CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due tonight at 11:59PM (Gradescope)
Homework 3 released ©



Recap: Divide and Conquer

Karatsuba Multiplication

Multiply two n-bit integers x and y:
. Add two 3n bit integers.
- Multiply three 3n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

T(n) = 3T(n/2) + O(n) > T(n) in O(n!-38)

Generalization: Multiply (2k-1) pairs of (n/k)-bit integers
T(n) = (2k-1)T(n/k) + O(n) > T(n) in O(n'°8x(Zk-1))

Ilim (log,(2k—1)) =1

Matrix Multiplication
Multiply two nxn matrices A and B
Multiply 7 (n/2)x(n/2) matrices
Add, Subtract and Shift to obtain result



Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

. 7 multiplications.
18 =8 + 10 additions and subtractions.

Example: P, + P, = Ay;By; — Ay Byy + Ay1Byy + ApyBy,
= AB1y + AgpBy = Cpp



Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of $n-by-3n matrices, recursively.
. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
. T(n) = # arithmetic operations.

T()=7T(M/2)+ O(M°) = T(N)=6(n"=")=0(n*")

recursive calls add, subtract

. Apply MasTer Theorem (a=7,b=2,c=2)

(F) =151 = T(n) — @(nlogb a) @(nlogz 7) @(nz 81)



Fast Matrix Multiplication: Practice

Implementation issues.
. Sparsity.
. Caching effects.
. Numerical stability.
. Odd matrix dimensions.
. Crossover to classical algorithm around n=128.

Common misperception. “Strassen is only a theoretical curiosity.”
. Apple reports 8x speedup on 64 Velocity Engine when
n =~ 2,500.
. Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax =b, determinant, eigenvalues,
SVD, ..



Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] @(n:7) =0(n 27

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] o 59— 02
Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible. @(nlog321)zo(n2.77)

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

. Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 25%)
. Two 48-by-48 matrices with 47,217 scalar multiplications. o(n 271
. A year later. 0N
. December', 1979. o(n 2521813)

. JGHUGF‘Y, 1980. o(n 2.521801)



Fast Matrix Multiplication: Theory

A
w(T)
30 23]
Ela_r______l ______________ w _{Il _________ : -
2.5'---—--&---—- S e e .
E.D 1 Il T | | I 1 I- | = 1 1 ] 'rr
1968 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n?37) [Coppersmith-Winograd, 1987]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.



Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%37%) [Williams, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.



Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%372%) [Le Gall, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.



5.6 Convolution and FFT




Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

A(X)=a,+a,X+a,X" +--+a,_ X"

B(x)=b, +bx+bx*+--+b,_x""

Add: O(n) arithmetic operations.

A(X)+ B(X)= (ao +b0)+(a1 +b1)x_|_.. - (an—l +bn—1)xn_1

Evaluate: O(n) using Horner's method.

A(X)=agp+(Xx(a +X(ay +---+X (a2 +X(@n_1)):"*))

Multiply (convolve): O(n?) using brute force.

2n-2 i
A(X)xB(x)= Y, ¢; X', where ¢ =Y a;b_,
i=0 j=0

1



12

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.
Pf: Suppose both A(x;)=B(x;) at n points
v | Consider C(x)=A(x)-B(x)>C(x.)=0
- has degree n-1 but n roots?

v




13

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(X): (X0> yO)a "'9(Xn-19 yn—l)
B(X): (X09 20)9 "‘9(Xn-1>Zn—1)
Add: O(n) arithmetic operations.

A(X)'l' B(X) : (X09 yO + 20)9 R (Xn-b yn—l + Zn—l)
Multiply: O(n), but need 2n-1 points.
AX) x B(X): (g5 Yo% Zp)s - (Xpn1s Yon1 X Zong)

Evaluate: O(n?) using Lagrange's formula.

- H(X_Xj)
A _ j#k
) k%)yk [T(x - Xj)

J#k



Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation Multiply

Coefficient O(n?) O(n)
Point-value O(n) O(n?)

Goal. Make all ops fast by efficiently converting between two
representations.

n-1 - (X09 yO)a ) (Xn—la yn—l)

P
<

ap,ay,...,a

point-value

coefficient ,
representation

representation

14



(Inverse) FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n' roots of unity in O(n log n) steps.
\

assumes n is a power of 2

\

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the n™h roots of unity in O(n log n) steps.

