
2/4/2019

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)

Recap: Divide and Conquer

2

Key Paradigm in Algorithm Design:
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Merge-Sort: Sort a list in time O(n log n)
• Split list in half and sort each half
• Merge the sorted lists

Recurrence Relationships
• Solving: Recursion Trees, Telescoping, Induction
• Master Theorem: Generic solution for T(n) = a T(n/b)+nc

• Other Recurrence Relationships

Counting Inversions: (in time O(n log n))
• Count number of pairs i < j s.t. A[i] > A[j]
• Merge and Sort

3

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

4

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves.
 Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

     )log()T()(2/2/)(nnOnnOnTnTnT 

6 3 2 2 0 0

to maintain sorted invariant

play

5

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A)  Sort-and-Count(A)
(rB, B)  Sort-and-Count(B)
(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4 Closest Pair of Points

2/4/2019

Copyright 2000, Kevin Wayne 2

7

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with (n2)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

8

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

9

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

10

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.

L

11

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.

12

21

L

12

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.
 Combine: find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like (n2)

2/4/2019

Copyright 2000, Kevin Wayne 3

13

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

14

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.

12

21



L

 = min(12, 21)

15

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

16

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

17

Closest Pair of Points

Def. Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim. If |i – j|  12, then the distance between
si and sj is at least .
Pf.
 No two points lie in same ½-by-½ box.
 Two points at least 2 rows apart

have distance  2(½). ▪



27

29
30

31

28

26

25



½

2 rows
½

½

39

i

j

Fact. Still true if we replace 12 with 7.

18

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

1 = Closest-Pair(left half)
2 = Closest-Pair(right half)
 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than , update .

return .
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

2/4/2019

Copyright 2000, Kevin Wayne 4

19

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
 Each recursive returns two lists: all points sorted by y

coordinate, and all points sorted by x coordinate.
 Sort by merging two pre-sorted lists.

 T(n)  2T n /2   O(n)  T(n)  O(n log n)

 T(n)  2T n /2   O(n log n)  T(n)  O(n log2 n)

5.5 Integer Multiplication

21

Motivation: Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school. x = ac - bd, y = bc + ad.

Q. Is it possible to do with fewer multiplications?

4 multiplications, 2 additions

Our Prices Are Fantastic!
Multiplication: $100 (reals only ℝ)
Addition: $1 (reals only ℝ)

$402 for Grade-School Approach: 4
multiplications, 2 additions

22

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school. x = ac - bd, y = bc + ad.

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x = ac - bd, y = (a + b) (c + d) - ac - bd.

(= ac + ad + bc + bd - ac – bd = bc + ad)

Remark. Improvement if no hardware multiply.

4 multiplications, 2 additions

3 multiplications, 5 additions ($305)

23

Addition. Given two n-bit integers x and y, compute x + y.
Grade-school. (n) bit operations.

Remark. Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

24

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x  y.
Grade-school. (n2) bit operations.

Q. Is grade-school multiplication algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0



2/4/2019

Copyright 2000, Kevin Wayne 5

25

To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 · 𝒙𝟏 ൅ 𝒙𝟎
𝒚 ൌ 𝟐𝒏/𝟐 · 𝒚𝟏 ൅ 𝒚𝟎

𝒙𝒚 ൌ 𝟐𝒏/𝟐 · 𝒙𝟏 ൅ 𝒙𝟎 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication: Warmup



T (n)  4T n /2 
recursive calls
 

  (n)
add, shift


  T (n)  (n2)

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

26

To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙 ൌ 𝟐𝒏/𝟐 · 𝒙𝟏 ൅ 𝒙𝟎
𝒚 ൌ 𝟐𝒏/𝟐 · 𝒚𝟏 ൅ 𝒚𝟎

𝒙𝒚 ൌ 𝟐𝒏/𝟐 · 𝒙𝟏 ൅ 𝒙𝟎 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication: Warmup



T (n)  4T n /2 
recursive calls
 

  (n)
add, shift


  T (n)  (n2)

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n) cheap

Master’s Theorem: a = 4, b=2, c=1 ௔

௕೎ ൐ 1, 𝑂 𝑛୪୭୥್ ௔ ൌ 𝑂 𝑛ଶ

27

To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝑥 ൌ 2௡/ଶ · 𝑥ଵ ൅ 𝑥଴
𝑦 ൌ 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

𝑥𝑦 ൌ 2௡/ଶ · 𝑥ଵ ൅ 𝑥଴ 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

Ex.

