Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)
Recap: Divide and Conquer

Key Paradigm in Algorithm Design:
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Merge-Sort: Sort a list in time $O(n \log n)$
- Split list in half and sort each half
- Merge the sorted lists

Recurrence Relationships
- Solving: Recursion Trees, Telescoping, Induction
- Master Theorem: Generic solution for $T(n) = a \cdot T(n/b) + n^c$
- Other Recurrence Relationships

Counting Inversions: (in time $O(n \log n)$)
- Count number of pairs $i < j$ s.t. $A[i] > A[j]$
- Merge and Sort
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.
- **Combine:** count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 \\
\end{array}
\]

5 blue-blue inversions

\[
\begin{array}{cccccccc}
6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

8 green-green inversions

Conquer: \(2T(n / 2) \)

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- **Merge** two sorted halves into sorted whole.

\[
\begin{array}{cccccccc}
3 & 7 & 10 & 14 & 18 & 19 & 2 & 11 & 16 & 17 & 23 & 25
\end{array}
\]

13 blue-green inversions: $6 + 3 + 2 + 2 + 0 + 0$ \(\text{Count: } O(n) \)

\[
\begin{array}{cccccccc}
2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25
\end{array}
\]

\[
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \Rightarrow T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 \((r_A, A) \leftarrow \text{Sort-and-Count}(A)\)
 \((r_B, B) \leftarrow \text{Sort-and-Count}(B)\)
 \((r, L) \leftarrow \text{Merge-and-Count}(A, B)\)

 return \(r = r_A + r_B + r\) and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
 \ fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.
 \ to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line \(L \) so that roughly \(\frac{1}{2}n \) points on each side.
- **Conquer**: find closest pair in each side recursively.
- **Combine**: find closest pair with one point in each side. \(\rightarrow \) seems like \(\Theta(n^2) \)
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Closest Pair of Points

Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 \textbf{Compute} separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 \textbf{Delete} all points further than \(\delta \) from separation line L

 \textbf{Sort} remaining points by y-coordinate.

 \textbf{Scan} points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

 \textbf{return} \(\delta \).
} O(n \ log n)
2T(n / 2)
O(n)
O(n \ log n)
O(n)
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by \(y \) coordinate, and all points sorted by \(x \) coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n) \]
5.5 Integer Multiplication
Motivation: Complex Multiplication

Complex multiplication. \((a + bi)(c + di) = x + yi\).

Grade-school. \(x = ac - bd, \ y = bc + ad\).

Q. Is it possible to do with fewer multiplications?

Our Prices Are Fantastic!
 Multiplication: $100 (reals only \(\mathbb{R}\))
 Addition: $1 (reals only \(\mathbb{R}\))

$402 for Grade-School Approach: 4 multiplications, 2 additions
Complex Multiplication

Complex multiplication. \((a + bi) (c + di) = x + yi.\)

Grade-school. \(x = ac - bd, \ y = bc + ad.\)

- 4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

A. Yes. [Gauss] \(x = ac - bd, \ y = (a + b) (c + d) - ac - bd.\)

\[= ac + ad + bc + bd - ac - bd = bc + ad\]

- 3 multiplications, 5 additions (305)

Remark. Improvement if no hardware multiply.
Integer Addition

Addition. Given two \(n \)-bit integers \(x \) and \(y \), compute \(x + y \).

Grade-school. \(\Theta(n) \) bit operations.

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
\]

Remark. Grade-school addition algorithm is optimal.
Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute $x \times y$.

Grade-school. $\Theta(n^2)$ bit operations.

Q. Is grade-school multiplication algorithm optimal?
Divide-and-Conquer Multiplication: Warmup

To multiply two \(n\)-bit integers \(x\) and \(y\):

- Multiply four \(\frac{1}{2}n\)-bit integers, recursively.
- Add and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
= 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_0y_1 + x_1y_0) + x_0y_0
\]

Ex. \(x = \underbrace{10001101}_{1} \underbrace{10}_{2} \underbrace{00}_{3} \underbrace{11}_{4}\)
\(y = \underbrace{11100001}_{1} \underbrace{11}_{2} \underbrace{00}_{3} \underbrace{00}_{4}\)

\[
T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)
\]
Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:

- Multiply four $\frac{1}{2}n$-bit integers, recursively.
- Add and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
\]
\[
= 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_0y_1 + x_1y_0) + x_0y_0
\]

Ex. \[
x = 10001101 \quad y = 11100001
\]

\[
T(n) = 4T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^2)
\]

Master's Theorem: $a = 4$, $b=2$, $c=1$ \[
\left(\frac{a}{b^c}\right) > 1, \quad O(n^{\log_b a}) = O(n^2)
\]
Divide-and-Conquer Multiplication: Warmup

To multiply two \(n \)-bit integers \(x \) and \(y \):

