CS 580: Algorithm Design and Analysis

2/4/2019

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due tonight at 11:59PM (Gradescope)

Recap: Divide and Conquer

Karatsuba Multiplication

Multiply two n-bit integers x and y:

. Add two 3n bit integers.

- Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

T(n) = 3T(n/2) + O(n) > T(n) in O(n'383)

Generalization: Multiply (2k-1) pairs of (n/k)-bit integers
T(n) = (2k-1)T(n/k) + O(n) > T(n) in O(n'osx@k-1)
Jim (logy (2k - 1)) =1

Matrix Multiplication
Multiply two nxn matrices A and B
Multiply 7 (n/2)x(n/2) matrices
Add, Subtract and Shift to obtain result

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

el I e B YR
Po= (Ai+A)xBn
Py = (Ay+A,)xBy,

C, = PR+P-P+P; Py = Ay x(By-B)

C, = R+R P = (A;+A)x(B;+By)
C, = PP, Fo = (Ay—An)x(By +By)
Cp = R+R-P-P, Pro= (A=A x(By+Bp)

- 7 multiplications.
. 18=8+10 additions and subtractions.

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into 3n-by-3n blocks.
. Compute: 14 $n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of 2n-by-3n matrices, recursively.
. Combine: 7 products into 4 ferms using 8 matrix additions.

Analysis.
. T(n) = # arithmetic operations.

TM=7T(M/2)+ Om) = T(=6n":")=0n*")
recursive calls add, subtract
- Apply Master Theorem (a=7 b=2,c=2)
a

- (F) =41> 1 =Th) = @(n]"gb“) = @(n]"gz 7) = 0(n?8h)

Fast Matrix Multiplication: Practice

Implementation issues.

. Sparsity.

- Caching effects.

- Numerical stability.

- Odd matrix dimensions.

- Crossover to classical algorithm around n=128.

Common misperception. “Strassen is only a theoretical curiosity.”
- Apple reports 8x speedup on G4 Velocity Engine when
n =~ 2,500.
- Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues,
SVD, ...

Copyright 2000, Kevin Wayne

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?

A. Yes! [Strassen 1969] o =7y =0(n>*")
Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr 1971] o= ~0m™*)
Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible. o) =0m>")

Begun, the decimal wars have. [Pan, Bini et al, Schénhage, ...]

. Two 20-by-20 matrices with 4,460 scalar multiplications. o(n %)
« Two 48-by-48 matrices with 47,217 scalar multiplications. om0y
« A year later. om>")
. December, 1979. o213

. January, 1980. o(n 25211y

2/4/2019

Fast Matrix Multiplication: Theory

T
A S N BT 6T 7R S0 B8l 662

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n*37) [Coppersmith-Winograd, 1987]
Conjecture. O(n**¢) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

———

20 ——r—rl—r—
EoE Y N BT BT T 0 58 e

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n237) [Williams, 2014]
Conjecture. O(n**¢) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

T
A S N BT 6T 7R S0 B8l 662

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n?37%) [Le Gall, 2014]
Conjecture. O(n**) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

5.6 Convolution and FFT

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

AX) =8y +ax+a x> +o-+a, X"
B(X)= by +byx+byx* ++--+ by x"!
Add: O(n) arithmetic operations.

A(X)+ B(X)= (89 +y)+(@; +b)X ++++ (@, +b, X"

Evaluate: O(n) using Horner's method.

A(X) =89 +(x (@) +X(a +-++ X (@2 +X(@n-1))-))

Multiply (convolve): O(n?) using brute force.

2n-2 i
AX)xB(x)= X ¢ X', where ¢;= > a;b_;

i=0 j=0

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.

Y= Alx)

Copyright 2000, Kevin Wayne

2/4/2019

Polynomials: Point-Value Representation

Polynomial. [point-value representation]
AX) s (Xgs Yo)s vves Xors Yot)
B(X): (Xq5 Zg) -5 (K> Znoy)
Add: O(n) arithmetic operations.
A(X)+ B(X) : (XO’ yO + ZO)? cees (Xn-la yn—l + Zn—I)
Multiply: O(n), but need 2n-1 points.
AX) x B(X): (Xo, Yo% Zg)5 -+ (Xonas Yanot X Zon)

Evaluate: O(n?) using Lagrange's formula.

et H(X_Xj)
A — j#k
® Ejyk T[T - Xj)
j=k

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Coefficient o(n?) O(n)
Point-value o(n) o(n?)

Goal. Make all ops fast by efficiently converting between two
representations.

