CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

Announcement: Homework 2 due tonight at 11:59PM (Gradescope)

Homework 3 released ©

Recap: Divide and Conquer

Karatsuba Multiplication

Multiply two n-bit integers x and y:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$T(n) = 3T(n/2) + O(n) \rightarrow T(n) \text{ in } O(n^{1.585})$$

Generalization: Multiply (2k-1) pairs of (n/k)-bit integers $T(n) = (2k-1)T(n/k) + O(n) \rightarrow T(n)$ in $O(n^{\log_k(2k-1)})$ $\lim_{k \to \infty} (\log_k(2k-1)) = 1$

Matrix Multiplication

Multiply two $n \times n$ matrices A and B

- Multiply 7 (n/2)x(n/2) matrices
- Add, Subtract and Shift to obtain result

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6 \qquad P_1 = A_{11} \times (B_{12} - B_{22})$$

$$C_{12} = P_1 + P_2 \qquad P_2 = (A_{11} + A_{12}) \times B_{22}$$

$$C_{21} = P_3 + P_4 \qquad P_3 = (A_{21} + A_{22}) \times B_{11}$$

$$C_{22} = P_5 + P_1 - P_3 - P_7 \qquad P_4 = A_{22} \times (B_{21} - B_{11})$$

$$\begin{array}{llll} C_{11} &=& P_5 + P_4 - P_2 + P_6 \\ C_{12} &=& P_1 + P_2 \\ C_{21} &=& P_3 + P_4 \\ C_{22} &=& P_5 + P_1 - P_3 - P_7 \\ \end{array} \begin{array}{lll} P_1 &=& A_{11} \times (B_{12} - B_{22}) \\ P_2 &=& (A_{11} + A_{12}) \times B_{22} \\ P_3 &=& (A_{21} + A_{22}) \times B_{11} \\ P_4 &=& A_{22} \times (B_{21} - B_{11}) \\ P_5 &=& (A_{11} + A_{22}) \times (B_{11} + B_{22}) \\ P_6 &=& (A_{12} - A_{22}) \times (B_{21} + B_{22}) \\ P_7 &=& (A_{11} - A_{21}) \times (B_{11} + B_{12}) \end{array}$$

- 7 multiplications.
- 18 = 8 + 10 additions and subtractions.

Example:
$$P_1 + P_2 = A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22}$$

= $A_{11}B_{12} + A_{12}B_{22} = C_{12}$

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Compute: $14 \frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices via 10 matrix additions.
- Conquer: multiply 7 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

• T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

- Apply Master Theorem (a=7,b=2,c=2)
$$-\left(\frac{a}{b^c}\right) = \frac{7}{4} > 1 \implies T(n) = \Theta\left(n^{\log_b a}\right) = \Theta\left(n^{\log_2 7}\right) = \Theta(n^{2.81})$$

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception. "Strassen is only a theoretical curiosity."

- Apple reports 8x speedup on G4 Velocity Engine when $n \approx 2{,}500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,

- Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
- A. Yes! [Strassen 1969]

$$\Theta(n^{\log_2 7}) = O(n^{2.807})$$

- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971]

$$\Theta(n^{\log_2 6}) = O(n^{2.59})$$

- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible.

$$\Theta(n^{\log_3 21}) = O(n^{2.77})$$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

• Two 20-by-20 matrices with 4,460 scalar multiplications.

$$O(n^{2.805})$$

• Two 48-by-48 matrices with 47,217 scalar multiplications.

$$O(n^{2.7801})$$

• A year later.

$$O(n^{2.7799})$$

• December, 1979.

$$O(n^{2.521813})$$

January, 1980.

