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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due tonight at 11:59PM (Gradescope)

Recap: Divide and Conquer
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Karatsuba Multiplication
Multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

T(n) = 3T(n/2) + O(n)     T(n) in O(n1.585)

Generalization: Multiply (2k-1) pairs of (n/k)-bit integers 
T(n) = (2k-1)T(n/k) + O(n)     T(n) in 𝑂 𝑛୪୭୥ೖ ଶ௞ିଵ

Matrix Multiplication
Multiply two nxn matrices A and B
• Multiply 7 (n/2)x(n/2) matrices
• Add, Subtract and Shift to obtain result 

lim
௞→ஶ

log௞ 2𝑘 െ 1 ൌ 1
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Fast Matrix Multiplication

Key idea.  multiply 2-by-2 blocks with only 7 multiplications.

 7 multiplications.
 18 = 8 + 10 additions and subtractions.

  

P1  A11  (B12  B22 )

P2  ( A11  A12 )  B22

P3  ( A21  A22 )  B11

P4  A22  (B21  B11)

P5  ( A11  A22 )  (B11  B22 )

P6  ( A12  A22 )  (B21  B22 )

P7  ( A11  A21)  (B11  B12 )  

C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

  

C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22










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Fast Matrix Multiplication

To multiply two n-by-n matrices A and B:   [Strassen 1969]
 Divide:  partition A and B into ½n-by-½n blocks.
 Compute: 14 ½n-by-½n matrices via 10 matrix additions.
 Conquer:  multiply 7 pairs of ½n-by-½n matrices, recursively.
 Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.
 T(n) = # arithmetic operations.

 Apply Master Theorem (a=7,b=2,c=2)
–

௔

௕೎ ൌ
଻

ସ
൐ 1   ⟹ 𝑇 𝑛 ൌ Θ 𝑛୪୭୥್ ௔ ൌ Θ 𝑛୪୭୥మ ଻ ൌ Θ 𝑛ଶ.଼ଵ



T (n)  7T n /2 
recursive calls
 

 (n2 )
add, subtract

  
 T (n)  (n log2 7 ) O(n2.81)
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Fast Matrix Multiplication:  Practice

Implementation issues.
 Sparsity.
 Caching effects.
 Numerical stability.
 Odd matrix dimensions.
 Crossover to classical algorithm around n = 128. 

Common misperception.  “Strassen is only a theoretical curiosity.”

 Apple reports 8x speedup on G4 Velocity Engine when 
n  2,500.

 Range of instances where it's useful is a subject of 
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, 
SVD, ….

6

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication:  Theory

Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

   (n log3 21)  O(n 2.77 )

O(n 2.7801)

  (n log2 6) O(n 2.59 )

(n log2 7 ) O(n 2.807 )A. Yes!   [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible.  [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799 )

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.373) [Williams, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.3729) [Le Gall, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.

5.6 Convolution and FFT

11

Polynomials:  Coefficient Representation

Polynomial.  [coefficient representation]

Add:  O(n) arithmetic operations.

Evaluate:  O(n) using Horner's method.

Multiply (convolve): O(n2) using brute force.

  A(x)  a0  a1x  a2x2  an1xn1

B(x)  b0 b1xb2x2  bn1xn1

  A(x) B(x)  (a0 b0 ) (a1 b1)x  (an1 bn1)xn1

A(x)  a0  (x (a1  x (a2  x (an2  x (an1))))

  
A(x) B(x)  ci xi

i0

2n2

 ,  where ci  a j bi j
j0

i


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Polynomials:  Point-Value Representation

Fundamental theorem of algebra.  [Gauss, PhD thesis]  A degree n 
polynomial with complex coefficients has n complex roots.

Corollary.  A degree n-1 polynomial A(x) is uniquely specified by its 
evaluation at n distinct values of x.

x

y

xj

yj = A(xj)
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Polynomials:  Point-Value Representation

Polynomial.  [point-value representation]

Add: O(n) arithmetic operations.

Multiply:  O(n), but need 2n-1 points.

Evaluate:  O(n2) using Lagrange's formula.

  

A( x ) :  (x 0 , y0 ),  , (x n-1, y n1 )  

B ( x ) :  (x 0 , z0 ),  , (x n-1, zn1 )

  A(x) B(x) :   (x0, y0  z0 ),, (xn-1, yn1  zn1)

  

A(x)  yk

(x  x j )
jk



(xk  x j )
jk

k0

n1



  A(x)  B(x) :   (x0, y0 z0),, (x2n-1, y2n1 z2n1)
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Converting Between Two Polynomial Representations

Tradeoff.  Fast evaluation or fast multiplication. We want both!