20,8505 8y (%05 Yo)s -+ (Xots Yor)

point-value

coefficient y
representation

representation

(Inverse) FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial
given values at each of the n™ roots of unity in O(n log n) steps.
\

assumes n is a power of 2

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the n*h roots of unity in O(n log n) steps.

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

coefficient =
representation coefficient
representation
A0, a),...,8,
Cp>Cps-nn
by by by 0 G122 Cona
FFT | O(nlogn) inverse FFT | O(n log n)

AXg), - er AXayy) point-value multiplication
B(xp): -+ B(%an1) o

C(xg) C(X)), -, C(Xn1)

O(n log n)
0 -1
Ag,ap,.e05 8y (@, ¥0), s (@, Yoy)
coefficient O(n log n) point-value
representation representation
»
Touch Tone

Button 1 signal. [exact]

1 1
Esin(er X 697t) + Esin(Zu X 1209¢) z@

o | .'lh,.l { (ll Al | v
- f \/\pu/‘f U, l‘} \ub' | f\J\’ ‘Umf“'l \Il J,f 1'||“

o A

Magnitude of Fourier transform of button 1 signal.

Reference: Cleve Moler, Numerical Computing with MATLAB

Touch Tone

Button 1 signal. [recorded, 8192 samples per second]

05 |
33 oses om o 04 BADE 041 0415 042
S
Magnitude of FFT.
300,
200]
1}
| _ b |
=) [= 1900) =3

Reference: Cleve Moler, Numerical Computing with MATLAB

Copyright 2000, Kevin Wayne

2/4/2019

Fast Fourier Transform: Applications

Applications.

. Optics, acoustics, quantum physics, telecommunications, control
systems, signal processing, speech recognition, data compression,
image processing.

. DVD, JPEG, MP3, MRI, CAT scan.

+ Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational
developments of this [20th] century. It has changed the face
of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Kanig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and

tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial ay + @ X + ... + a4 X",
evaluate it at n distinct points X, ... , X, 1.

Yo 1o X - x|l a 0O(n2) for matrix-vector multiply
Yy 1% X x| a
=11 % x x| a
Yo 1 Xpy xoy - xi0 JLa,] om?) for Gaussian elimination

\
Vandermonde matrix is invertible iff x; distinct

Point-value to coefficient. Given n distinct points X, ..., X,.; and
values yp, ..., Yo.1, find unique polynomial ay + a; X + ... + a,; X" that
has given values at given points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ag +ay X + ... + @, 4 x™1,
evaluate it at n distinct points X, ... , X, 1.

Divide. Break polynomial up into even and odd powers.
. AX) = Ao+ X + GpX2 + agx3 + agxt +agxd +agx® + ayx’.
Agien(X) = Qo+ apX + agX? + X,
Aggg (X) = @y + azx + asx? + azx3.
A(X) = Agyen(X?) + X Aggqg(X?).
A(X) = Agyen(X?) - X Aggg(X2).

Intuition. Choose two points to be +1.
+ ACD) = Agen(D) + 1 Agge(D).
+ ACL = Agen(l) - 1 Agg(D).

Can evaluate polynomial of degree <n
at 2 points by evaluating two polynomials
of degree < £n at 1 point.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ag + a; X + ... + @,y x™1,
evaluate it at n distinct points X, ... , X, 1.

Divide. Break polynomial up into even and odd powers.
. Ax) = ag* aX + QX2 + X3+ agx? + agxD + agx6 + ax7.
Agen(X) = Qo+ QX + agX? + X,
Aggg (X) = ap + azx + asx? + azx3.
A(X) = Agyen(X?) + X Aggg(X?).
A(-X) = Agyen(X?) = X Aggg(X?).

Intuition. Choose four points to be +1, +i.
s ACD = Agen(1)+ 1 Agg(D).
: A(__l) F Acen(1) - 1 Aoad(1)- Can evaluate polynomial of degree <n
o A = Agen(-1) + T Aggg(-1). at 4 points by evaluating two polynomials
o AGD) = Agen(-1) - i Aggg(-1). | of degree < in at 2 points.

Copyright 2000, Kevin Wayne

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ag + a; X + ... + @, 3 x™1,
evaluate it at n distinct points Xg, ... , X, 1.

Divide. Break polynomial up into even and odd powers.
o A(X) = g+ agX + QX2+ agx3 + agx? + agx® + agxb + azx7.
o Aen) = G+ ax+ 0 + g,
+ Agga(X) = ap+ azx +agx? + azx3.
o ACX) = Agen(X?) + X Aggg(X2).
+ ACX) = Agen(X?) - X Agge(X2).