$$O(n^{2.521801})$$

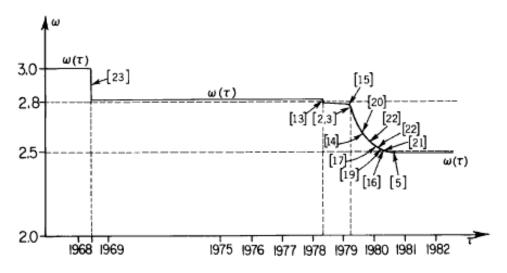


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

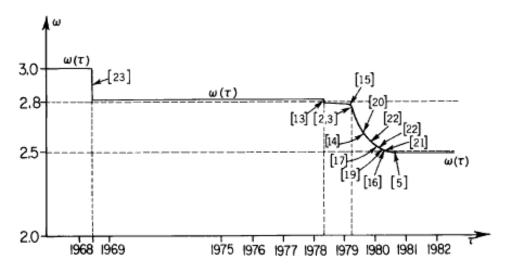


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.373})$ [Williams, 2014]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

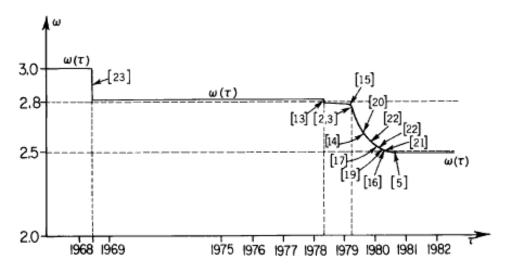


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.3729})$ [Le Gall, 2014]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

5.6 Convolution and FFT

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

Add: O(n) arithmetic operations.

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

Evaluate: O(n) using Horner's method.

$$A(x) = a_0 + (x(a_1 + x(a_2 + \dots + x(a_{n-2} + x(a_{n-1}))\dots))$$

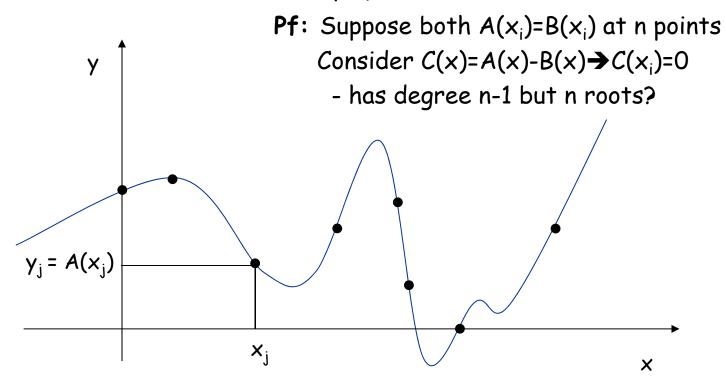
Multiply (convolve): $O(n^2)$ using brute force.

$$A(x) \times B(x) = \sum_{i=0}^{2n-2} c_i x^i$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its evaluation at n distinct values of x.



Polynomials: Point-Value Representation

Polynomial. [point-value representation]

$$A(x): (x_0, y_0), ..., (x_{n-1}, y_{n-1})$$

$$B(x): (x_0, z_0), ..., (x_{n-1}, z_{n-1})$$

Add: O(n) arithmetic operations.

$$A(x)+B(x): (x_0, y_0+z_0), ..., (x_{n-1}, y_{n-1}+z_{n-1})$$

Multiply: O(n), but need 2n-1 points.

$$A(x) \times B(x)$$
: $(x_0, y_0 \times z_0), ..., (x_{2n-1}, y_{2n-1} \times z_{2n-1})$

Evaluate: O(n²) using Lagrange's formula.

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation	Multiply	Evaluate
Coefficient	O(n ²)	O(n)
Point-value	O(n)	O(n ²)

Goal. Make all ops fast by efficiently converting between two representations.

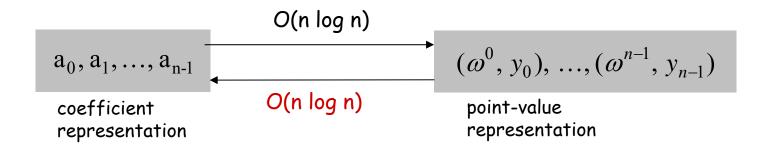
$$(x_0,y_0),...,(x_{n-1},y_{n-1})$$
 coefficient point-value representation

(Inverse) FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial given values at each of the n^{th} roots of unity in $O(n \log n)$ steps.