O(n log n)

a09 a]a 000g an_l (a)o, yo), ...,(a)n_l, yn—l)

<
<

coefficient O(n log n) point-value
representation representation

15



16

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

coefficient N
representation coefficient
representation
Ag, Apy ..y @y
b b b CO’C19"'9C21’1—2
0> Y12°°°>™n-1 A
FFT O(n |09 n) inverse FFT O(n Iog n)

!

A(XO)’ e A(in_l) point-value multiplication
B(XO)a R B(X2n—1) O(n)

> C(Xg), C(X)), ..., C(Xpnp)



17

Touch Tone

Button 1 signal. [exact]

1 1
> sin(2m x 697t) + = sin(2m x 1209¢) &

1_

0.5

-0.5

-1t /

0 0.005 0.01 0.015
t(seconds)

Magnitude of Fourier transform of button 1 signal.

051

400 600 800 1000 1200 1400 1600
f(Hz)

Reference: Cleve Moler, Numerical Computing with MATLAB



18

Touch Tone

Button 1 signal. [recorded, 8192 samples per second]

1 T |

0.5

_1 1 1 | | | ]

0.38 0.385 0.39 0.395 0.4 0.405 0.41

1 seconas)

Magnitude of FFT.

300 T

0.415

0.42

200

|
" w*ﬂ L . ! wﬂ\ﬂ"“ﬂ‘l‘ Lp—w gt

100

600 800 1000 1200 1400

Reference: Cleve Moler, Numerical Computing with MATLAB



19

Fast Fourier Transform: Applications

Applications.

. Optics, acoustics, quantum physics, telecommunications, control
systems, signal processing, speech recognition, data compression,
Image processing.

. DVD, JPEG, MP3, MRI, CAT scan.

. Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational
developments of this [20th] century. It has changed the face
of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan



20

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Konig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and

tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.



21

Converting Between Two Polynomial Representations: Brute Force

Coefficient fo point-value. Given a polynomial ay + a; x + ... + a1 X",
evaluate it at n distinct points xg, ..., X,.1.

Yo 1% X - X || @ O(n?) for matrix-vector multiply
Y | A G A
Yo | =1 % % - x| &
. : : : O(n3) for Gaussian elimination
L Yoad LD Xy Xy oo X L ag,
\

Vandermonde matrix is invertible iff x; distinct

Point-value to coefficient. Given n distinct points x,, ..., X,; and
values vy, ..., ¥,.1. find unique polynomial ay + a; x + ... + a,_; Xx"! that
has given values at given poinfts.



22

Coefficient to Point-Value Representation: Intuition

Coefficient fo point-value. Given a polynomial a5 + a; X + ... + a1 X",
evaluate it at n distinct points xg, ..., X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = gp* QX+ ayX2 + asx3+ agx?t + agx® + agx® + a;x’.
e Alen(X) = ag* aXx +agx2 + agx3,
- A (X) = ag + azx + agx? + a;x3,
e ACX) T Agen(¥) + X Aggg(X2).
o A(X) = Agren(X®) - X Aggq(X).

Intuition. Choose two points to be +1.
. A( 1) - Aeven(l) +1 Aodd(l)-
. A(-].) = Aeven(l) -1 Aodd(l)'

Can evaluate polynomial of degree < n
at 2 points by evaluating two polynomials
of degree < 3n at 1 point.



Coefficient to Point-Value Representation: Intuition

Coefficient o point-value. Given a polynomial ay + a; x + ... + a1 X",
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = ag* apx + X%+ azx3+ asxt + asx® + agx0 + asx’.
- Aeven(x) = Qo+ axX + C(4X2 + C(6X3.
- Agg(X) = ap + azx + azx? + a;x3.
e ACX) = Ao 04) * X A0
e ACX) = Agen0?) - X Agggx?).

Intuition. Choose four points to be +1, #i.
- A( 1) = Aeven( 1) +1 Aodd( 1)

" A(_.l) = Acvenl 1) - .1 Assd( 1. can evaluate polynomial of degree <n
- A( )= Agven(-1) + 1 Aggq(-1). ' at 4 points by evaluating two polynomials
- A(-i) = ALen(-1) - i A gy(-1). of degree < 3n at 2 points.

23



Coefficient to Point-Value Representation: Intuition

Coefficient o point-value. Given a polynomial ay + a; x + ... + a1 X",
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = ag* apx + X%+ azx3+ asxt + asx® + agx0 + asx’.
- Aeven(x) = Qo+ axX + C(4X2 + C(6X3.
- Agg(X) = ap + azx + azx? + a;x3.
e ACX) = Ao 04) * X A0
e ACX) = Agen0?) - X Agggx?).

