
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Recap

• Network Flow Problems
• Max-Flow Min Cut Theorem
• Ford Fulkerson

• Augmenting Paths
• Residual Flow Graph
• Integral Solutions (given integral capacities)

• Capacity Scaling Algorithm
• Dinic’s Algorithm

• Applications of Maximum Flow
• Maximum Bipartite Matching
• Marriage Theorem (Hall/Frobenius)
• Disjoint Paths [Menger’s Theorem]
• Baseball Elimination
• Circulation with Demands
• Many Others…

2

7.12 Baseball Elimination

"See that thing in the paper last week about Einstein? . . .
Some reporter asked him to figure out the mathematics of
the pennant race. You know, one team wins so many of their
remaining games, the other teams win this number or that
number. What are the myriad possibilities? Who's got the
edge?"
"The hell does he know?"
"Apparently not much. He picked the Dodgers
to eliminate the Giants last Friday."

- Don DeLillo, Underworld

4

Baseball Elimination

Which teams have a chance of finishing the season with most wins?
 Montreal eliminated since it can finish with at most 80 wins, but

Atlanta already has 83.
 wi + ri < wj  team i eliminated.
 Only reason sports writers appear to be aware of.
 Sufficient, but not necessary!

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1

5

Baseball Elimination

Which teams have a chance of finishing the season with most wins?
 Philly can win 83, but still eliminated . . .
 If Atlanta loses a game, then some other team wins one.

Remark. Answer depends not just on how many games already won and
left to play, but also on whom they're against.

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1

6

Baseball Elimination

Which teams have a chance of finishing the season with most wins?
 Philly can win 83, but still eliminated . . .
 If Atlanta loses a game, then some other team wins one.

Remark. Answer depends not just on how many games already won and
left to play, but also on whom they're against.

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1

7

Baseball Elimination

8

Baseball Elimination

Baseball elimination problem.
 Set of teams S.
 Distinguished team s  S.
 Team x has won wx games already.
 Teams x and y play each other rxy additional times.
 Is there any outcome of the remaining games in which team s

finishes with the most (or tied for the most) wins?

9

Can team 3 finish with most wins?
 Assume team 3 wins all remaining games  w3 + r3 wins.
 Divvy remaining games so that all teams have  w3 + r3 wins.

Baseball Elimination: Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1

r24 = 7  w3 + r3 - w4

team 4 can still
win this many
more games

games left



game nodes team nodes

10

Theorem. Team 3 is not eliminated iff max flow saturates all edges
leaving source.
 Integrality theorem  each remaining game between x and y added

to number of wins for team x or team y.
 Capacity on (x, t) edges ensure no team wins too many games.

Baseball Elimination: Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1



team 4 can still
win this many
more games

games left



game nodes team nodes

r24 = 7 w3 + r3 - w4

11

Baseball Elimination: Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins?
 Detroit could finish season with 49 + 27 = 76 wins.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -
Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7
NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-
0
4
3

-

AL East: August 30, 1996

12

Baseball Elimination: Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins?
 Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}
 Have already won w(R) = 278 games.
 Must win at least r(R) = 27 more.
 Average team in R wins at least 305/4 > 76 games.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -
Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7
NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-
0
4
3

-

AL East: August 30, 1996

13

Baseball Elimination: Explanation for Sports Writers

Certificate of elimination.

If then z is eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there
exists a subset T* that eliminates z.

Proof idea. Let T* = team nodes on source side of min cut.


w(T) g(T)

| T |

LB on avg # games won  

 wz  gz

T  S, w(T) : wi
iT

wins

, g(T) : gx y
{x, y}  T



remaining games  
,

14

Baseball Elimination: Explanation for Sports Writers

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists
a subset T* that eliminates z.

Proof idea. Let T* = team nodes on source side of min cut.

s

y

x tx-yr24 = 7 


wz + rz - wx

team x can still win this
many more games

games left

15

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
 Use max flow formulation, and consider min cut (A, B).
 Define T* = team nodes on source side of min cut.
 Observe x-y  A iff both x  T* and y  T*.

– infinite capacity edges ensure if x-y  A then x  A and y  A
– if x  A and y  A but x-y  T, then adding x-y to A decreases

capacity of cut

s

y

x tx-yr24 = 7 


wz + rz - wx

team x can still win this
many more games

games left

16

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
 Use max flow formulation, and consider min cut (A, B).
 Define T* = team nodes on source side of min cut.
 Observe x-y  A iff both x  T* and y  T*.