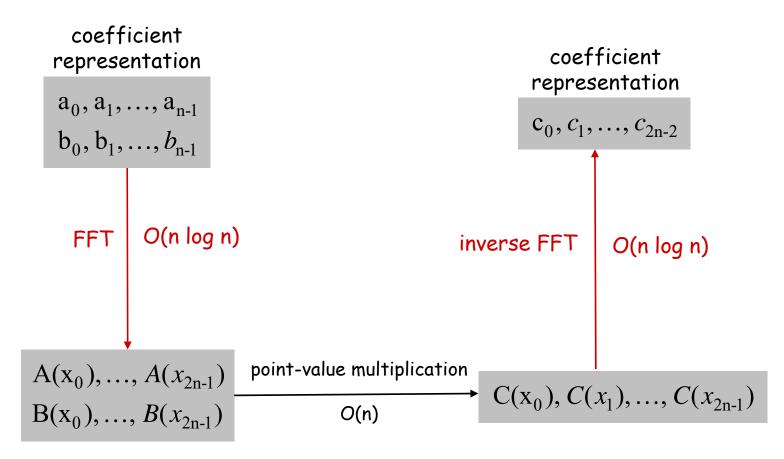
assumes n is a power of 2

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ steps.



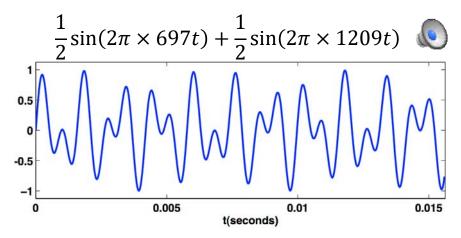
Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

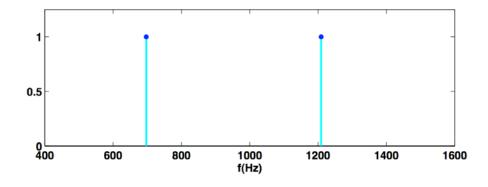


Touch Tone

Button 1 signal. [exact]



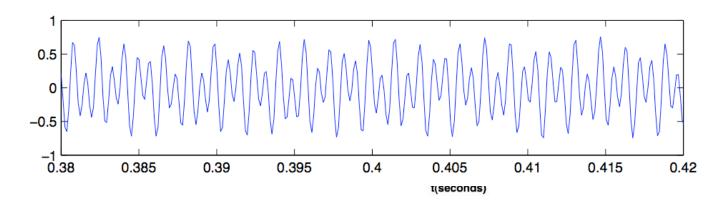
Magnitude of Fourier transform of button 1 signal.



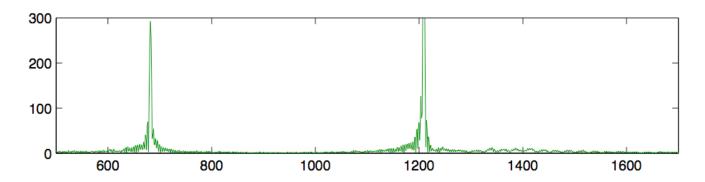
Reference: Cleve Moler, Numerical Computing with MATLAB

Touch Tone

Button 1 signal. [recorded, 8192 samples per second]



Magnitude of FFT.



Reference: Cleve Moler, Numerical Computing with MATLAB

Fast Fourier Transform: Applications

Applications.

- Optics, acoustics, quantum physics, telecommunications, control systems, signal processing, speech recognition, data compression, image processing.
- DVD, JPEG, MP3, MRI, CAT scan.
- Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational developments of this [20th] century. It has changed the face of science and engineering so much that it is not an exaggeration to say that life as we know it would be very different without the FFT. -Charles van Loan

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

Runge-König (1924). Laid theoretical groundwork.

Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

O(n²) for matrix-vector multiply

Vandermonde matrix is invertible iff x_i distinct

Point-value to coefficient. Given n distinct points $x_0, ..., x_{n-1}$ and values $y_0, ..., y_{n-1}$, find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose two points to be ± 1 .

•
$$A(1) = A_{even}(1) + 1 A_{odd}(1)$$
.

$$A(-1) = A_{even}(1) - 1 A_{odd}(1).$$

Can evaluate polynomial of degree \leq n at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 1 point.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$

Intuition. Choose four points to be ± 1 , $\pm i$.