Intuition. Choose four points to be +1, #i.
- A( 1) = Aeven( 1) +1 Aodd( 1)

" A(_.l) = Acvenl 1) - .1 Astd( 1) Goal: evaluate polynomial of degree <n
« A( )= Agen(-1) + 1 Agyq(-1).  at n points by evaluating two polynomials
. A(-i) = A (-1) - i A yy(-1).  of degree < znat n/2 points.

24



25

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial ap +a; x + ... + a1 X",
evaluate it at n distinct points xg, ... , X,.1.

Key idea: choose x, = ok where o is principal n™h root of unity.

T T

Discrete Fourier transform Fourier matrix F,



26

Roots of Unity

Def. Ann'h root of unity is a complex number x such that x" = 1.

Fact. The nth roots of unity are: 0%, o!, ..., ®"! where @ = e 27i/n,
Pf. (o*)n = (e Znik/n)yn = (gmi)2k = (-1)2k = 1,

Fact. The $n'™ roots of unity are: v, vi, .., vVl where v = e 47i/n,
Fact. ®?=v and (0?)k = vk

=iyl =




Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = a5 + ... + a4 X" at its n'h

roots of unity: 0%, o?, ..., ",

Divide. Break polynomial up into even and odd powers.
Aon(X) = Qo+ QoX + AgX2 + .+ Qo XOD/2.
Aodd (x) = a; + aszx + Cl5>(2 + ..+ 0y x(n-1)/2.
) A(X) - Aeven(xz) + X Aodd(xz).

Conquer. Evaluate degree A, (x) and A_44(x) at the n™ roots of

unity: vO, vi, .., w21,

Combine.
- A((Dk ) = Aeven(vk) + o Aodd(Vk)/ O0<k<«n/2

v A(N2) = Agen(V6) - 0 Aggg(v¥), 0 <k<n/2
N
/ VK= (0K = o" (k)2 (o )2

k+2n = -

27



28

FFT Algorithm




29

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of

the n™h roots of unity in O(n log n) steps.
assumes n is a power of 2

Running time. T(2n) = 2T(n) + O(n) = T(n) = O(n log n).

O(n log n)

»
>

0 -1
ao, al,..., an_l ’ (a) 5 yO)’ ...,(a)n ) yn_l)

<

coefficient 299 point-value representation
representation



30

000

100

010

110

Recursion Tree

perfect shuffle

001 101

"bit-reversed" order

011

111



31

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the valuesyy, ..., y,.; of a degree n-1 polynomial at the n
points w°, »!, ..., ®"1, find unique polynomial a5 + a; x + ... + a,_; x"! that
has given values at given points.

T T

Inverse DFT Fourier matrix inverse (F,)!



32

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

Consequence. To compute inverse FFT, apply same algorithm but use
ol = e -2ti/nag principal nth root of unity (and divide by n).



33

Inverse FFT: Proof of Correctness

Claim. F,and G, are inverses.
Pf.

IN(SS)

-l ~ {1 if k =k’
j=0 _\ 0 otherwise

1 L 1

(Fn Gn)kk' = = ol = =
n ; n

summation lemma

Summation lemma. Let o be a principal n™ root of unity. Then

-1 {n if k=0mod n

0 otherwise

Pf.
. If kisamultiple of nthen k=1 = sums ton.
. Each n™ root of unity ok is a root of
x"-1=(x-1)(1+x+x2+ . +x1)

. ifokzlwehave: 1+ oK+ k@ +  + kD=0 = sumstoO. -



34

Inverse FFT: Algorithm




35

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n* roots of unity in O(n log n) steps.
\

assumes n is a power of 2

O(n log n)

89, 8p,..., 8, (@°,Yp)s s (@™, ¥, ))

<
<

coefficient O(n log n) point-value
representation representation



36

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

coefficient N
representation coefficient
representation
Ag, Apy..r @y
b CO, Cl,o-o, C2n_2
by, by, ..., 04 X
FFT O(n |09 n) inverse FFT O(n Iog n)

!

A(XO)’ e A(in_l) point-value multiplication
B(XO)a R B(X2n—1) O(n)

> C(Xg), C(X)), ..., C(Xppp)



37

FFT in Practice ?