 Rearranging terms: ▪



g(S  {z})  cap(A, B)

 g(S  {z}) g(T*)
capacity of game edges leaving s  

 (wz  gz wx)
xT*


capacity of team edges leaving s  

 g(S  {z}) g(T*)  w(T*)  | T* | (wz  gz)

wz  gz  w(T*) g(T*)
| T* |

Linear Programming

• Even more general than Network Flow!

• Many Applications
• Network Flow Variants

• Taxation
• Multi-Commodity Flow Problems

• Supply-Chain Optimization
• Operations Research

• Entire Courses Devoted to Linear Programming!
• Our Focus

• Using Linear Programming as a tool to solve algorithms
problems

• We won’t cover algorithms to solve linear programs in any
depth

Motivating Example: Time Allocation

Studying (S)

18 Credit for Example: Avrim Blum

Partying (P) Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Constraints:
• [168 Hours] 𝑆 ൅ 𝑃 ൅ 𝐸 ൌ 168
• [Maintain Sanity] 𝑃 ൅ 𝐸 ൒ 70
• [Pass Courses 1] 𝑆 ൒ 60
• [Pass Courses 2] 2𝑆 ൅ 𝐸 െ 3𝑃 ൒ 150 (too little sleep, and/or

too much partying makes it more difficult to study)

Motivating Example: Time Allocation

Studying (S)

19 Credit for Example: Avrim Blum

Partying (P)
Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Constraints:
• [168 Hours] 𝑆 ൅ 𝑃 ൅ 𝐸 ൌ 168
• [Maintain Sanity] 𝑃 ൅ 𝐸 ൒ 70
• [Survive] 𝐸 ൒ 56
• [Pass Courses 1] 𝑆 ൒ 60
• [Pass Courses 2] 2𝑆 ൅ 𝐸 െ 3𝑃 ൒ 150 (too little sleep, and/or

too much partying makes it more difficult to study)
Question 1: Can we satisfy all of the constraints?

(Maintain Sanity + Pass Courses)
Answer: Yes. One feasible solution is S=80, P=20, E=68

Motivating Example: Time Allocation

Studying (S)

20

Partying (P)
Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Constraints:
• [168 Hours] 𝑆 ൅ 𝑃 ൅ 𝐸 ൌ 168
• [Maintain Sanity] 𝑃 ൅ 𝐸 ൒ 70
• [Survive] 𝐸 ൒ 56
• [Pass Courses 1] 𝑆 ൒ 60
• [Pass Courses 2] 2𝑆 ൅ 𝐸 െ 3𝑃 ൒ 150 (too little sleep, and/or

too much partying makes it more difficult to study)

Objective Function: 2𝑃 ൅ 𝐸 [Maximize Happiness]

Question 2: Can we find a feasible solution which
maximizes the objective function?

Linear Program Definition

• Variables: x1,…,xn

• m linear inequalities in these variables (equalities are OK)
• Examples

• 0 ൑ 𝑥ଵ ൑ 1
• 𝑥ଵ ൅ 𝑥ସ ൅ 3𝑥ଵ଴ െ 7𝑥ଵଵ ൑ 4
• 2𝑆 ൅ 𝐸 െ 3𝑃 ൒ 150

• [Optional] Linear Objective Function
• Example:

• maximize 4𝑥ସ ൅ 3𝑥ଵ଴

• minimize 3𝑥ଵ ൅ 3𝑥ଶ

• maximize 2𝑃 ൅ 𝐸
• Goal

• Find values for x1,…,xn satisfying all constraints, and
• Maximize the objective

• Feasibility Problem
• No objective function

21

Linear Program Definition

• Variables: x1,…,xn

• Constraints: m linear inequalities in these variables (equalities are
OK)

• [Optional] Linear Objective Function

Requirement:
• All the constrains are linear inequalities in variables (S,P,E)
• The objective function is also linear

Example Non-Linear Constraints:
𝑃𝐸 ൒ 70 𝐸 ∈ 0,1

𝐸 1 െ 𝐸 ൌ 1 𝐌𝐚𝐱ሼ𝑃, 𝐸ሽ ൒ 20

22

Linear Program Example

23 Credit for Example: Avrim Blum

Goal: Maximize 2P+E
Subject to:
• [168 Hours] 𝑆 ൅ 𝑃 ൅ 𝐸 ൌ 168
• [Maintain Sanity] 𝑃 ൅ 𝐸 ൒ 70
• [Survive] 𝐸 ൒ 56
• [Pass Courses 1] 𝑆 ൒ 60
• [Pass Courses 2] 2𝑆 ൅ 𝐸 െ 3𝑃 ൒ 150
• [Non-Negativity] 𝑃 ൒ 0