Goal.  Make all ops fast by efficiently converting between two 
representations.

Coefficient

Representation

O(n2)

Multiply

O(n)

Evaluate

Point-value O(n) O(n2)

a0, a1,, an-1   (x0, y0),, (xn1, yn1)

coefficient
representation

point-value
representation
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(Inverse) FFT Summary

Theorem.  Inverse FFT algorithm interpolates a degree n-1 polynomial 
given values at each of the nth roots of unity in O(n log n) steps.

Theorem.  FFT algorithm evaluates a degree n-1 polynomial at each of 
the nth roots of unity in O(n log n) steps.

assumes n is a power of 2

a0, a1,, an-1   (
0, y0 ), , ( n1, yn1)

O(n log n)

coefficient
representation

O(n log n) point-value
representation
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Polynomial Multiplication

Theorem.  Can multiply two degree n-1 polynomials in O(n log n) steps.

  

a0, a1,, an-1

b0, b1,, bn-1
  c0, c1,, c2n-2

  

A(x0 ),, A(x2n-1)

B(x0 ),, B(x2n-1)   C(x0 ), C(x1),, C(x2n-1)
O(n)

point-value multiplication

O(n log n)FFT inverse FFT O(n log n)

coefficient
representation coefficient

representation
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Touch Tone

Button 1 signal.  [exact]

Magnitude of Fourier transform of button 1 signal.

Reference:  Cleve Moler, Numerical Computing with MATLAB

1
2

sin 2𝜋 ൈ 697𝑡 ൅
1
2

sin 2𝜋 ൈ 1209𝑡

18

Touch Tone

Button 1 signal.  [recorded, 8192 samples per second]

Magnitude of FFT.

Reference:  Cleve Moler, Numerical Computing with MATLAB
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Fast Fourier Transform:  Applications

Applications.
 Optics, acoustics, quantum physics, telecommunications, control 

systems, signal processing, speech recognition, data compression, 
image processing.

 DVD, JPEG, MP3, MRI, CAT scan.
 Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational 
developments of this [20th] century. It has changed the face 
of science and engineering so much that it is not an 
exaggeration to say that life as we know it would be very 
different without the FFT.   -Charles van Loan

20

Fast Fourier Transform:  Brief History

Gauss (1805, 1866).  Analyzed periodic motion of asteroid Ceres.

Runge-König (1924).  Laid theoretical groundwork.

Danielson-Lanczos (1942).  Efficient algorithm.

Cooley-Tukey (1965).  Monitoring nuclear tests in Soviet Union and 
tracking submarines.  Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

21

Converting Between Two Polynomial Representations:  Brute Force

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1.

Point-value to coefficient.  Given n distinct points x0, ..., xn-1 and 
values y0, ..., yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that 
has given values at given points.

  

y0

y1

y2



yn1 























   

1 x0 x0
2  x0

n1

1 x1 x1
2  x1

n1

1 x2 x2
2  x2

n1

    

1 xn1 xn1
2  xn1

n1  























a0

a1

a2



 an1























Vandermonde matrix is invertible iff xi distinct

O(n3) for Gaussian elimination

O(n2) for matrix-vector multiply
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Coefficient to Point-Value Representation:  Intuition

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1.

Divide.  Break polynomial up into even and odd powers.
 A(x)       =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7.
 Aeven(x)  =  a0 + a2x + a4x2 + a6x3.
 Aodd (x)  =  a1 + a3x + a5x2 + a7x3.
 A(-x) = Aeven(x2) + x Aodd(x2).
 A(-x) = Aeven(x2) - x Aodd(x2).

Intuition.  Choose two points to be 1.
 A(-1) = Aeven(1) + 1 Aodd(1). 
 A(-1) = Aeven(1) - 1 Aodd(1).

Can evaluate polynomial of degree  n
at 2 points by evaluating two polynomials 
of degree  ½n at 1 point.
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Coefficient to Point-Value Representation:  Intuition

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1.

Divide.  Break polynomial up into even and odd powers.
 A(x)       =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7.
 Aeven(x)  =  a0 + a2x + a4x2 + a6x3.
 Aodd (x)  =  a1 + a3x + a5x2 + a7x3.
 A(-x) = Aeven(x2) + x Aodd(x2).
 A(-x) = Aeven(x2) - x Aodd(x2).

