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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)

Recap: Divide and Conquer
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Key Paradigm in Algorithm Design:
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Merge-Sort: Sort a list in time O(n log n)
• Split list in half and sort each half
• Merge the sorted lists

Recurrence Relationships
• Solving: Recursion Trees, Telescoping, Induction
• Master Theorem: Generic solution for T(n) = a T(n/b)+nc

• Other Recurrence Relationships

Counting Inversions:  (in time O(n log n))
• Count number of pairs i < j s.t. A[i] > A[j]
• Merge and Sort

3

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

4

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves. 
 Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

      )log()T()(2/2/ )( nnOnnOnTnTnT 

6 3 2 2 0 0

to maintain sorted invariant

play
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A)  Sort-and-Count(A)
(rB, B)  Sort-and-Count(B)
(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with (n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

8

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L

9

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L

10

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L

11

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L

12

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

14

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)

15

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

16

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j|  12, then the distance between
si and sj is at least .
Pf.
 No two points lie in same ½-by-½ box.
 Two points at least 2 rows apart

have distance  2(½).   ▪



27

29
30

31

28

26

25



½

2 rows
½

½

39

i

j

Fact.  Still true if we replace 12 with 7.

18

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

1 = Closest-Pair(left half)
2 = Closest-Pair(right half)
 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than , update .

return .
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
 Each recursive returns two lists: all points sorted by y 

coordinate, and all points sorted by x coordinate.
 Sort by merging two pre-sorted lists.

  T(n)  2T n /2   O(n)  T(n)  O(n log n)

  T(n)  2T n /2   O(n log n)  T(n)    O(n log2 n)

5.5  Integer Multiplication

21

Motivation: Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?

4 multiplications, 2 additions

Our Prices Are Fantastic! 
Multiplication: $100 (reals only ℝ)
Addition:         $1     (reals only ℝ) 

$402 for Grade-School Approach: 4 
multiplications, 2 additions 

22

Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?
A.  Yes.  [Gauss] x = ac - bd,  y = (a + b) (c + d) - ac - bd.

(= ac + ad + bc + bd - ac – bd = bc + ad)

Remark.  Improvement if no hardware multiply.

4 multiplications, 2 additions

3 multiplications, 5 additions ($305)
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Addition.  Given two n-bit integers x and y, compute x + y.
Grade-school.  (n) bit operations.

Remark.  Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

24

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x  y.
Grade-school.  (n2) bit operations.

Q.  Is grade-school multiplication algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0


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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏 ൅ 𝒙𝟎                                                
𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒚𝟏 ൅ 𝒚𝟎                                                

𝒙𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏 ൅ 𝒙𝟎 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                 

ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏 ൅ 𝒙𝟎                                                
𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒚𝟏 ൅ 𝒚𝟎                                                

𝒙𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏 ൅ 𝒙𝟎 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                 

ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n)  cheap

Master’s Theorem: a = 4, b=2, c=1   ௔

௕೎ ൐ 1, 𝑂 𝑛୪୭୥್ ௔ ൌ 𝑂 𝑛ଶ
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝑥 ൌ 2௡/ଶ ·  𝑥ଵ ൅ 𝑥଴                                
𝑦 ൌ 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                                                

𝑥𝑦 ൌ 2௡/ଶ ·  𝑥ଵ ൅ 𝑥଴ 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                 

ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101    y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n)  cheap

Master’s Theorem: a = 4, b=2, c=1   ௔

௕೎ ൐ 1, 𝑂 𝑛୪୭୥್ ௔ ൌ 𝑂 𝑛ଶ
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Recursion Tree

T (n) 
0 if  n  0

4T (n /2)    n otherwise





n

4(n/2)

16(n/4)

4k (n / 2k)

4 lg n 

(1)

T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

...

.
.
.

T (n)  n 2k

k0

lg n

    n
21 lg n 1

21









    2n2 n

T(n/2)

...

.
.
.

.
.
.