Divide-and-Conquer Multiplication: Warmup



T (n)  4T n /2 
recursive calls
 

  (n)
add, shift


  T (n)  (n2)

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n) cheap

Master’s Theorem: a = 4, b=2, c=1 ௔

௕೎ ൐ 1, 𝑂 𝑛୪୭୥್ ௔ ൌ 𝑂 𝑛ଶ

28

Recursion Tree

T (n) 
0 if n  0

4T (n /2)  n otherwise





n

4(n/2)

16(n/4)

4k (n / 2k)

4 lg n

(1)

T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

...

.
.
.

T (n)  n 2k

k0

lg n

  n
21 lg n 1

21









  2n2 n

T(n/2)

...

.
.
.

.
.
.

.
.
.

29

To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Karatsuba Multiplication

𝑥 ൌ 2௡/ଶ · 𝑥ଵ ൅ 𝑥଴
𝑦 ൌ 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

𝑥𝑦 ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

 ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
೙
మ · 𝑥଴ ൅ 𝑥ଵ 𝑦଴ ൅ 𝑦ଵ െ 𝑥଴𝑦଴ െ 𝑥ଵ𝑦ଵ ൅ 𝑥଴𝑦଴

1 2 1 33

30

To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

         )()(2/12/2/)(
shiftsubtract, add,calls recursive

nTnnTnTnTnT 
  

𝑥 ൌ 2௡/ଶ · 𝑥ଵ ൅ 𝑥଴
𝑦 ൌ 2௡/ଶ · 𝑦ଵ ൅ 𝑦଴

𝑥𝑦 ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
௡
ଶ · 𝑥଴𝑦ଵ ൅ 𝑥ଵ𝑦଴ ൅ 𝑥଴𝑦଴

 ൌ 2௡ · 𝑥ଵ𝑦ଵ ൅ 2
೙
మ · 𝑥଴ ൅ 𝑥ଵ 𝑦଴ ൅ 𝑦ଵ െ 𝑥଴𝑦଴ െ 𝑥ଵ𝑦ଵ ൅ 𝑥଴𝑦଴

1 2 1 33

Master’s Theorem: a = 3, b=2, c=1 ௔

௕೎ ൐ 1 ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥್ ௔

[logଶ 3 ൏ 1.585]

2/4/2019

Copyright 2000, Kevin Wayne 6

31

Karatsuba: Recursion Tree

T (n) 
0 if n  0

3T (n /2)  n otherwise





n

3(n/2)

9(n/4)

T(n)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T (n)  n 3
2 

k

k0

lg n

  n
3
2 

1 lg n 1
3
2 1











  3n lg 3 2n

3 lg n

(1)
T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

...

.
.
.

.
.
.

.
.
.

.
.
.

3k (n / 2k)

32

Integer division. Given two n-bit (or less) integers s and t,
compute quotient q = s / t and remainder r = s mod t (such that s=qt+r).

Fact. Complexity of integer division is (almost) same as integer
multiplication.
To compute quotient q:
 Approximate x = 1 / t using Newton's method:
 After i=log n iterations, either q = s xi or q = s xi.

– If s x t > s then q = s x (1 multiplication)
– Otherwise q = s x
– r=s-qt (1 multiplication)

 Total: O(log n) multiplications and subtractions

xi1  2xi  t xi
2

Fast Integer Division Too (!)

using fast
multiplication

Toom-3 Generalization

𝑎 ൌ 2ଶ௡/ଷ · 𝑎ଶ ൅ 2
௡
ଷ · 𝑎ଵ ൅ 𝑎଴

𝑏 ൌ 2ଶ௡/ଷ · 𝑏ଶ ൅ 2
௡
ଷ · 𝑏ଵ ൅ 𝑏଴

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

൅ 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥య ହ

Toom-Cook Generalization (split into k parts):