- Multiply four \(\frac{1}{2}n \)-bit integers, recursively.
- Add and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
\]
\[
= 2^n \cdot x_1y_1 + 2^{2n/2} \cdot (x_0y_1 + x_1y_0) + x_0y_0
\]

Ex. \(x = 10001101 \) \(y = 11100001 \)

\[
T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)
\]

Master's Theorem: \(a = 4, b=2, c=1 \) \(\left(\frac{a}{b^c}\right) > 1 \), \(O(n^{\log_b a}) = O(n^2) \)
Recursion Tree

\[
T(n) = \begin{cases}
0 & \text{if } n = 0 \\
4T(n/2) + n & \text{otherwise}
\end{cases}
\]

\[
T(n) = \sum_{k=0}^{\lg n} n 2^k = n \left(\frac{2^{\lg n + 1} - 1}{2 - 1} \right) = 2n^2 - n
\]
Karatsuba Multiplication

To multiply two \(n \)-bit integers \(x \) and \(y \):

- Add two \(\frac{1}{2}n \) bit integers.
- Multiply three \(\frac{1}{2}n \)-bit integers, recursively.
- Add, subtract, and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0 \\
y = 2^{n/2} \cdot y_1 + y_0
\]

\[
xy = 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_0y_1 + x_1y_0) + x_0y_0
\]
\[
= 2^n \cdot x_1y_1 + 2^{n/2} \cdot ((x_0 + x_1)(y_0 + y_1) - x_0y_0 - x_1y_1) + x_0y_0
\]
To multiply two n-bit integers x and y:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$-bit integers, recursively.
- Add, subtract, and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_0 y_1 + x_1 y_0) + x_0 y_0
\]
\[
= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_0 + x_1)(y_0 + y_1) - x_0 y_0 - x_1 y_1) + x_0 y_0
\]

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers in $O(n^{1.585})$ bit operations.

\[
T(n) \leq T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + T\left(1 + \left\lceil \frac{n}{2} \right\rceil \right) + \Theta(n) \Rightarrow T(n)
\]

Master's Theorem: $a = 3, b=2, c=1$ \(\left(\frac{a}{bc}\right) > 1 \Rightarrow T(n) \in O\left(n^{\log_b a}\right) \)

[log, 3 < 1.585]
Karatsuba: Recursion Tree

\[
T(n) = \begin{cases}
0 & \text{if } n = 0 \\
3T(n/2) + n & \text{otherwise}
\end{cases}
\]

\[
T(n) = \sum_{k=0}^{\log n} n \left(\frac{3}{2}\right)^k = n \left(\frac{3^{1+\log n} - 1}{\frac{3}{2} - 1}\right) = 3n^{\log 3} - 2n
\]
Integer division. Given two \(n \)-bit (or less) integers \(s \) and \(t \), compute quotient \(q = \lfloor s / t \rfloor \) and remainder \(r = s \bmod t \) (such that \(s = qt + r \)).

Fact. Complexity of integer division is (almost) same as integer multiplication.

To compute quotient \(q \):

- Approximate \(x = 1 / t \) using Newton's method:
 - After \(i = \log n \) iterations, either \(q = \lfloor sx \rfloor \) or \(q = \lceil sx \rceil \).
 - If \(\lfloor sx \rfloor \times t > s \) then \(q = \lceil sx \rceil \) (1 multiplication)
 - Otherwise \(q = \lfloor sx \rfloor \)
 - \(r = s - qt \) (1 multiplication)

- **Total**: \(O(\log n) \) multiplications and subtractions
Toom-3 Generalization

\[a = 2^{\frac{2n}{3}} \cdot a_2 + 2^{\frac{n}{3}} \cdot a_1 + a_0 \]
\[b = 2^{\frac{2n}{3}} \cdot b_2 + 2^{\frac{n}{3}} \cdot b_1 + b_0 \]

Requires: 5 multiplications of \(n/3 \) bit numbers and \(O(1) \) additions, shifts

\[T(n) = 5 \cdot T \left(\frac{n}{3} \right) + O(n) \Rightarrow T(n) \in O(n^{\log_3 5}) \]

≈ 1.465

Toom-Cook Generalization (split into \(k \) parts):

\[a = 2^{\frac{n(k-1)}{k}} \cdot a_{k-1} + \cdots + 2^{\frac{n}{k}} \cdot a_1 + a_0 \]
\[b = 2^{\frac{n(k-1)}{k}} \cdot a_k + \cdots + 2^{\frac{n}{k}} \cdot a_1 + a_0 \]

\[T_k(n) = (2k - 1) \cdot T_k \left(\frac{n}{k} \right) + O(n) \Rightarrow T_k(n) \in O(n^{\log_k (2k-1)}) \]

\[\forall \varepsilon > 0 \exists k \text{ s.t. } T_k(n) \in O(n^{1+\varepsilon}) \]

\[\lim_{k \to \infty} (\log_k (2k - 1)) = 1 \]
Toom-3 Generalization

Split into 3 parts

\[a = 2^{2n/3} \cdot a_2 + 2^{n/3} \cdot a_1 + a_0 \]
\[b = 2^{2n/3} \cdot b_2 + 2^{n/3} \cdot b_1 + b_0 \]