Intuition. Choose four points to be +1, +i.
C ACD = Age(D+ 1 A1)
" A(-?) F Acen(1) - 1 Awdl D | Goal: evaluate polynomial of degree < n
+ ACD) = Agen(-1) + i Aggg(-1). latn points by evaluating two polynomials
v AGD) = Agen(-1) - i Agag(-1). | of degree < 3n at n/2 points.

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial ag + a; X + ... + @,y x™1,
evaluate it at n distinct points X, ... , X, 1.

Key idea: choose xi = o* where is principal n™ root of unity.

Yo 1 1 1 1 1 a,
v, i o o? @ @ a
v 1 o o ©° @2 a,
v, | |1 o ®° ® ®*"D ay
Vo 1 o™ XD ¥ D) an,
Discrete Fourier transform Fourier matrix F,

2/4/2019

Roots of Unity

Def. Ann' root of unity is a complex number x such that x" = 1.

Fact. The n' roots of unity are: o0, o, .., o"! where o = e 2*i/n,
Pf. (k) = (e 2rik/nyn = (exi)2k = (-1)% = 1,

Fact. The $n™ roots of unity are: v0, v1, .., v/2! where v = e 4i/n,
Fact. @2=v and (w?)k = vk

w0=v0=1

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = ag + ... + @, 1 X" at its n™
roots of unity: 02, ol, .., o™,

Divide. Break polynomial up into even and odd powers.
v Agen(X) = Got GpX + gX2 + L+ Gpypp XOD2,

o Aggd(X) = g+ a3X + asX2 + .+ @yp g XVD2,

©AK) = Agen(X?) + X Aggd(X2).

Conquer. Evaluate degree A,,.,(x) and A,4(x) at the $n™ roots of
unity: vO, vi, ., vv2-1L,

Combine.
© AR)= Agen(V) + 0k Agy(v9), 0<k<n/2
o A(0K) = Agyen(VK) - ok Aggg(VK), 0<k<n/2

i e vk = (k)2 = on (k2= (o)2

FFT Algorithm

re(n, ag,a;,.,a,) {
if (n == 1) return a,

(€0,€1,-5€n/5-1) FFT(N/2, 29,3;,84,..,8,2)
(dg.d;....0001) « FFT(N/2, a;,85.,85,..,8,.1)

for k =0 ton/2 - 1 {
o « e2mik/n
Y @« e+ of dy
Yiensz ¢ € = oF dy

return (Yo,Yis-Yn-1)

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the nth roots of unity in O(n log n) steps.
assumes n is a power of 2

Running time. T(2n) = 2T(n) + O(n) = T(n) = O(n log n).

O(n log n)

N
0 -1
29, 8p5..05 8y (@°, o), -os (@™ Y0)

coefficient point-value representation
representation

Copyright 2000, Kevin Wayne

3
2
Recursion Tree
ay, &, 8, 83, ,, a5, g, A
perfect shuffle
8, A, 84, Qg a,, a, as, a

A

g, Ay 8, ag a;, as a3, &
\
a9 ay a as a as ag a7
000 100 010 110 001 101 011 111

"bit-reversed" order

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values yg, ... , ¥, of a degree n-1 polynomial at the n
points &0, o, ..., ", find unique polynomial ag + a; X + ... + a, 1 ™! that
has given values at given points.

2/4/2019

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

1 1 1 1 1
1 m—l (0_2 (0_3 " m—(n—l)
o 11 e o ©° . 2D
" Thl e @ @2 . @30D
1 @@ 20D B0 D)

Consequence. To compute inverse FFT, apply same algorithm but use
o = e 271/n as principal n™" root of unity (and divide by n).

a, 11 1 N
a 1 @ o? el o™ "
32 1 ml (1)4 0)6 m?(nfl) yz
33 - 1 (1)3 ms (Dg ml(nfl) y3
an, 1 o™ @D D @D Yo
= fos
Inverse DFT Fourier matrix inverse (F,)!
st
Inverse FFT: Proof of Correctness
Claim. F,and G, are inverses.
Pf.
el -1 o 1 ifk=k
(Fn Gn)kk' = 1 Z"Jk]ﬂ)ilk = 1 2, o = { .
n o n o \ 0 otherwise

summation lemma

Summation lemma. Let o be a principal nth root of unity. Then

"ilmkj_ {n ifk=0mod n
=0 ~ |0 otherwise

Pf.
. If kis a multiple of n then o =1 = sums ton.
. Each n™" root of unity ok is a root of
XM -1z (x-1)(1+x+x2+ .. +x"0),
. ifokzlwehave: 1+0K+ k@4 +oK™D=0 = sumstoO. +