806 fft java - Google Search

- @ http:,.f,fww.googie.com,fsearch?hl—en&q—ffl+jaua&blnC—CoogIe+Search #{Q~ Coogle )

Eﬂ ‘Google Movies Weatherv Tech MNews Sports Princeton €5 Javal5 Eook 1 Book2 Coursesy Otherv

Sign in lr
: Web Images Groups MNews Frocgle Local Scholar more »
2 it € % Advanced Search
0 L)S e Java L Search | Freferances
Web Resuilts 1- 10 of about 630,000 for fft java. (0.17 seconcs)

Compilaton: javac FFT.java * Execution: java FFT N * Dependencizs: ... A nicz
implementation of the FFT algorithm in Java, Eventhough it can use too much ...
www.yovd08.com/html/codespot php?gg=35 - 26k - Cached - Similer pages

FFT JAVA Demo

This is a JAVA applet demonstrating basic concept of Fast Fourier ... If you want to run the
program ocally, download FFT.zip and unzip it to a directory. ...
www.ling.upenn.edu/~tklee/Projects/dsp/ - 8k - Cached - Similar pages

Mathtools.net : Java/FFT
Listing of Java FFT related links, tools, and resources.
www.mathtools.net/Java/FFT/index.html - 18k - Cached - Similar peges

FFT Scectrum Analyser Demo

The following features are new ir the Java 1.1 version of the FFT Soectrum Analyser applet:.
The signal is plotted in either the time doman (signal) or the ...

www.dsptutor.freeuk. com/analyser/SpectrumAnalyser.himl - 4k - Cached - Similar pages

Fun with Java, Understanding the Fast Fourier Transform (FFT ...
Fun with Java, Unde-standing the Fast Fourer Transform (FFT) Algorithm By Richard G. !
Baldwin. Java Programming, Notes # 1486. Preface; General Discussion ...

www.developer.com/javalother/article.php/3457251 - 116k - Cached - Similar peges

Spectrum Analysis using Java, Sampling Frequency, Folding ...

Fie Dsp030.java Copyright 2004, RGBaldwin Rev 5/14/04 Uses an FFT algorithm to compute
ard display the magnitude of the spectral conten: for up to five ...
www.developer.com/javalother/article.php/3380031 - 278k - Cached - Similar pages

Bruce R. Miller's Java(tm) Demo Page

These classes may be of use Lo olther java programmers. Available Packages, Demos & Buy
Fixes:. FFT. TabPanel. ObjectList. StackLayout. Scroller. ...

math.nist.gov/~BMiller/javal - 7k - Cached - Similar pages

FFET : Java Glossary

Roedy Green's Java & Internet Glossary : FFT. ... You are here : home ¢ Java Glossary <
F words = FFT. FFT: Fast Fourer Transform. ...

mindprod.com/jgloss(fft.html - 8k - Cached - Similar pages

[P e

YRR



38

JON KLEINBERG

- EVA TARDOS

PEARSON

e —

Addison
esley



39

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.



40

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
. Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.



41

Dynamic Programming Applications

Areas.

. Bioinformatics.

. Control theory.

. Information theory.
. Operations research.

. Computer science: theory, graphics, AL, compilers, systems, ...

Some famous dynamic programming algorithms.
. Unix diff for comparing two files.
. Viterbi for hidden Markov models.
. Smith-Waterman for genetic sequence alignment.
. Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.



6.1 Weighted Interval Scheduling




Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

j .

> Time

43



44

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

v



45

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

1

v



46

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests,?2, ..., j.

. Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j) + 1, p(j) + 2, .., j-1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j) \
optimal substructure
. Case 2: OPT does not select job j. /
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

o if =0
OPT(J)_{maX {v;+OPT(p(j)), OPT(j-1)} otherwise



Weighted Interval Scheduling: Brute Force

Brute force algorithm.

T(n) = T(n-1+T(p(n))+O(1)
T(1) =1



Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (F, > 1.6").

5 T(n) = T(n-1)+T(n-2)+1
3 T =1

p(1) =0, p() = j-2

Key Insight: Do we really need
to repeat this computation?

48



Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

49



Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via sorting by start ’rime.\/

. M-Compute-Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j]
- (i) fills in one new entry M[j] and makes two recursive calls

E—

+ Progress measure @ = # nonempty entries of M[].

- initially ® = Q, throughout ® <n.
- (i) increases ® by 1 = at most 2n recursive calls.

- Overall running time of M-Compute-Opt(n) is O(n). -

Remark. O(n) if jobs are pre-sorted by start and finish times.

50



51

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(jJ) {
it g =0)
output nothing.

else 1t (v, + M[p@d)]1 > MJ-1D

print j
Find-Solution(p(j))
else -

Find-Solution(J-1)

. # of recursive calls <n = O(n).



Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

—_—

52