Requirement:
• All the constrains are linear inequalities in variables (S,P,E)
• The objective function is also linear

Example Non-Linear Constraints:
𝑃𝐸 ൒ 70 𝐸 ∈ 0,1

𝐸 1 െ 𝐸 ൌ 1 𝐌𝐚𝐱ሼ𝑃, 𝐸ሽ ൒ 20

Network Flow as a Linear Program

Given a directed graph G with capacities c(e) on each edge e we can use
linear programming to find a maximum flow from source s to sink t.

Variables: 𝑥௘ for each directed edge e (represents flow on edge e)

Objective: Maximize ∑ 𝑥௘௘ ௢௨௧ ௢௙ ௦

Constraints:
• (Capacity Constraints) For each edge e we have 0 ൑ 𝑥௘ ൑ 𝑐ሺ𝑒ሻ
• (Flow Conservation) For each 𝑣 ∉ ሼ𝑠, 𝑡ሽ we have

෍ 𝑥௘
௘ ௢௨௧ ௢௙ ௩

ൌ ෍ 𝑥௘
௘ ௜௡௧௢ ௩

24

Network Flow as a Linear Program

Example:

Variables: 𝑥௦ସ, 𝑥௦ଶ, 𝑥ସଶ, 𝑥ଶ௧, 𝑥ସ௧

Goal: maximize 𝑥௦ସ ൅ 𝑥௦ଶ

Subject to
• 0 ൑ 𝑥௦ସ ൑ 110
• 0 ൑ 𝑥௦ଶ ൑ 122
• 0 ൑ 𝑥ସଶ ൑ 1
• 0 ൑ 𝑥ଶ௧ ൑ 170
• 0 ൑ 𝑥ସ௧ ൑ 102

• 𝑥௦ସ ൌ 𝑥ସଶ ൅ 𝑥ସ௧ [Flow Conservation at node 4]
• 𝑥௦ସ ൅ 𝑥ସଶ ൌ 𝑥ଶ௧ [Flow Conservation at node 2]

25

110

s

4

2

t1

170

102

122

c
a
p
a
c
i
t
y

Solving a Linear Program

• Simplex Algorithm (1940s)
• Not guaranteed to run in polynomial time
• We can find bad examples, but…
• The algorithm is efficient in practice!

• Ellipsoid Algorithm (1980)
• Polynomial time (huge theoretical breakthrough), but ….
• Slow in practice

• Newer Algorithms
• Karmarkar’s Algorithm

• Competitive with Simplex
• Polynomial Time

26

Algorithmic Idea: Direction of Goodness

Goal: Maximize 2x1+3x2 c=(2,3)

27

x1

x2

Initial Feasible Point: 𝑥଴

Worse Solution: 𝑧
𝐶் · 𝑧 െ 𝑥଴ ൏ 0

Improved Solution: 𝑦
𝐶் · 𝑦 െ 𝑥଴ ൐ 0

Linear Programming

Theorem: Maximum value achieved at vertex (extreme point)

Definition: Let F be the set of all feasible points in a linear program.
We say that a point 𝑝 ∈ 𝐹 is an extreme point (vertex) if every line
segment 𝐿 ⊂ 𝐹 that lies completely in F and contains p has p as an
endpoint.

28

x1

x2
F

𝐿 ⊂ 𝐹

Linear Programming

Theorem: Maximum value achieved at vertex (extreme point)

Definition: Let F be the set of all feasible points in a linear program.
We say that a point 𝑝 ∈ 𝐹 is an extreme point (vertex) if every line
segment 𝐿 ⊂ 𝐹 that lies completely in F and contains p has p as an
endpoint.

29

x1

x2
F

𝐿 ⊂ 𝐹

Linear Programming

Theorem: Maximum value achieved at vertex (extreme point)

Definition: Let F be the set of all feasible points in a linear program.
We say that a point 𝑝 ∈ 𝐹 is an extreme point (vertex) if every line
segment 𝐿 ⊂ 𝐹 that lies completely in F and contains p has p as an
endpoint.