•
$$A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$$
.

$$A(-1) = A_{even}(1) - 1 A_{odd}(1).$$

•
$$A(i) = A_{even}(-1) + i A_{odd}(-1)$$
.

•
$$A(-i) = A_{even}(-1) - i A_{odd}(-1)$$
.

Can evaluate polynomial of degree \leq n at 4 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 2 points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose four points to be ± 1 , $\pm i$.

•
$$A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$$
.

$$A(-1) = A_{even}(1) - 1 A_{odd}(1).$$

•
$$A(i) = A_{even}(-1) + i A_{odd}(-1)$$
.

•
$$A(-i) = A_{even}(-1) - i A_{odd}(-1)$$
.

Goal: evaluate polynomial of degree \leq n at n points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at n/2 points.

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Key idea: choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

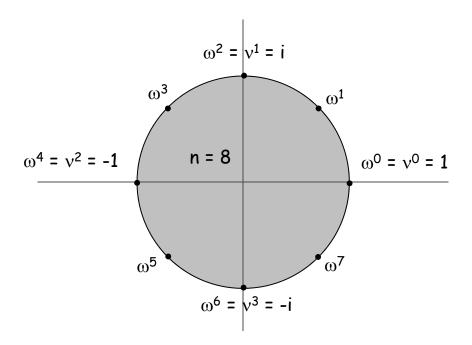
$$\uparrow$$
Discrete Fourier transform Fourier matrix F_n

Roots of Unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The nth roots of unity are: ω^0 , ω^1 , ..., ω^{n-1} where $\omega = e^{2\pi i / n}$. Pf. $(\omega^k)^n = (e^{2\pi i k / n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$.

Fact. The $\frac{1}{2}$ nth roots of unity are: v^0 , v^1 , ..., $v^{n/2-1}$ where $v = e^{4\pi i/n}$. Fact. $\omega^2 = v$ and $(\omega^2)^k = v^k$.



Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial $A(x) = a_0 + ... + a_{n-1} x^{n-1}$ at its nth roots of unity: ω^0 , ω^1 , ..., ω^{n-1} .

Divide. Break polynomial up into even and odd powers.

$$A_{even}(x) = a_0 + a_2 x + a_4 x^2 + ... + a_{n/2-2} x^{(n-1)/2}.$$

$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + ... + a_{n/2-1} x^{(n-1)/2}.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

Conquer. Evaluate degree $A_{\text{even}}(x)$ and $A_{\text{odd}}(x)$ at the $\frac{1}{2}$ nth roots of unity: v^0 , v^1 , ..., $v^{n/2-1}$.

Combine.

$$A(\omega^k) = A_{\text{even}}(v^k) + \omega^k A_{\text{odd}}(v^k), \quad 0 \le k < n/2$$

$$A(\omega^{k+n/2}) = A_{even}(v^k) - \omega^k A_{odd}(v^k), \quad 0 \le k < n/2$$

$$\omega^{k+\frac{1}{2}n} = -\omega^k$$
 $v^k = (\omega^k)^2 = \omega^n (\omega^k)^2 = (\omega^{k+\frac{1}{2}n})^2$

FFT Algorithm

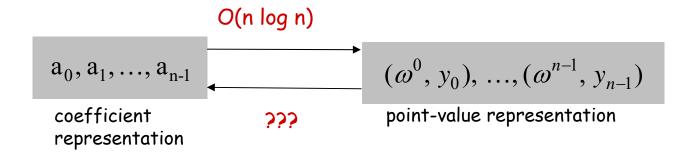
```
fft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0,d_1,...,d_{n/2-1}) \leftarrow FFT(n/2, a_1,a_3,a_5,...,a_{n-1})
    for k = 0 to n/2 - 1 {
         \omega^k \leftarrow e^{2\pi i k/n}
         y_k \leftarrow e_k + \omega^k d_k
        y_{k+n/2} \leftarrow e_k - \omega^k d_k
     return (y_0, y_1, ..., y_{n-1})
```

