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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)

Recap: Divide and Conquer
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Key Paradigm in Algorithm Design:
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Merge-Sort: Sort a list in time O(n log n)
• Split list in half and sort each half
• Merge the sorted lists

Recurrence Relationships
• Solving: Recursion Trees, Telescoping, Induction
• Master Theorem: Generic solution for T(n) = a T(n/b)+nc

• Other Recurrence Relationships

Counting Inversions:  (in time O(n log n))
• Count number of pairs i < j s.t. A[i] > A[j]
• Merge and Sort
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves. 
 Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

      )log()T()(2/2/ )( nnOnnOnTnTnT 

6 3 2 2 0 0

to maintain sorted invariant

play
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A)  Sort-and-Count(A)
(rB, B)  Sort-and-Count(B)
(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4  Closest Pair of Points



2/4/2019

Copyright 2000, Kevin Wayne 2

7

Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with (n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

8

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L

9

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L

10

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L

11

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L

12

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

14

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)

15

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

16

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j|  12, then the distance between
si and sj is at least .
Pf.
 No two points lie in same ½-by-½ box.
 Two points at least 2 rows apart

have distance  2(½).   ▪



27

29
30

31

28

26

25



½

2 rows
½

½

39

i

j

Fact.  Still true if we replace 12 with 7.
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

1 = Closest-Pair(left half)
2 = Closest-Pair(right half)
 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than , update .

return .
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
 Each recursive returns two lists: all points sorted by y 

coordinate, and all points sorted by x coordinate.
 Sort by merging two pre-sorted lists.

  T(n)  2T n /2   O(n)  T(n)  O(n log n)

  T(n)  2T n /2   O(n log n)  T(n)    O(n log2 n)

5.5  Integer Multiplication

21

Motivation: Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?

4 multiplications, 2 additions

Our Prices Are Fantastic! 
Multiplication: $100 (reals only ℝ)
Addition:         $1     (reals only ℝ) 

$402 for Grade-School Approach: 4 
multiplications, 2 additions 

22

Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?
A.  Yes.  [Gauss] x = ac - bd,  y = (a + b) (c + d) - ac - bd.

(= ac + ad + bc + bd - ac – bd = bc + ad)

Remark.  Improvement if no hardware multiply.

4 multiplications, 2 additions

3 multiplications, 5 additions ($305)

23

Addition.  Given two n-bit integers x and y, compute x + y.
Grade-school.  (n) bit operations.

Remark.  Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

24

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x  y.
Grade-school.  (n2) bit operations.

Q.  Is grade-school multiplication algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏  𝒙𝟎                                                
𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒚𝟏  𝒚𝟎                                                

𝒙𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏  𝒙𝟎 2/ଶ ·  𝑦ଵ  𝑦                 

ൌ 2 ·  𝑥ଵ𝑦ଵ  2

ଶ · 𝑥𝑦ଵ  𝑥ଵ𝑦  𝑥𝑦

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏  𝒙𝟎                                                
𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒚𝟏  𝒚𝟎                                                

𝒙𝒚 ൌ 𝟐𝒏/𝟐 ·  𝒙𝟏  𝒙𝟎 2/ଶ ·  𝑦ଵ  𝑦                 

ൌ 2 ·  𝑥ଵ𝑦ଵ  2

ଶ · 𝑥𝑦ଵ  𝑥ଵ𝑦  𝑥𝑦

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n)  cheap

Master’s Theorem: a = 4, b=2, c=1   

  1, 𝑂 𝑛୪୭್  ൌ 𝑂 𝑛ଶ
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝑥 ൌ 2/ଶ ·  𝑥ଵ  𝑥                                
𝑦 ൌ 2/ଶ ·  𝑦ଵ  𝑦                                                

𝑥𝑦 ൌ 2/ଶ ·  𝑥ଵ  𝑥 2/ଶ ·  𝑦ଵ  𝑦                 

ൌ 2 ·  𝑥ଵ𝑦ଵ  2

ଶ · 𝑥𝑦ଵ  𝑥ଵ𝑦  𝑥𝑦

Ex.

Divide-and-Conquer Multiplication:  Warmup



T (n)    4T n /2 
recursive calls
 

   (n)
add, shift


   T (n)  (n2 )

x = 10001101    y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n)  cheap

Master’s Theorem: a = 4, b=2, c=1   

  1, 𝑂 𝑛୪୭್  ൌ 𝑂 𝑛ଶ
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Recursion Tree

T (n) 
0 if  n  0

4T (n /2)    n otherwise





n

4(n/2)

16(n/4)

4k (n / 2k)

4 lg n 

(1)

T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

...