30

x1

x2
F

Linear Programming

Theorem: Maximum value achieved at vertex (extreme point)

Definition: Let F be the set of all feasible points in a linear program.
We say that a point 𝑝 ∈ 𝐹 is an extreme point (vertex) if every line
segment 𝐿 ⊂ 𝐹 that lies completely in F and contains p has p as an
endpoint.

31

x1

x2
F

Linear Programming

Theorem: Maximum value achieved at vertex (extreme point)

Definition: Let F be the set of all feasible points in a linear program.
We say that a point 𝑝 ∈ 𝐹 is an extreme point (vertex) if every line
segment 𝐿 ⊂ 𝐹 that lies completely in F and contains p has p as an
endpoint.

Observation: Each extreme point lies at the intersection of (at least)
two constraints.

Theorem: a vertex is an optimal solution if there is no better
neighboring vertex.

32

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

33

x1

x2

Initial Feasible Point: 𝑥଴

Improved Solution: 𝑦
𝐶் · 𝑦 െ 𝑥଴ ൐ 0

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

34

x1

x2

Feasible Point: 𝑥ଵ

Improved Solution: 𝑦
𝐶் · 𝑦 െ 𝑥଴ ൏ 0

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

35

x1

x2

Optimal Point: 𝑥ଶ

Worse Solution: 𝑦
𝐶் · 𝑦 െ 𝑥଴ ൏ 0

Ellipsoid Algorithm: Solves Feasibility Problem

36

x1

x2

Large Ellipse E Containing feasible region F ⊂E

Case 1: Center of ellipse is in F

Step 1: Find large ellipse containing feasible region

Ellipsoid Algorithm: Solves Feasibility Problem

37

x1

x2

F contained in one half of the ellipsoid
 Can find smaller ellipsoid containing F
smaller by at least a 1 െ ଵ

௡
-factor.

Case 2: Center of ellipse not in F

Step 1: Find large ellipse containing feasible region

Ellipsoid Algorithm: Solves Feasibility Problem

38

x1

x2

smaller by at least a 1 െ ଵ
௡

-factor
 Every n steps volume drops by factor (1/e)
 poly(n) iterations to find feasible point (or reject)

Case 2: Center of ellipse not in F

Step 1: Find large ellipse containing feasible region

Finding the Optimal Point with Ellipsoid Algorithm

Goal: maximize ∑ 𝑤௜𝑥௜௜ (where each 𝑤௜ is a constant)

Key Idea: Binary Search for value of Optimal Solution!
• Add Constraint ∑ 𝑤௜𝑥௜௜ ൒ 𝐵

• Infeasible?
Value of optimal solutions is less than B

• Feasible?
Value of optimal solution is at least B

39

Linear Programming in Practice

Many optimization packages available
• Solver (in Excel)
• LINDO
• CPLEX
• GUROBI (free academic license available)
• Matlab, Mathematica

40

More Linear Programming Examples

Typical Operations Research Problem

Brewer’s Problem: Maximize Profit
• (1 Barrel) of Ale sells for $13, but recipe requires

• 6 pounds corn,
• 5 ounces of hops and
• 33 pounds of malt.

• (1 Barrel) of Beer sells for $23, but recipe requires
• 16 pounds of corn
• 4 ounces of hops and
• 21 pounds of malt

• Suppose we start off with C= 480 pounds of corn, H=160
ounces of hops and M=1190 pounds of malt.

• Let A (resp. B) denote number of barrels of Ale (resp.
Beer)

41

More Linear Programming Examples

Typical Operations Research Problem

Brewer’s Problem: Maximize Profit
• (1 Barrel) of Ale sells for $15, but recipe requires

• 6 pounds corn,
• 5 ounces of hops and
• 33 pounds of malt.

• (1 Barrel) of Beer sells for $27, but recipe requires
• 16 pounds of corn
• 4 ounces of hops and
• 21 pounds of malt

• Suppose we start off with C= 480 pounds of corn, H=160
ounces of hops and M=1190 pounds of malt.