FFT Summary

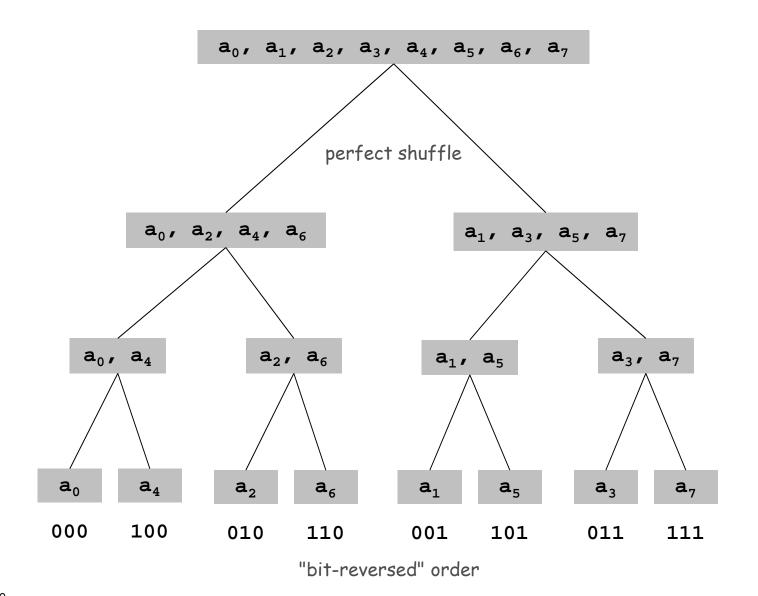
Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

Running time. $T(2n) = 2T(n) + O(n) \Rightarrow T(n) = O(n \log n)$.

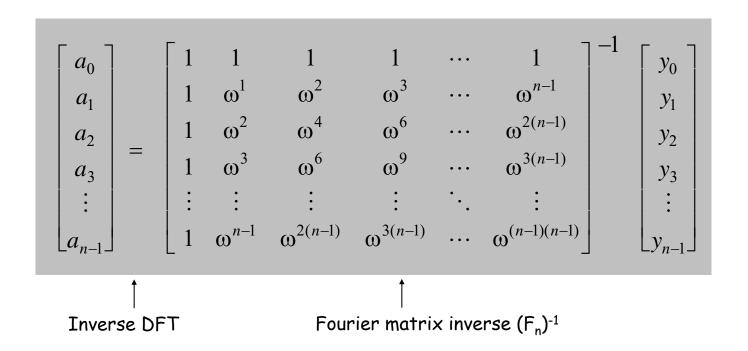


Recursion Tree



Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values y_0 , ..., y_{n-1} of a degree n-1 polynomial at the n points ω^0 , ω^1 , ..., ω^{n-1} , find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.



Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

$$G_{n} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots & \omega^{-2(n-1)} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \cdots & \omega^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \omega^{-3(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Consequence. To compute inverse FFT, apply same algorithm but use $\omega^{-1} = e^{-2\pi i / n}$ as principal n^{th} root of unity (and divide by n).

Inverse FFT: Proof of Correctness

Claim. F_n and G_n are inverses.

Pf.

$$(F_n G_n)_{kk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \begin{cases} 1 & \text{if } k = k' \\ 0 & \text{otherwise} \end{cases}$$
summation lemma

Summation lemma. Let ω be a principal n^{th} root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{kj} = \begin{cases} n & \text{if } k \equiv 0 \bmod n \\ 0 & \text{otherwise} \end{cases}$$

Pf.

- If k is a multiple of n then $\omega^k = 1 \implies \text{sums to n}$.
- Each n^{th} root of unity ω^k is a root of

$$x^{n} - 1 = (x - 1) (1 + x + x^{2} + ... + x^{n-1}).$$

• if $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0 \implies \text{sums to } 0$.

