CS 580: Algorithm Design and Analysis
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Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5t at 11:59PM (Gradescope)

Recap: Divide and Conquer

Key Paradigm in Algorithm Design:

- Break up problem into several parts.

. Solve each part recursively.

. Combine solutions to sub-problems into overall solution.

Merge-Sort: Sort alist in time O(n log n)
Split list in half and sort each half
Merge the sorted lists

Recurrence Relationships
Solving: Recursion Trees, Telescoping, Induction
Master Theorem: Generic solution for T(n) = a T(n/b)+nc
Other Recurrence Relationships

Counting Inversions: (in time O(n log n))
Count number of pairs i< js.t. A[i]> A[j]
Merge and Sort

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

. Divide: separate list into two pieces.

- Conquer: recursively count inversions in each half.

+ Combine: count inversions where a; and q; are in different halves,
and return sum of three quantities.

1 5 4 8 102 6 9 1211 3 7 Divide: O(1).

OOOHE OEEOEE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions
5-3,4-3,8-6, 8-3,8-7,10-6, 10-9, 10-3,10-7

Combine: ?2?2?

Total =5+ 8 +9 =22

Counting Inversions: Combine

Combine: count blue-green inversions

« Assume each half is sorted.

+ Count inversions where q; and q; are in different halves.
. Merge two sorted halves into sorted whole.

to maintain sorted invariant

OOOE BONE0E
6 3 2 0 0

13 blue-green inversions: 6+3+2+2+0+0  Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25
Merge: O(n)

TM<T(n/2))+T(n/2])+OM)=T(n) =O(nlogn)

BVl

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(rp, A) « Sort-and-Count(A)

(rg, B) « Sort-and-Count(B)

(r , L) « Merge-and-Count(A, B)

return r = r, + ry + r and the sorted list L

5.4 Closest Pair of Points
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Closest Pair of Points

Euclidean distance between them.

Fundamental geometric primitive.

. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ®(n?)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

fo make presentation cleaner

Closest pair. Given n points in the plane, find a pair with smallest

2/4/2019

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
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Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
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Closest Pair of Points
Algorithm.

. Conguer: find closest pair in each side recursively.

° L . . °
N
1}0 © ° ° ; ° o

. Divide: draw vertical line L so that roughly $n points on each side.
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Closest Pair of Points

Algorithm.

. Divide: draw vertical line L so that roughly $n points on each side.

. Conquer: find closest pair in each side recursively.

. Combine: find closest pair with one point in each side. « seems like 6(n?)
- Return best of 3 solutions.
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.

° L . . °
° ° °
° O L
°
° ° o® /21
° S °
°
];2/0 O ° ° ° O
° ° ° .
° °

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.
- Sort points in 25-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.
- Sort points in 25-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list!

o ° ° o
° °
° L
o
o
°
° O °
°o
L ° °
o
i
Closest Pair of Points
Def. Let s; be the point in the 25-strip, with
the ith smallest y-coordinate.
(XX ]
o Claim. If |i- j| =12, then the distance between
o s;and s; is af least 8.
Pf.
. No two points lie in same 33-by-£5 box.
2 rows « Two points at least 2 rows apart
(%) (o] 15 have distance > 2(13). -
i~ @ @
= (22 Fact. Still true if we replace 12 with 7.
(XX ]
8 8

12

«* ° S .
° ° °

e
|s
Closest Pair Algorithm
Closest-Pair(p;, .., py) {
Compute separation line L such that half the points 0O(n log n)

are on one side and half on the other side.

8, = Closest-Pair(left half) 2T 2)

Closest-Pair(right half)
5 = min(s,, &)

Delete all points further than & from separation line L  O(n)

Sort remaining points by y-coordinate. O(n log n)

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these O(n)

distances is less than 8, update 3.

return §.
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Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log”n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.

. Sort by merging two pre-sorted lists.

T(n) <2T(n/2) + O(n) = T(n) = O(n logn)

5.5 Integer Multiplication

Motivation: Complex Multiplication

Complex multiplication. (a+ bi) (c+di)=x+yi.

Grade-school. x=ac-hd, y=bc+ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

e Our Prices Are Fantastic!
s Multiplication: $100 (reals only R)
s o) Ask Addition: $1  (reals only R)
- v

) @

$402 for Grade-School Approach: 4
multiplications, 2 additions

Complex Multiplication

Complex multiplication. (a+ bi) (c+di)=x+yi.

Grade-school. x=ac-hd, y=bhc +ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.
(=ac +ad +bc +bd - ac —bd = bc + ad)

3 multiplications, 5 additions ($305)

Remark. Improvement if no hardware multiply.

Integer Addition

Addition. Given two n-bit integers x and y, compute x +y.
Grade-school. ©(n) bit operations.

1 1 1 1 1 1 0 1
11 0 1 0 1 0 1

+ 0 1 1 1 1 1 0 1

i1 0 1 0 1 O O 1 O

Remark. Grade-school addition algorithm is optimal.

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x x y.
Grade-school. ©(n?) bit operations.