Intuition.  Choose four points to be 1, i.
 A(-1) = Aeven(-1) + 1 Aodd( 1). 
 A(-1) = Aeven(-1) - 1 Aodd(-1).
 A(-i) = Aeven(-1) + i Aodd(-1). 
 A(-i) = Aeven(-1) - i Aodd(-1).

Can evaluate polynomial of degree  n
at 4 points by evaluating two polynomials 
of degree  ½n at 2 points.
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Coefficient to Point-Value Representation:  Intuition

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1.

Divide.  Break polynomial up into even and odd powers.
 A(x)       =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7.
 Aeven(x)  =  a0 + a2x + a4x2 + a6x3.
 Aodd (x)  =  a1 + a3x + a5x2 + a7x3.
 A(-x) = Aeven(x2) + x Aodd(x2).
 A(-x) = Aeven(x2) - x Aodd(x2).

Intuition.  Choose four points to be 1, i.
 A(-1) = Aeven(-1) + 1 Aodd( 1). 
 A(-1) = Aeven(-1) - 1 Aodd(-1).
 A(-i) = Aeven(-1) + i Aodd(-1). 
 A(-i) = Aeven(-1) - i Aodd(-1).

Goal: evaluate polynomial of degree  n
at n points by evaluating two polynomials 
of degree  ½n at n/2 points.



2/4/2019

Copyright 2000, Kevin Wayne 5

25

Discrete Fourier Transform

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1.

Key idea:  choose xk = k  where  is principal nth root of unity.

Discrete Fourier transform



y0

y1

y2

y3



yn1

























  

1 1 1 1  1

1 1 2 3  n1

1 2 4 6  2(n1)

1 3 6 9  3(n1)

     

1 n1 2(n1) 3(n1)  (n1)(n1)

























a0

a1

a2

a3



an1

























Fourier matrix Fn
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Roots of Unity

Def.  An nth root of unity is a complex number x such that xn = 1.

Fact.  The nth roots of unity are: 0, 1, …, n-1 where  = e 2 i / n.
Pf.  (k)n = (e 2 i k / n) n = (e  i ) 2k =  (-1) 2k =  1.

Fact.  The ½nth roots of unity are: 0, 1, …, n/2-1 where  = e 4 i / n.
Fact.  2 =  and  (2)k = k.

0 = 0 = 1

1

2 = 1 = i

3

4 = 2 = -1

5

6 = 3 = -i

7

n = 8

27

Fast Fourier Transform

Goal.  Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its nth

roots of unity: 0, 1, …, n-1.

Divide.  Break polynomial up into even and odd powers.
 Aeven(x)  =  a0 + a2x + a4x2 + … + an/2-2 x(n-1)/2.
 Aodd (x)  =  a1 + a3x + a5x2 + … + an/2-1 x(n-1)/2.
 A(x)   = Aeven(x2) + x Aodd(x2).

Conquer.  Evaluate degree Aeven(x) and Aodd(x) at the ½nth roots of 
unity: 0, 1, …, n/2-1.

Combine.  
 A(k+n) = Aeven(k) + k Aodd(k),   0  k < n/2
 A(k+n) = Aeven(k) - k Aodd(k),   0  k < n/2

k+½n = -k k  =  (k)2   = n (k)2 =  (k+ ½n)2

28

fft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e2ik/n

yk+n/2  ek + k dk
yk+n/2  ek - k dk

}

return (y0,y1,…,yn-1)

}

FFT Algorithm

29

FFT Summary

Theorem.  FFT algorithm evaluates a degree n-1 polynomial at each of 
the nth roots of unity in O(n log n) steps.

Running time.  T(2n) =  2T(n) + O(n)   T(n)  = O(n log n).

a0, a1,, an-1   (
0, y0), , ( n1, yn1)

O(n log n)

coefficient
representation

point-value representation

assumes n is a power of 2

30

Recursion Tree

a0, a1, a2, a3, a4, a5, a6, a7

a1, a3, a5, a7a0, a2, a4, a6

a3, a7a1, a5a0, a4 a2, a6

a0 a4 a2 a6 a1 a5 a3 a7

"bit-reversed" order

000 100 010 110 001 101 011 111

perfect shuffle
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Point-Value to Coefficient Representation:  Inverse DFT

Goal.  Given the values y0, ... , yn-1 of a degree n-1 polynomial at the n 
points 0, 1, …, n-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that 
has given values at given points.