• Let A (resp. B) denote number of barrels of Ale (resp. Beer)
• Goal: maximize 15A+27B

42

More Linear Programming Examples

Brewer’s Problem: Maximize Profit
• (1 Barrel) of Ale sells for $15, but recipe requires

• 6 pounds corn, 5 ounces of hops and 33 pounds of malt.
• (1 Barrel) of Beer sells for $27, but recipe requires

• 16 pounds of corn, 4 ounces of hops and 21 pounds of malt
• Suppose we start off with C= 480 pounds of corn, H=160 ounces of

hops and M=1190 pounds of malt.
• Let A (resp. B) denote number of barrels of Ale (resp. Beer)
• Goal: maximize 15A+27B (subject to)

• 𝐴 ൒ 0, 𝐵 ൒ 0 ሺpositive productionሻ
• 6A ൅ 16𝐵 ൑ 𝐶 (Must have enough CORN)
• 5A ൅ 4𝐵 ൑ 𝐻 (Must have enough HOPS)
• 33A ൅ 21𝐵 ൑ 𝑀 (Must have enough HOPS)

43

Solving in Mathematica

Maximize[{15 A + 27 B,A>= 0, B>= 0, 6A+16B <= 480, 5A + 4B <= 160,
33A+21 B <= 1190},{A,B}]

{6060/7,{A->80/7,B->180/7}}

Profit: $865.71

44

2-Player Zero-Sum Games

Example: Rock-Paper-Scissors

Alice wins  Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy
you can find given that opponent is rational (and knows your
strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action
with probability 1/3.

45

Alice/Bob Rock Paper Scissors
Rock (0,0) (-1,1) (1,-1)
Paper (1,-1) (0,0) (-1,1)
Scissors (1,-1) (1,-1) (0,0)

2-Player Zero-Sum Games

Example: Rock-Paper-Scissors

Alice wins  Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy
you can find given that opponent is rational (and knows your
strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action
with probability 1/3.

46

Alice/Bob Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Alice’s View of Rewards
(Bob’s are reversed)

2-Player Zero-Sum Games

Example: Shooter-Goalie

47

Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Shooter scores 80% of time when shooter
aims right and goalie blocks left

Minimax Optimal Strategy (possibly randomized) best
strategy you can find given that opponent is rational (and
knows your strategy)

How can we find Minimax Optimal Strategy?

Finding Minimax Optimal Solution using Linear Programming

Variables: p1,…pn and v (pi is probability of action i)
Goal: Maximize v (our expected reward).

Constraints:
• 𝑝ଵ, … , 𝑝௡ ൒ 0
• 𝑝ଵ ൅ … ൅ 𝑝௡ ൒ 0
• For all columns j we have

෍ 𝑝௜𝑚௜௝
௜

൒ 𝑣

𝑚௜௝ denotes reward when player 1 takes action i and player 2
takes action j.

48

Expected reward when
player 2 takes
action j

Extra Slides

50

Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E: 0  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

f (e)

e in to v
  f (e)

e out of v
  d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

51

Necessary condition: sum of supplies = sum of demands.

Pf. Sum conservation constraints for every demand node v.

3

10 6

-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

Circulation with Demands

capacity

d (v)

v : d (v)  0
   d (v)

v : d (v)  0
 : D

demand

supply

52

Circulation with Demands

Max flow formulation.

G:
supply

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

53

Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity d(v).
 Claim: G has circulation iff G' has max flow of value D.

G': supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges
leaving s and entering t

demand

54

Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-
valued.

Pf. Follows from max flow formulation and integrality theorem for
max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
vB dv > cap(A, B)

Pf idea. Look at min cut in G'.
demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

55

Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).
 Edge capacities c(e) and lower bounds  (e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E:  (e)  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem with lower bounds. Given (V, E, , c, d), does
there exists a a circulation?

f (e)
e in to v
  f (e)

e out of v
  d (v)

56

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - (e) is a
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

7.8 Survey Design

58

Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ci = ci' = pi = pi' = 1.

one survey question per product

59

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation  feasible survey design.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[c1, c1']

[0, 1]

consumers

[p1, p1']

[0, ]

products

7.10 Image Segmentation

61

Image Segmentation

Image segmentation.
 Central problem in image processing.
 Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

62

Image Segmentation

Foreground / background segmentation.
 Label each pixel in picture as belonging to

foreground or background.
 V = set of pixels, E = pairs of neighboring pixels.
 ai  0 is likelihood pixel i in foreground.
 bi  0 is likelihood pixel i in background.
 pij  0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
 Accuracy: if ai > bi in isolation, prefer to label i in foreground.
 Smoothness: if many neighbors of i are labeled foreground,

we should be inclined to label i as foreground.
 Find partition (A, B) that maximizes:



a i 
i A
 bj

jB
  pij

(i, j)  E
A{i, j}  1



foreground background

63

Image Segmentation

Formulate as min cut problem.
 Maximization.
 No source or sink.
 Undirected graph.