Inverse FFT: Algorithm

iffe(n, ag.ap,..a,) {
if (n == 1) return a,

(€0.€1...80/2.1) < FFT(N/2, 85.2,,8,,...8,2)
(dg,dy,..,dnyp1) FFT(N/2, ay,85,85,..,8,1)

for k =0 ton/2 - 1 {
!Dk -« ef21;ik/n
Yk « (e +od) /n
Yiensz (& - @ d) / n
3

return (Yo,Yis-»Yn-1)

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n' roots of unity in O(n log n) steps.
\

assumes n is a power of 2

O(n log n)
I TR (@, Yo), s (@™, Y1)
coefficient O(n log n) point-value

representation representation

Copyright 2000, Kevin Wayne

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

coefficient =
representation coefficient
representation
A0, a),...,8,
€05 Cps -5 Conp
by, by, ..., b,

FFT | O(n log n) inverse FFT | O(n log n)

AXg), s AXayy) point-value multiplication
N

BOXy). ... B o € O Ot

FFT in Practice ?

2/4/2019

JOM KLEINBERG - EVA TARDOS

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

« Dynamic programming = planning over time.

. Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name fo avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynhamic Programming Applications

Areas.

. Bioinformatics.

. Control theory.

- Information theory.
. Operations research.

. Computer science: theory, graphics, AL, compilers, systems,

Some famous dynamic programming algorithms.
- Unix diff for comparing two files.
. Viterbi for hidden Markov models.
. Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Copyright 2000, Kevin Wayne

Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s;, finishes at f;, and has weight or value v; .
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

Time

2/4/2019

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999

TR N T

weight = 1 a

o 1 2 3 4 5 6 7 8 9 10 11

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

| |
| |
| | ! T
0 1 2 3 4 5 6 7 8 9 10 11

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1,2, .., j.

. Case 1: OPT selects job j.
- collect profit v;
- can't use incompatible jobs { p(j) + 1, p(j) + 2, ... j- 1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)
optimal substructure
. Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of
remaining compatible jobs 1,2, ..., j-1

opT(j)=] ° i 1=
= max { v;+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, s3,.,S, Ty, F Vi,V
Sort jobs by finish times so that f, < f, < ... < f,.
Compute p(1), p(2), .., p(n)

—_

Compute-0pt (i) {

if G =0)
return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
——

T(n) = T(n-1)+T(p()}+O(1)
TA)=1

Copyright 2000, Kevin Wayne

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (F, > 1.6").
R

T(n) = T(n-1)+T(n-2)+1
: | T T T2

IS
—
«

p(1)=0,p(j) = j-2

—_—— —

Key Insight: Do we really need
to repeat this computation? ® ©

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s3,.,S, Fi,..F Vvi,.,v,
Sort jobs by finish times so that f;, <
Compute p(1), p(2), .., p(n)

for j=1ton

Wil = empty
J] = empty.

f,< ... f,.

M[O. -~
M-Compute-0pt(j) {
if (M[J] is empty)
D31 = max(v; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return MLj]

global array

H

2/4/2019

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via sorting by start ’rimz.\/

. M-Compute-Opt(j): each invocation takes O(1) time and either
J-Lompute-tpti)-
- (i) returns an existing value M[j]

=g e AL
- (i) fills in one new entry M[j] and makes two recursive calls
— R

. Progress measure @ = # nonempty entries of M[].
- initially ® = Q, throughout ® <n.

- (i) increases ® by 1 = at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n). -
_M-Compute-Opt(n) |

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-OEt(n;
Run Find-Solution(n
Find-Solution(j) {
ifQg =
output nothin
else 1 v; + M[pGD] > MLi-11D)
print j
Find-Solution(p(j))
else
Find-Solution(j-1)

. # of recursive calls <n = O(n).
orrecarsveta =1

Copyright 2000, Kevin Wayne

Weighted Interval Scheduling: Bottom-Up
Bottom-up dynamic programming. Unwind recursion.
-

Input: n, s;,.,S, Fi,.,Fy Vi,V
{ sort jobs by finish times so that f, < f, < ... < f,.

;LEompute f&). p(2). ... p(n)

Iterative-Compute-Opt {

M[0] = O
for j =1 ton

MI31 = max(v; + M[pG)1, MLi-11)