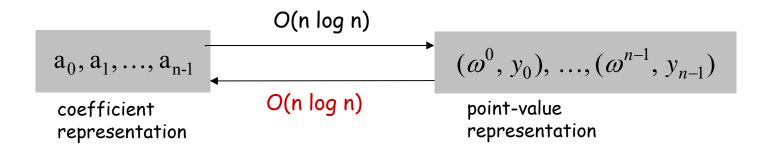
Inverse FFT: Algorithm

```
ifft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0,d_1,...,d_{n/2-1}) \leftarrow FFT(n/2, a_1,a_3,a_5,...,a_{n-1})
     for k = 0 to n/2 - 1 {
         \omega^k \leftarrow e^{-2\pi i k/n}
         y_k \leftarrow (e_k + \omega^k d_k) / n
         y_{k+n/2} \leftarrow (e_k - \omega^k d_k) / n
    return (y_0, y_1, ..., y_{n-1})
}
```

Inverse FFT Summary

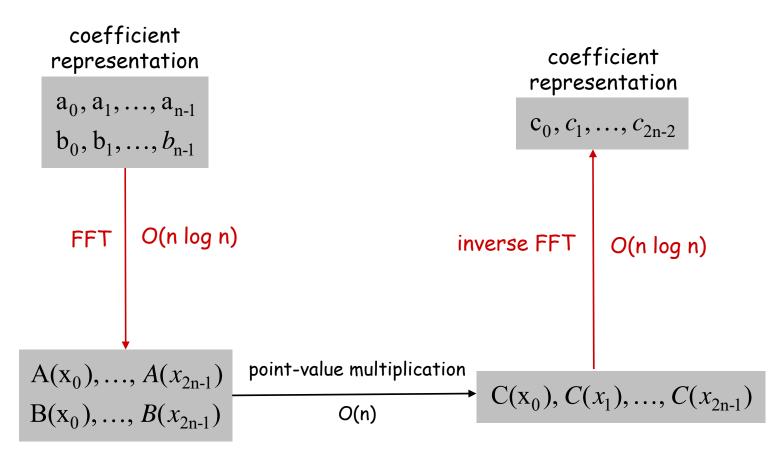
Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial given values at each of the n^{th} roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

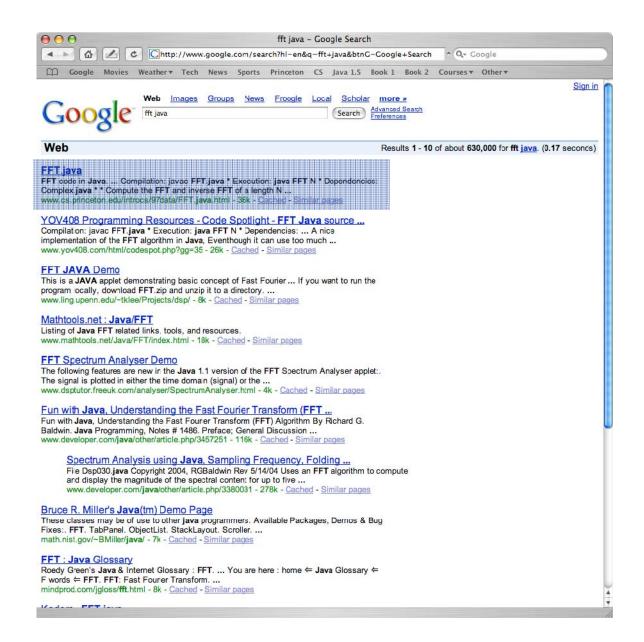


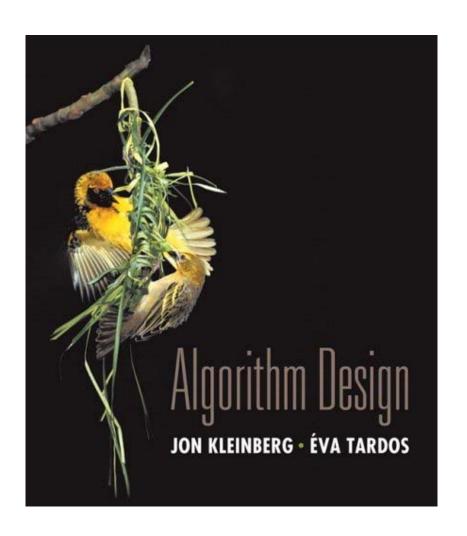
Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.



FFT in Practice?





Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

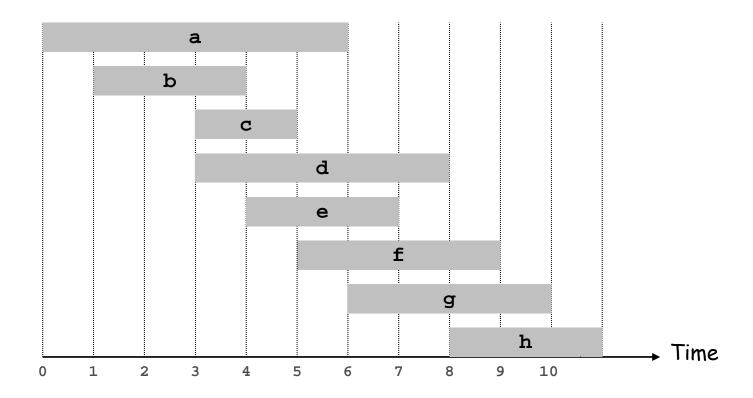
- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- \blacksquare Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

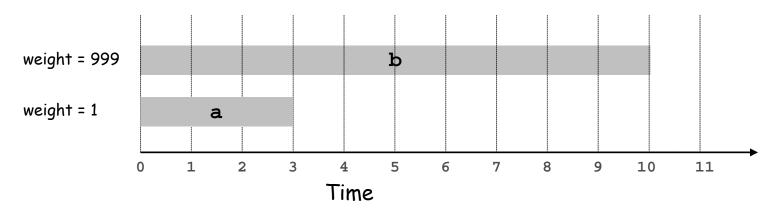


Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.

• Solution: Sort requests by finish time (ascending order)

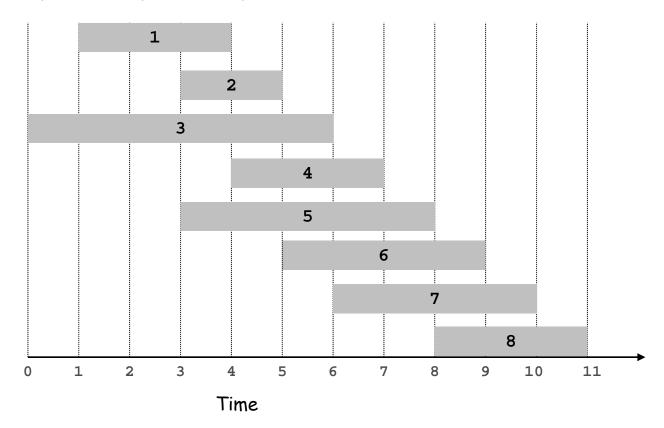
Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.



Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.



Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - collect profit v_j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

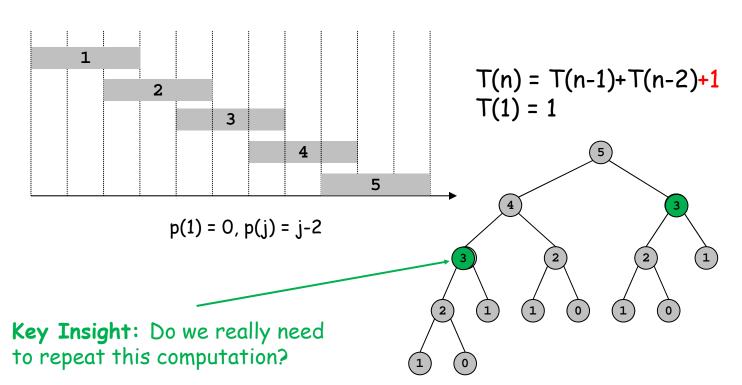
$$T(n) = T(n-1)+T(p(n))+O(1)$$

 $T(1) = 1$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence $(F_n > 1.6^n)$.



Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s<sub>1</sub>,...,s<sub>n</sub>, f<sub>1</sub>,...,f<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

Sort jobs by finish times so that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.

Compute p(1), p(2), ..., p(n)

for j = 1 to n
    M[j] = empty

M[0] = 0

    global array

M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(v<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n). ✓
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure Φ = # nonempty entries of M[].
 - initially $\Phi = 0$, throughout $\Phi \le n$.
 - (ii) increases Φ by 1 \Rightarrow at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

• # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```