Turn into minimization problem.

 Maximizing

is equivalent to minimizing

 or alternatively



a j 
jB
 bi

i A
  pij

(i, j)  E
A{i, j}  1





a i 
i A
 bj

jB
  pij

(i, j)  E
A{i, j}  1





a ii  V  b jj  V 
a constant

  
  ai

i A
  bj

jB
  pij

(i, j)  E
A{i, j}  1



64

Image Segmentation

Formulate as min cut problem.
 G' = (V', E').
 Add source to correspond to foreground;

add sink to correspond to background
 Use two anti-parallel edges instead of

undirected edge.

s t

pij

pij

pij

i jpij

aj

G'

bi

65

Image Segmentation

Consider min cut (A, B) in G'.
 A = foreground.

 Precisely the quantity we want to minimize.

cap(A, B)  aj 
jB
 bi 

i A
 pij

(i, j)  E
i A, jB



G'

s ti j

A

if i and j on different sides,
pij counted exactly once

pij

bi

aj

7.11 Project Selection

67

Project Selection

Projects with prerequisites.
 Set P of possible projects. Project v has associated revenue pv.

– some projects generate money: create interactive e-commerce interface,
redesign web page

– others cost money: upgrade computers, get site license
 Set of prerequisites E. If (v, w)  E, can't do project v and unless

also do project w.
 A subset of projects A  P is feasible if the prerequisite of every

project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

can be positive or negative

68

Project Selection: Prerequisite Graph

Prerequisite graph.
 Include an edge from v to w if can't do v without also doing w.
 {v, w, x} is feasible subset of projects.
 {v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible

69

Min cut formulation.
 Assign capacity  to all prerequisite edge.
 Add edge (s, v) with capacity -pv if pv > 0.
 Add edge (v, t) with capacity -pv if pv < 0.
 For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation



pv -px








py

pu

-pz



70

Claim. (A, B) is min cut iff A  { s } is optimal set of projects.
 Infinite capacity edges ensure A  { s } is feasible.
 Max revenue because:

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

pv -px



cap(A, B)  p v
vB: pv  0

  (p v)
v A: pv  0



 p v
v : pv  0


constant


 p v
v A


py

pu






A

71

Open-pit mining. (studied since early 1960s)
 Blocks of earth are extracted from surface to retrieve ore.
 Each block v has net value pv = value of ore - processing cost.
 Can't remove block v before w or x.

Open Pit Mining

v
xw

72

k-Regular Bipartite Graphs

Dancing problem.
 Exclusive Ivy league party attended by n men and n women.
 Each man knows exactly k women; each woman knows exactly k men.
 Acquaintances are mutual.
 Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching?

Ex. Boolean hypercube.

1

3

5

1'

3'

5'

2

4

2'

4'

women men

73

Theorem. [König 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in G'. Consider flow:

 f is a flow and its value = n  perfect matching. ▪

k-Regular Bipartite Graphs Have Perfect Matchings

f (u, v) 
1/k if (u, v)  E
1 if u  s or v  t
0 otherwise








1

3

5

1'

3'

5'

2

4

2'

4'

s t

1 1

1

G'

1
1/k

1
flow f

74

Census Tabulation (Exercise 7.39)

Feasible matrix rounding.
 Given a p-by-q matrix D = {dij } of real numbers.
 Row i sum = ai, column j sum bj.
 Round each dij, ai, bj up or down to integer so that sum of rounded

elements in each row (column) equals row (column) sum.
 Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

173 7 7

1310 2 1

113 1 7

16 10 15

original matrix feasible rounding

75

Census Tabulation

Feasible matrix rounding.
 Given a p-by-q matrix D = {dij } of real numbers.
 Row i sum = ai, column j sum bj.
 Round each dij, ai, bj up or down to integer so that sum of rounded

elements in each row (column) equals row (column) sum.
 Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

1.050.35 0.35 0.35

1.650.55 0.55 0.55

0.9 0.9 0.9

original matrix feasible rounding

10 0 1

21 1 0

1 1 1

76

Census Tabulation

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
 Original data provides circulation (all demands = 0).
 Integrality theorem  integral solution  feasible rounding. ▪

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5 s

1

2

3

1'

2'

3'

t

row column

17, 18

12, 13

11, 12

16, 17

10, 11

14, 15

3, 4

0, 

lower bound upper bound