Requires: 5 multiplications of \(n/3 \) bit numbers and \(O(1) \) additions, shifts

\[T(n) = 5 \cdot T \left(\frac{n}{3} \right) + O(n) \Rightarrow T(n) \in O(n^{\log_3 5}) \]

\[\approx 1.465 \]

Schönhage-Strassen algorithm

\[T(n) \in O(n \log n \log \log n) \]

Only used for really big numbers: \(a > 2^{2^{15}} \)

State of the Art: \(O(n \log n \ g(n)) \) for increasing small

\[g(n) \ll \log \log n \]
Matrix Multiplication
Dot Product

Dot product. Given two length \(n \) vectors \(a \) and \(b \), compute \(c = a \cdot b \).

Grade-school. \(\Theta(n) \) arithmetic operations.

\[
a \cdot b = \sum_{i=1}^{n} a_i b_i
\]

\[
a = [.70 \quad .20 \quad .10]
\]
\[
b = [.30 \quad .40 \quad .30]
\]
\[
a \cdot b = (.70 \times .30) + (.20 \times .40) + (.10 \times .30) = .32
\]

Remark. Grade-school dot product algorithm is optimal.
Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C = AB$.

Grade-school. $\Theta(n^3)$ arithmetic operations.

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
\]

\[
\begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\times
\begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{bmatrix}
\]

Q. Is grade-school matrix multiplication algorithm optimal?
Block Matrix Multiplication

$$C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21}$$

$$C_{11} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 16 & 17 \\ 20 & 21 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \times \begin{bmatrix} 24 & 25 \\ 28 & 29 \end{bmatrix}$$

$$C_{11} = \begin{bmatrix} 152 & 158 \\ 504 & 526 \end{bmatrix}$$
Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:

- **Divide:** partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- **Conquer:** multiply 8 pairs of $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices, recursively.
- **Combine:** add appropriate products using 4 matrix additions.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \times
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})
\]
\[
C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})
\]
\[
C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})
\]
\[
C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})
\]

\[
T(n) = 8T(n/2) + \Theta(n^2) \quad \Rightarrow \quad T(n) = \Theta(n^3)
\]

(recursive calls) + (add, form submatrices)
Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\times
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = P_5 + P_4 - P_2 + P_6
\]
\[
C_{12} = P_1 + P_2
\]
\[
C_{21} = P_3 + P_4
\]
\[
C_{22} = P_5 + P_1 - P_3 - P_7
\]

- 7 multiplications.
- 18 = 8 + 10 additions and subtractions.
Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]

- **Divide:** partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- **Compute:** 14 $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices via 10 matrix additions.
- **Conquer:** multiply 7 pairs of $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices, recursively.
- **Combine:** 7 products into 4 terms using 8 matrix additions.

Analysis.

- $T(n) = \#$ arithmetic operations.

\[
T(n) = 7T(n/2) + \Theta(n^2) \quad \Rightarrow \quad T(n) = \Theta(n^\log_2 7) = O(n^{2.81})
\]

- **Apply Master Theorem** ($a=7, b=2, c=2$)
 - $\left(\frac{a}{bc}\right) = \frac{7}{4} > 1 \quad \Rightarrow \quad T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81})$
Fast Matrix Multiplication: Practice

Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n = 128$.

Common misperception. “Strassen is only a theoretical curiosity.”
- Apple reports 8x speedup on G4 Velocity Engine when $n \approx 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $Ax = b$, determinant, eigenvalues, SVD,
Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969]
\[\Theta(n^{\log_2 7}) = O(n^{2.807}) \]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]
\[\Theta(n^{\log_2 6}) = O(n^{2.59}) \]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.
\[\Theta(n^{\log_3 21}) = O(n^{2.77}) \]

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]
- Two 20-by-20 matrices with 4,460 scalar multiplications.
 \[O(n^{2.805}) \]
- Two 48-by-48 matrices with 47,217 scalar multiplications.
 \[O(n^{2.7801}) \]
- A year later.
 \[O(n^{2.7799}) \]
 \[O(n^{2.521813}) \]
 \[O(n^{2.521801}) \]
Fast Matrix Multiplication: Theory

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987]

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.
Fast Matrix Multiplication: Theory

Best known. $O(n^{2.373})$ [Williams, 2014]

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.
Fast Matrix Multiplication: Theory

Best known. $O(n^{2.3729})$ [Le Gall, 2014]

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.
Extra Slides