11010101
x01111101
11010101
000000000
110101010
110101010
110101010
110101010
110101010
00000000O

0110100000000001

Q. Is grade-school multiplication algorithm optimal?
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Divide-and-Conquer Multiplication: Warmup Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
. Multiply four 3n-bit integers, recursively.
. Add and shift to obtain result.

To multiply two n-bit integers x and y:
« Multiply four 3n-bit integers, recursively.
. Add and shift to obtain result.

—on/2, =2n/2.
x=2 12 *1t X x=2 /2 *1+ X " Bit Shifts: O(n) cheap
y=2"%y1+yo y=2"%y; +
xy = (2% x1 +x0)(2"2 - 31+ ¥0) xy = (22 %1 + x0)(ZV? - y1 +¥0)
n n

=2" x;y1 + 22 (xo¥1 + X1)0) + XoYo =2" xyy; + 22 (¥ + X1)0) + XoYo
o e o o () e o o

Ex. X = 10001101 y = 11100001 Ex. X = 10001101 y = 11100001
[t [en—r " e e ")
X1 % Vi Yo X % i Yo

T) = 4T(/2) + ©() = T(M)=6(n")
=y,

recursive calls add, shift

T(n) = 4T(n/2) + 6(M) = T(n)=0O(n%)
—>
recursive calls add, shift

Master's Theorem: a = 4,b=2, c=1 (%) >1,0(n'8 ) = 0(n?)

Divide-and-Conquer Multiplication: Warmup Recursion Tree

To multiply two n-bit integers x and y: T(")i{ 3 =0 D)= Aszn ot - n(zl,ngn_
« Multiply four $n-bit integers, recursively. 4T(n/2) + n  otherwise P 2-1
- Add and shift fo obtain result.

T(n) n

_on/z.,
x=2 X~ pit shifts: O(n) cheap

yoy,
zn/z//f/ +
x = T+ X)EVE 14 90) %(nﬁ) T(n/2% 472

=2"- X1Y1 +22- (xo)’l + x13’0) +xoY0
//
/

Ex. = 10001101 = 11100001
*=EEEE YR EEEE T(V/AYT(/AYT(N/A) T(n/A) - T(n/4)T(n/AYT(n/4)T(n/4)  16(n/a)
X X Y1 Yo o .
T(n) = 4T(/2) + O(n) = T(n)=0(n%)
== T s 29
Master's Theorem: a = 4, b=2, c=1 (%) >1,0(n'8r @) = 0(n?) I
T T(2) T2 T2 - T(2) T(2) T(2) T(2) 4lan
(€3]

Karatsuba Multiplication Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two 3n bit integers.
. Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

To multiply two n-bit integers x and y:
. Add two #n bit integers.
. Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.
x =22 %, +x,

x=2"2%. x; +x, y=2"2y+y,

y=2"2y+y, N
N xy =2" 0y *nﬁ - (xo¥1 + x1¥0) + XoYo
xy =2"- X *nﬁ - (xy1 + x10) + Xo¥o =2 a0y yn 4+ 22 - (o + x) 0o + Y1) — XoYo — ¥11) + %00
=2"- "1)’1+2;'((xo+X1)(J'0+J’1)*XU}’U*"1)’1)*’50)’0 o o ;] [ ] -]
(] (-] o (] o Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'%) bit operations.
TM<T(n/2 4T (/2 T (14 n/2])+ om =T

add, subtract,shift

recursive calls

Master's Theorem: a = 3, b=2, c=1 (ﬁ) > 1= T(n) € 0(n'8r @)
[log, 3 < 1.585]

0
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Karatsuba: Recursion Tree

0 ifn=0 = k @
- - Tn) = oY = _
U { 3T(n/2) + n otherwise ® E’o ne) n i1
T(n)
T(n/2) T("/2) T(/2)

ANEVZANNEVANN

T(/4A)T(n/4)T(n/4) T(n/4XT(n/4YT(N/4) T(n/4XT (n/4)T(n/4)

T(n 7 2

T 7@ T T T T T@) 1>

3n'3—2n

3(n/2)

9(n/4)

3 (n /7 2%

3 lgn
@

Fast Integer Division Too (1)

Integer division. Given two n-bit (or less) integers s and t,
compute quotient q=Ls/t]and remainder r =s mod t (such that s=qt+r).

