$$T \subseteq S, \quad w(T) \coloneqq \underbrace{\sum_{i \in T}^{\# \text{ wins}}}_{i \in T}, \quad g(T) \coloneqq \underbrace{\sum_{i \in T}^{\# \text{ remaining games}}}_{\{x, y\} \subseteq T},$$

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T* that eliminates z.

Proof idea. Let T^* = team nodes on source side of min cut.

• Variables: x₁,...,x_n

- Constraints: m linear inequalities in these variables (equalities are OK)
- · [Optional] Linear Objective Function

Requirement:

All the constrains are linear inequalities in variables (S,P,E)
The objective function is also linear

Example Non-Linear Constraints:

 $\begin{aligned} PE \geq 70 & E \in \{0,1\}\\ E(1-E) = 1 & \mathbf{Max}\{P,E\} \geq 20 \end{aligned}$

Finding the Optimal Point with Ellipsoid Algorithm

Goal: maximize $\sum_i w_i x_i$ (where each w_i is a constant)

- Key Idea: Binary Search for value of Optimal Solution! . Add Constraint $\sum_l w_l x_l \geq B$
- Infeasible?
- →Value of optimal solutions is less than B Feasible?
- →Value of optimal solution is at least B

Linear Programming in Practice

Many optimization packages available

- Solver (in Excel)
- · LINDO
- · CPLEX
- GUROBI (free academic license available)
- · Matlab, Mathematica

More Linear Programming Examples

Typical Operations Research Problem

Brewer's Problem: Maximize Profit

- (1 Barrel) of Ale sells for \$13, but recipe requires
- 6 pounds corn,
- 5 ounces of hops and
- 33 pounds of malt.
- (1 Barrel) of Beer sells for \$23, but recipe requires
- 16 pounds of corn
- 4 ounces of hops and
- 21 pounds of malt
- Suppose we start off with C= 480 pounds of corn, H=160 ounces of hops and M=1190 pounds of malt.
- Let A (resp. B) denote number of barrels of Ale (resp.

Beer)

41

More Linear Programming Examples

Typical Operations Research Problem

Brewer's Problem: Maximize Profit

- (1 Barrel) of Ale sells for \$15, but recipe requires
- 6 pounds corn,
- 5 ounces of hops and
- 33 pounds of malt.
- (1 Barrel) of Beer sells for \$27, but recipe requires
- 16 pounds of corn
- 4 ounces of hops and
- 21 pounds of malt
- Suppose we start off with C= 480 pounds of corn, H=160 ounces of hops and M=1190 pounds of malt.
- Let A (resp. B) denote number of barrels of Ale (resp. Beer)
- Goal: maximize 15A+27B

More Linear Programming Examples Brewer's Problem: Maximize Profit (1 Barrel) of Ale sells for \$15, but recipe requires 6 pounds corn, 5 ounces of hops and 33 pounds of malt. (1 Barrel) of Beer sells for \$27, but recipe requires 16 pounds of corn, 4 ounces of hops and 21 pounds of malt Suppose we start off with C= 480 pounds of corn, H=160 ounces of hops and M=1190 pounds of malt. Let A (resp. B) denote number of barrels of Ale (resp. Beer) Goal: maximize 15A+27B (subject to) $A \ge 0, B \ge 0$ (positive production) $6A + 16B \le C$ (Must have enough CORN) $5A + 4B \le H$ (Must have enough HOPS) $33A + 21B \le M$ (Must have enough HOPS)

		2-Play	er Zero-Sum	Games
Examp	le: Rock-Paper	-Scissors		
	Alice/Bob	Rock	Paper	Scissors
	Rock	(0,0)	(-1,1)	(1,-1)
	Paper	(1,-1)	(0,0)	(-1,1)
	Scissors	(1,-1)	(1,-1)	(0,0)
Alice v Minima you str	vins → Bob los ax Optimal St can find given ategy)	es (and vice- rategy (poss that oppone	versa) iibly randomize nt is rational (ed) best strategy (and knows your
Minim	ax Optimal for	Rock-Pape	r-Scissors : pl	ay each action
WIT	h probability 1	5.		

		2-Player	ver Zero-Sum Games				
Exam	ple : Rock-Pap	er-Scissors	Alice's View of Rewards (Bob's are reversed)				
	Alice/Bob	Rock	Paper	Scissors			
	Rock	0	-1 -1	1			
	Paper	1	0	-1			
	Scissors	-1	1	0			
Alice Minim you	wins → Bob la ax Optimal S u can find give rateav)	oses (and vice-v itrategy (possi en that opponer	versa) ibly randomiz nt is rational	ed) best strategy (and knows your			
str							

Project Selection

can be positive or negative

Projects with prerequisites.

- Set P of possible projects. Project v has associated revenue $p_{\rm v},$ some projects generate money: create interactive e-commerce interface, redesign web page
- others cost money: upgrade computers, get site license . Set of prerequisites E. If $(v,w)\in E,$ can't do project v and unless
- also do project w.
- A subset of projects A \subseteq P is feasible if the prerequisite of every project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize revenue.