𝑎 ൌ 2
௡ሺ௞ିଵሻ

௞ · 𝑎௞ିଵ ൅ ⋯ ൅ 2
௡
௞ · 𝑎ଵ ൅ 𝑎଴

 𝑏 ൌ 2
௡ሺ௞ିଵሻ

௞ · 𝑎௞ ൅ ⋯ ൅ 2
௡
௞ · 𝑎ଵ ൅ 𝑎଴

𝑇𝑘 𝑛 ൌ 2𝑘 െ 1 · 𝑇𝑘

𝑛
𝑘

൅ 𝑂 𝑛 ⇒ 𝑇𝑘 𝑛 ∈ 𝑂 𝑛୪୭୥ೖ ଶ௞ିଵ

33

ൎ 1.465

lim
௞→ஶ

log௞ 2𝑘 െ 1 ൌ 1

Split into 3 parts

∀𝜀 ൐ 0∃𝑘 s.t 𝑇𝑘 𝑛 ∈ 𝑂 𝑛ଵାఌ

Toom-3 Generalization

𝑎 ൌ 2ଶ௡/ଷ · 𝑎ଶ ൅ 2
௡
ଷ · 𝑎ଵ ൅ 𝑎଴

𝑏 ൌ 2ଶ௡/ଷ · 𝑏ଶ ൅ 2
௡
ଷ · 𝑏ଵ ൅ 𝑏଴

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇 𝑛 ൌ 5 · 𝑇
𝑛
3

൅ 𝑂ሺ𝑛ሻ ⇒ 𝑇 𝑛 ∈ 𝑂 𝑛୪୭୥య ହ

Schönhage–Strassen algorithm
𝑇 𝑛 ∈ 𝑂 𝑛 log 𝑛 log log 𝑛

Only used for really big numbers: a ൐ 2ଶభఱ

State of the Art: 𝑂 𝑛 log 𝑛 𝑔ሺ𝑛ሻ for increasing small
𝑔ሺ𝑛ሻ ≪ log log 𝑛

34

ൎ 1.465

Split into 3 parts

Matrix Multiplication

36

Dot product. Given two length n vectors a and b, compute c = a  b.
Grade-school. (n) arithmetic operations.

Remark. Grade-school dot product algorithm is optimal.

Dot Product

a  b  ai bi
i1

n



a  .70 .20 .10 
b  .30 .40 .30 
a  b  (.70  .30)  (.20  .40)  (.10  .30)  .32

2/4/2019

Copyright 2000, Kevin Wayne 7

37

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
Grade-school. (n3) arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication

cij  aik bkj
k1

n





c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn





















a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann





















b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn



















.59 .32 .41

.31 .36 .25

.45 .31 .42


















.70 .20 .10

.30 .60 .10

.50 .10 .40
















 

.80 .30 .50

.10 .40 .10

.10 .30 .40

















38

Block Matrix Multiplication

152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















 

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11
A11 A12 B11

B21

𝐶ଵଵ ൌ 𝐴ଵଵ ൈ 𝐵ଵଵ ൅ 𝐴ଵଶ ൈ 𝐵ଶଵ

ൌ 0 1
4 5

ൈ 16 17
20 21

൅ 2 3
6 7

ൈ 24 25
28 29

ൌ 152 158
504 526

39

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
 Divide: partition A and B into ½n-by-½n blocks.
 Conquer: multiply 8 pairs of ½n-by-½n matrices, recursively.
 Combine: add appropriate products using 4 matrix additions.

C11  A11  B11   A12  B21 
C12  A11  B12   A12  B22 
C21  A21  B11   A22  B21 
C22  A21  B12   A22  B22 

C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls
 

  (n2)
add, form submatrices
  

 T (n)  (n3)

40

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

 7 multiplications.
 18 = 8 + 10 additions and subtractions.

P1  A11  (B12  B22)

P2  (A11  A12)  B22

P3  (A21  A22)  B11

P4  A22  (B21  B11)

P5  (A11  A22)  (B11  B22)

P6  (A12  A22)  (B21  B22)

P7  (A11  A21)  (B11  B12)

C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22











41

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
 Divide: partition A and B into ½n-by-½n blocks.
 Compute: 14 ½n-by-½n matrices via 10 matrix additions.
 Conquer: multiply 7 pairs of ½n-by-½n matrices, recursively.
 Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
 T(n) = # arithmetic operations.

 Apply Master Theorem (a=7,b=2,c=2)
–

௔

௕೎ ൌ
଻

ସ
൐ 1 ⟹ 𝑇 𝑛 ൌ Θ 𝑛୪୭୥್ ௔ ൌ Θ 𝑛୪୭୥మ ଻ ൌ Θ 𝑛ଶ.଼ଵ



T (n)  7T n /2 
recursive calls
 

 (n2)
add, subtract

  
 T (n)  (n log2 7) O(n2.81)

42

Fast Matrix Multiplication: Practice

Implementation issues.
 Sparsity.
 Caching effects.
 Numerical stability.
 Odd matrix dimensions.
 Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”

 Apple reports 8x speedup on G4 Velocity Engine when
n  2,500.

 Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues,
SVD, ….

2/4/2019

Copyright 2000, Kevin Wayne 8

43

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?

  (n log3 21)  O(n 2.77)

O(n 2.7801)

 (n log2 6) O(n 2.59)

(n log2 7) O(n 2.807)A. Yes! [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799)

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)

44

Fast Matrix Multiplication: Theory

Best known. O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture. O(n2+) for any  > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

45

Fast Matrix Multiplication: Theory

Best known. O(n2.373) [Williams, 2014]

Conjecture. O(n2+) for any  > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

46

Fast Matrix Multiplication: Theory

Best known. O(n2.3729) [Le Gall, 2014]

Conjecture. O(n2+) for any  > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Extra Slides