Fact. Complexity of integer division is (almost) same as integer
multiplication.
To compute quotient q: X, = 2% — tx’e— using fast
. Approximate x =1/t using Newton's method: multiplication
. Affer izlog n iterations, either q=[sx] or q=sx].
- If Lsx) 1 > s then q =Is x] (1 multiplication)
- Otherwise q=LsxJ
- r=s-qt (1 multiplication)

. Total: O(log n) multiplications and subtractions

Toom-3 Generalization

i n
a:ZZ"/"-aZ+2131-a,+ao

Split into 3 parts p=22n/3. by + 23 by + by

n

T(n):S-T(3

)+0(m) =T € o(n/‘:’gs 5)
~ 1.465
Toom-Cook Generalization (split into k parts):

n(k-1) n
a=2" Kk agq+-+2k-a;+ag

n(k-1) n
b=2"k -ag+-+2k-a;+ay

To(n) = 2k — 1) Ty (E) +0(n) > T, (n) € 0(n'o8Ck-D)

Ve > 03k s.t Ty (n) € O(n'*%) Jim (logy 2k ~ 1)) =1

Regquires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

Toom-3 Generalization

n
— a=2""P.a;+23-a+a
Splitinto 3 parts b = 22n/3 ~by +23 by + by

Regquires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
n

T(n):5<T(3

)+0@m) =T e o(nf’gﬁ)

~ 1.465

Schonhage-Strassen algorithm
T(n) € 0(n Togn Toglogn)

Only used for really big numbers: a > 22*°

State of the Art: 0(n logn g(n)) for increasing small
g(n) < loglogn

Matrix Multiplication

Dot Product

Dot product. Given two length n vectors a and b, compute c =a-b.

Grade-school. ©(n) arithmetic operations. 7
a-b=3ahb
o

a=[70 20 .10]

b =[30 40 30]
a- b = (70 .30) + (20 x 40) + (.10 x .30) = .32

Remark. Grade-school dot product algorithm is optimal.
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Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
[,

Grade-school.  ©(n%) arithmetic operations.

o
¢ G G| & a. & b b b,
O N E VI W B [ N
¢ ¢ o) la,a. - al b, b b,
59 42 41 0 .80 30 50
31036 .25 = .30 .60 .10| x 10 48 .10
45 31 42 .50 .10 40 100 300 40

Q. Is grade-school matrix multiplication algorithm optimal?

f
=2 a, bkj
[

Block Matrix Multiplication

/c,‘ /AH/AU /Bu

158 164 170 0 1 s e 17 18 19
504 326 548 70 4 5 6 7| |20 21 22 23

856 894 932 970 8 9 10 11 * 24 35 26 27
1208 1262 1316 1370, 12 13 14 15 28 29 30 31

Ciy = Ay X Byg + Aqp X By,

=i slxo 2l+ls Ax[s 2l

- [1s2 158
504 526

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
. Divide: partition A and B into $n-by-2n blocks.
. Conquer: multiply 8 pairs of 3n-by-3n matrices, recursively.

. Combine: add appropriate products using 4 matrix additions.

CZI CZZ AZI AZZ BZl BZZ

C, = (AixBy)+ (A;xBy)

Cy = (A21XB||)+(Azszzl)
Cy = (A21XB|2)+(A22XB22)

Tm=8T(M/2)+ O

add, form submarices

= T(=0en’)

recursive calls

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.
CHNC, B, B,
R B T I
2 Co A Ay b By

Po= (A +A)xBy,

Py = (Ay+Ay)x By

Ci = R+R-R+R Py o= Aux(By-By)

C, = R+PR Py = (A +An)x(B +By)
C, = P+R P = (Ap=Ayn)x (B +By)
C, = R+R-R-P Pro= (A=A x(B +By)

« 7 multiplications.
. 18 =8+ 10 additions and subtractions.

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]

. Divide: partition A and B into $n-by-4n blocks.

. Compute: 14 $n-by-3n matrices via 10 matrix additions.

. Conquer: multiply 7 pairs of 2n-by-3n matrices, recursively.
. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
. T(n) = # arithmetic operations.

T()=7T(M/2)+ OM) = T()=6n"")=0n"")
recursive calls ‘add, subtract
. Apply Master Theorem (a=7,b=2,c=2)

- ;7) = % >1 =Th)= E)(n]"gb “) = o(nloe: 7) = 0(n?81)

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.

« Caching effects.

« Numerical stability.

. Odd matrix dimensions.

. Crossover to classical algorithm around n=128.

Common misperception. “Strassen is only a theoretical curiosity.”
- Apple reports 8x speedup on G4 Velocity Engine when
n ~ 2,500.
. Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues,
SVD, ...
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Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] oM7) =0n")

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] oY —0m™*)
Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. On*»?)=0m>")

Begun, the decimal wars have. [Pan, Bini et al, Schénhage, ...]

. Two 20-by-20 matrices with 4,460 scalar multiplications. o)
« Two 48-by-48 matrices with 47,217 scalar multiplications. o™
. Ayear later. om>™)
. December, 1979. oM )
- January, 1980. o 22y

Fast Matrix Multiplication: Theory

———

20 ——r—rl—r—
EoE Y N BT BT T 0 58 e

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n*>37) [Coppersmith-Winograd, 1987]
Conjecture. O(n**¢) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

T
A S N BT 6T 7R S0 B8l 662

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n?37%) [Williams, 2014]
Conjecture. O(n**®) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

———

20 ——r—rl—r—
EoE Y N BT BT T 0 58 e

PG L i) i the bt e3ment ammownied by fime .

Best known. O(n>37%%) [Le Gall, 2014]
Conjecture. O(n**¢) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Extra Slides
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