.
.
.
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Karatsuba Multiplication

𝑥 ൌ 2௡/ଶ ·  𝑥ଵ ൅ 𝑥଴                                                                                                
𝑦 ൌ 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                                                                                                 

                                                               

𝑥𝑦 ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴                                                 

    ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
೙
మ · 𝑥଴ ൅ 𝑥ଵ 𝑦଴ ൅ 𝑦ଵ െ 𝑥଴𝑦଴ െ 𝑥ଵ𝑦ଵ ൅ 𝑥଴𝑦଴

1 2 1 33
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Theorem.  [Karatsuba-Ofman 1962]  Can multiply two n-bit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

           )()(2/12/2/)(
shiftsubtract, add,calls recursive

nTnnTnTnTnT 
  

𝑥 ൌ 2௡/ଶ ·  𝑥ଵ ൅ 𝑥଴                                                                                                
𝑦 ൌ 2௡/ଶ ·  𝑦ଵ ൅ 𝑦଴                                                                                                 

                                                               

𝑥𝑦 ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴                                                 

    ൌ 2௡ ·  𝑥ଵ𝑦ଵ ൅ 2
೙
మ · 𝑥଴ ൅ 𝑥ଵ 𝑦଴ ൅ 𝑦ଵ െ 𝑥଴𝑦଴ െ 𝑥ଵ𝑦ଵ ൅ 𝑥଴𝑦଴

1 2 1 33

Master’s Theorem: a = 3, b=2, c=1   ௔

௕೎ ൐ 1 ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥್ ௔

[logଶ 3 ൏ 1.585]
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Karatsuba:  Recursion Tree

T (n) 
0 if  n  0

3T (n /2)    n otherwise





n

3(n/2)

9(n/4)

T(n) 

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T (n)  n  3
2 

k

k0

lg n

    n
3
2 

1 lg n 1
3
2 1











    3n lg 3 2n

3 lg n 

(1)
T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

...

.
.
.

.
.
.

.
.
.

.
.
.

3k (n / 2k)
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Integer division.  Given two n-bit (or less) integers s and t,
compute quotient q = s / t and remainder r = s mod t (such that s=qt+r).

Fact.  Complexity of integer division is (almost) same as integer 
multiplication.
To compute quotient q:
 Approximate x = 1 / t using Newton's method:
 After i=log n iterations, either q = s xi or q = s xi.

– If s x t > s then q = s x (1 multiplication)
– Otherwise q = s x
– r=s-qt (1 multiplication)

 Total: O(log n) multiplications and subtractions

xi1    2xi  t xi
2

Fast Integer Division Too (!)

using fast
multiplication

Toom-3 Generalization

𝑎 ൌ 2ଶ௡/ଷ · 𝑎ଶ ൅ 2
௡
ଷ · 𝑎ଵ ൅ 𝑎଴

𝑏 ൌ 2ଶ௡/ଷ · 𝑏ଶ ൅ 2
௡
ଷ · 𝑏ଵ ൅ 𝑏଴

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

൅ 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥య ହ

Toom-Cook Generalization (split into k parts): 

𝑎 ൌ 2
௡ሺ௞ିଵሻ

௞ · 𝑎௞ିଵ ൅ ⋯ ൅ 2
௡
௞ · 𝑎ଵ ൅ 𝑎଴

  𝑏 ൌ 2
௡ሺ௞ିଵሻ

௞ · 𝑎௞ ൅ ⋯ ൅ 2
௡
௞ · 𝑎ଵ ൅ 𝑎଴      

𝑇𝑘 𝑛 ൌ 2𝑘 െ 1 · 𝑇𝑘

𝑛
𝑘

൅ 𝑂 𝑛 ⇒ 𝑇𝑘 𝑛 ∈ 𝑂 𝑛୪୭୥ೖ ଶ௞ିଵ              

33

ൎ 1.465

lim
௞→ஶ

log௞ 2𝑘 െ 1 ൌ 1

Split into 3 parts

∀𝜀 ൐ 0∃𝑘 s.t 𝑇𝑘 𝑛 ∈ 𝑂 𝑛ଵାఌ

Toom-3 Generalization

𝑎 ൌ 2ଶ௡/ଷ · 𝑎ଶ ൅ 2
௡
ଷ · 𝑎ଵ ൅ 𝑎଴

𝑏 ൌ 2ଶ௡/ଷ · 𝑏ଶ ൅ 2
௡
ଷ · 𝑏ଵ ൅ 𝑏଴

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

൅ 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥య ହ

Schönhage–Strassen algorithm
𝑇 𝑛 ∈ 𝑂 𝑛 log 𝑛 log log 𝑛  

Only used for really big numbers: a ൐ 2ଶభఱ

State of the Art: 𝑂 𝑛 log 𝑛  𝑔ሺ𝑛ሻ  for increasing small
𝑔ሺ𝑛ሻ ≪ log log 𝑛

34

ൎ 1.465

Split into 3 parts

Matrix Multiplication

36

Dot product.  Given two length n vectors a and b, compute c = a  b.
Grade-school.   (n) arithmetic operations.