.
.
.

T (n)  n 2k

k0

lg n

    n
21 lg n 1

21









    2n2 n

T(n/2)

...

.
.
.

.
.
.

.
.
.
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Karatsuba Multiplication

𝑥 ൌ 2/ଶ ·  𝑥ଵ  𝑥                                                                                                
𝑦 ൌ 2/ଶ ·  𝑦ଵ  𝑦                                                                                                 

                                                               

𝑥𝑦 ൌ 2 ·  𝑥ଵ𝑦ଵ  2

ଶ · 𝑥𝑦ଵ  𝑥ଵ𝑦  𝑥𝑦                                                 

    ൌ 2 ·  𝑥ଵ𝑦ଵ  2

మ · 𝑥  𝑥ଵ 𝑦  𝑦ଵ െ 𝑥𝑦 െ 𝑥ଵ𝑦ଵ  𝑥𝑦

1 2 1 33
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Theorem.  [Karatsuba-Ofman 1962]  Can multiply two n-bit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

           )()(2/12/2/)(
shiftsubtract, add,calls recursive

nTnnTnTnTnT 
  

𝑥 ൌ 2/ଶ ·  𝑥ଵ  𝑥                                                                                                
𝑦 ൌ 2/ଶ ·  𝑦ଵ  𝑦                                                                                                 

                                                               

𝑥𝑦 ൌ 2 ·  𝑥ଵ𝑦ଵ  2

ଶ · 𝑥𝑦ଵ  𝑥ଵ𝑦  𝑥𝑦                                                 

    ൌ 2 ·  𝑥ଵ𝑦ଵ  2

మ · 𝑥  𝑥ଵ 𝑦  𝑦ଵ െ 𝑥𝑦 െ 𝑥ଵ𝑦ଵ  𝑥𝑦

1 2 1 33

Master’s Theorem: a = 3, b=2, c=1   

  1 ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭್ 

[logଶ 3 ൏ 1.585]
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Karatsuba:  Recursion Tree

T (n) 
0 if  n  0

3T (n /2)    n otherwise





n

3(n/2)

9(n/4)

T(n) 

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T (n)  n  3
2 

k

k0

lg n

    n
3
2 

1 lg n 1
3
2 1











    3n lg 3 2n

3 lg n 

(1)
T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)
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.
.

.
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.

.
.
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.
.
.

3k (n / 2k)
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Integer division.  Given two n-bit (or less) integers s and t,
compute quotient q = s / t and remainder r = s mod t (such that s=qt+r).

Fact.  Complexity of integer division is (almost) same as integer 
multiplication.
To compute quotient q:
 Approximate x = 1 / t using Newton's method:
 After i=log n iterations, either q = s xi or q = s xi.

– If s x t > s then q = s x (1 multiplication)
– Otherwise q = s x
– r=s-qt (1 multiplication)

 Total: O(log n) multiplications and subtractions

xi1    2xi  t xi
2

Fast Integer Division Too (!)

using fast
multiplication

Toom-3 Generalization

𝑎 ൌ 2ଶ/ଷ · 𝑎ଶ  2

ଷ · 𝑎ଵ  𝑎

𝑏 ൌ 2ଶ/ଷ · 𝑏ଶ  2

ଷ · 𝑏ଵ  𝑏

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭య ହ

Toom-Cook Generalization (split into k parts): 