Inverse DFT



a0

a1

a2

a3



an1

























  

1 1 1 1  1

1 1 2 3  n1

1 2 4 6  2(n1)

1 3 6 9  3(n1)

     

1 n1 2(n1) 3(n1)  (n1)(n1)

























  1

 

y0

y1

y2

y3



yn1

























Fourier matrix inverse (Fn)-1
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Claim.  Inverse of Fourier matrix is given by following formula.

Consequence.  To compute inverse FFT, apply same algorithm but use
-1 = e -2 i / n as principal nth root of unity (and divide by n).



Gn  1
n

 

1 1 1 1  1

1 1 2 3  (n1)

1 2 4 6  2(n1)

1 3 6 9  3(n1)

     

1 (n1) 2(n1) 3(n1)  (n1)(n1)

























Inverse FFT
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Inverse FFT:  Proof of Correctness

Claim.  Fn and Gn are inverses.
Pf.  

Summation lemma.  Let  be a principal nth root of unity. Then

 k j

j0

n1
 

n if k  0 mod n

0 otherwise





Fn Gn k k    
1
n

k j  j k 

j0

n1
      

1
n

(k k ) j

j0

n1
     

 1 if k  k 

 0 otherwise





summation lemma

Pf.
 If k is a multiple of n then k = 1   sums to n.
 Each nth root of unity k is a root of 

xn - 1 = (x - 1) (1 + x + x2 + ... + xn-1).
 if k  1 we have:  1 + k + k(2) + . . . + k(n-1) = 0   sums to 0.  ▪
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Inverse FFT:  Algorithm

ifft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e-2ik/n

yk+n/2  (ek + k dk) / n

yk+n/2   (ek - k dk) / n

}

return (y0,y1,…,yn-1)

}
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Inverse FFT Summary

Theorem.  Inverse FFT algorithm interpolates a degree n-1 polynomial 
given values at each of the nth roots of unity in O(n log n) steps.

assumes n is a power of 2

a0, a1,, an-1   (
0, y0 ), , ( n1, yn1)

O(n log n)

coefficient
representation

O(n log n) point-value
representation

36

Polynomial Multiplication

Theorem.  Can multiply two degree n-1 polynomials in O(n log n) steps.

  

a0, a1,, an-1

b0, b1,, bn-1
  c0, c1,, c2n-2

  

A(x0 ),, A(x2n-1)

B(x0 ),, B(x2n-1)   C(x0 ), C(x1),, C(x2n-1)
O(n)

point-value multiplication

O(n log n)FFT inverse FFT O(n log n)

coefficient
representation coefficient

representation
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FFT in Practice ?
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Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing 
some local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve 
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem. 

Dynamic programming. Break up a problem into a series of 
overlapping sub-problems, and build up solutions to larger and 
larger sub-problems.

40

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

41

Dynamic Programming Applications

Areas. 
 Bioinformatics.
 Control theory.
 Information theory.
 Operations research.
 Computer science:  theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms. 
 Unix diff for comparing two files.
 Viterbi for hidden Markov models.
 Smith-Waterman for genetic sequence alignment.
 Bellman-Ford for shortest path routing in networks.
 Cocke-Kasami-Younger for parsing context free grammars.

6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.
 Job j starts at sj, finishes at fj, and has weight or value vj . 
 Two jobs compatible if they don't overlap.
 Goal:  find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10
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Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
• Solution: Sort requests by finish time (ascending order)

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1   f2   . . .  fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.

Time

0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.

 Case 1:  OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j)

 Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  j-1

  
OPT( j) 

0 if  j 0

max v j  OPT( p( j)), OPT( j 1)  otherwise





optimal substructure
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.

T(n) = T(n-1)+T(p(n))+O(1)
T(1) = 1

48

Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems   exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence (Fn > 1.6n).

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

T(n) = T(n-1)+T(n-2)+1
T(1) = 1

3

3

Key Insight: Do we really need 
to repeat this computation?
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;
lookup as needed.

50

Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
 Sort by finish time:  O(n log n).
 Computing p() :  O(n log n) via sorting by start time.

 M-Compute-Opt(j):  each invocation takes O(1) time and either
– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure  = # nonempty entries of M[].
– initially  = 0,  throughout   n. 
– (ii) increases  by 1   at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A.  Do some post-processing.

 # of recursive calls  n   O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}