Remark. Grade-school dot product algorithm is optimal.

Dot Product

a  b  ai bi
i1

n



a   .70 .20 .10 
b   .30 .40 .30 
a    b    (.70  .30)    (.20  .40)    (.10  .30)    .32
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.
Grade-school.   (n3) arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication

cij  aik bkj
k1

n



  

c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn





















a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann





















b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn



















.59 .32 .41

.31 .36 .25

.45 .31 .42


















.70 .20 .10

.30 .60 .10

.50 .10 .40
















       

.80 .30 .50

.10 .40 .10

.10 .30 .40
















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Block Matrix Multiplication

152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















   

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















   

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11
A11 A12 B11

B21

𝐶ଵଵ ൌ 𝐴ଵଵ ൈ 𝐵ଵଵ ൅ 𝐴ଵଶ ൈ 𝐵ଶଵ                                           

ൌ 0 1
4 5

ൈ 16 17
20 21

൅ 2 3
6 7

ൈ 24 25
28 29

ൌ 152 158
504 526
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Matrix Multiplication:  Warmup

To multiply two n-by-n matrices A and B:
 Divide:  partition A and B into ½n-by-½n blocks.
 Conquer:  multiply 8 pairs of ½n-by-½n matrices, recursively.
 Combine:  add appropriate products using 4 matrix additions.

  

C11  A11  B11    A12  B21 
C12  A11  B12    A12  B22 
C21  A21  B11    A22  B21 
C22  A21  B12    A22  B22 

C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls
 

   (n2 )
add, form submatrices
  

 T (n)  (n3)
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Fast Matrix Multiplication

Key idea.  multiply 2-by-2 blocks with only 7 multiplications.

 7 multiplications.
 18 = 8 + 10 additions and subtractions.

  

P1  A11  (B12  B22 )

P2  ( A11  A12 )  B22

P3  ( A21  A22 )  B11

P4  A22  (B21  B11)

P5  ( A11  A22 )  (B11  B22 )

P6  ( A12  A22 )  (B21  B22 )

P7  ( A11  A21)  (B11  B12 )  

C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

  

C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22










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Fast Matrix Multiplication

To multiply two n-by-n matrices A and B:   [Strassen 1969]
 Divide:  partition A and B into ½n-by-½n blocks.
 Compute: 14 ½n-by-½n matrices via 10 matrix additions.
 Conquer:  multiply 7 pairs of ½n-by-½n matrices, recursively.
 Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.
 T(n) = # arithmetic operations.

 Apply Master Theorem (a=7,b=2,c=2)
–

௔

௕೎ ൌ
଻

ସ
൐ 1   ⟹ 𝑇 𝑛 ൌ Θ 𝑛୪୭୥್ ௔ ൌ Θ 𝑛୪୭୥మ ଻ ൌ Θ 𝑛ଶ.଼ଵ



T (n)  7T n /2 
recursive calls
 

 (n2 )
add, subtract

  
 T (n)  (n log2 7 ) O(n2.81)
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Fast Matrix Multiplication:  Practice

Implementation issues.
 Sparsity.
 Caching effects.
 Numerical stability.
 Odd matrix dimensions.
 Crossover to classical algorithm around n = 128. 

Common misperception.  “Strassen is only a theoretical curiosity.”

 Apple reports 8x speedup on G4 Velocity Engine when 
n  2,500.

 Range of instances where it's useful is a subject of 
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, 
SVD, ….
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Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication:  Theory

Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

   (n log3 21)  O(n 2.77 )

O(n 2.7801)

  (n log2 6) O(n 2.59 )

(n log2 7 ) O(n 2.807 )A. Yes!   [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible.  [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799 )

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.373) [Williams, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.3729) [Le Gall, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.

Extra Slides