𝑎 ൌ 2
ሺିଵሻ

 · 𝑎ିଵ  ⋯  2

 · 𝑎ଵ  𝑎

  𝑏 ൌ 2
ሺିଵሻ

 · 𝑎  ⋯  2

 · 𝑎ଵ  𝑎      

𝑇𝑘 𝑛 ൌ 2𝑘 െ 1 · 𝑇𝑘

𝑛
𝑘

 𝑂 𝑛 ⇒ 𝑇𝑘 𝑛 ∈ 𝑂 𝑛୪୭ೖ ଶିଵ              

33

ൎ 1.465

lim
→ஶ

log 2𝑘 െ 1 ൌ 1

Split into 3 parts

∀𝜀  0∃𝑘 s.t 𝑇𝑘 𝑛 ∈ 𝑂 𝑛ଵାఌ

Toom-3 Generalization

𝑎 ൌ 2ଶ/ଷ · 𝑎ଶ  2

ଷ · 𝑎ଵ  𝑎

𝑏 ൌ 2ଶ/ଷ · 𝑏ଶ  2

ଷ · 𝑏ଵ  𝑏

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭య ହ

Schönhage–Strassen algorithm
𝑇 𝑛 ∈ 𝑂 𝑛 log 𝑛 log log 𝑛  

Only used for really big numbers: a  2ଶభఱ

State of the Art: 𝑂 𝑛 log 𝑛  𝑔ሺ𝑛ሻ  for increasing small
𝑔ሺ𝑛ሻ ≪ log log 𝑛

34

ൎ 1.465

Split into 3 parts

Matrix Multiplication

36

Dot product.  Given two length n vectors a and b, compute c = a  b.
Grade-school.   (n) arithmetic operations.

Remark. Grade-school dot product algorithm is optimal.

Dot Product

a  b  ai bi
i1

n



a   .70 .20 .10 
b   .30 .40 .30 
a    b    (.70  .30)    (.20  .40)    (.10  .30)    .32
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.
Grade-school.   (n3) arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication

cij  aik bkj
k1

n



  

c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn





















a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann





















b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn



















.59 .32 .41

.31 .36 .25

.45 .31 .42


















.70 .20 .10

.30 .60 .10

.50 .10 .40
















       

.80 .30 .50

.10 .40 .10

.10 .30 .40

















38

Block Matrix Multiplication

152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















   

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















   

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11
A11 A12 B11

B21

𝐶ଵଵ ൌ 𝐴ଵଵ ൈ 𝐵ଵଵ  𝐴ଵଶ ൈ 𝐵ଶଵ                                           

ൌ 0 1
4 5

ൈ 16 17
20 21

 2 3
6 7

ൈ 24 25
28 29

ൌ 152 158
504 526
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Matrix Multiplication:  Warmup

To multiply two n-by-n matrices A and B:
 Divide:  partition A and B into ½n-by-½n blocks.
 Conquer:  multiply 8 pairs of ½n-by-½n matrices, recursively.
 Combine:  add appropriate products using 4 matrix additions.

  

C11  A11  B11    A12  B21 
C12  A11  B12    A12  B22 
C21  A21  B11    A22  B21 
C22  A21  B12    A22  B22 

C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls
 

   (n2 )
add, form submatrices
  

 T (n)  (n3)
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Fast Matrix Multiplication

Key idea.  multiply 2-by-2 blocks with only 7 multiplications.

 7 multiplications.
 18 = 8 + 10 additions and subtractions.

  

P1  A11  (B12  B22 )

P2  ( A11  A12 )  B22

P3  ( A21  A22 )  B11

P4  A22  (B21  B11)

P5  ( A11  A22 )  (B11  B22 )

P6  ( A12  A22 )  (B21  B22 )

P7  ( A11  A21)  (B11  B12 )  

C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

  

C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22
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Fast Matrix Multiplication

To multiply two n-by-n matrices A and B:   [Strassen 1969]
 Divide:  partition A and B into ½n-by-½n blocks.
 Compute: 14 ½n-by-½n matrices via 10 matrix additions.
 Conquer:  multiply 7 pairs of ½n-by-½n matrices, recursively.
 Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.
 T(n) = # arithmetic operations.

 Apply Master Theorem (a=7,b=2,c=2)
–



 ൌ


ସ
 1   ⟹ 𝑇 𝑛 ൌ Θ 𝑛୪୭್  ൌ Θ 𝑛୪୭మ  ൌ Θ 𝑛ଶ.଼ଵ



T (n)  7T n /2 
recursive calls
 

 (n2 )
add, subtract

  
 T (n)  (n log2 7 ) O(n2.81)

42

Fast Matrix Multiplication:  Practice

Implementation issues.
 Sparsity.
 Caching effects.
 Numerical stability.
 Odd matrix dimensions.
 Crossover to classical algorithm around n = 128. 

Common misperception.  “Strassen is only a theoretical curiosity.”

 Apple reports 8x speedup on G4 Velocity Engine when 
n  2,500.

 Range of instances where it's useful is a subject of 
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, 
SVD, ….
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Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication:  Theory

Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

   (n log3 21)  O(n 2.77 )

O(n 2.7801)

  (n log2 6) O(n 2.59 )

(n log2 7 ) O(n 2.807 )A. Yes!   [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible.  [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799 )

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)

44

Fast Matrix Multiplication:  Theory

Best known.  O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.373) [Williams, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.3729) [Le Gall, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.

Extra Slides


