Recap: Minimum Weight Spanning Trees

- **Cut Property:** Minimum weight edge crossing a cut must be in the MST (assume edge weights are distinct)
- **Cycle Property:** Maximum weight edge in a cycle must not be in the MST (assuming edge weights are distinct)

Prim’s Algorithm
- Repeatedly applies cut property to expand tree
- \(O(m \log n)\) time with Binary Heap
- \(O(m + n \log n)\) time with Fibonacci Heap

Kruskal’s Algorithm
- Consider edges in increasing order of weight
- \(O(m \log n)\) running time.

Union-Find Data Structure

Divide and Conquer

- **Divide-and-Conquer**
 - Break up problem into several parts.
 - Solve each part recursively.
 - Combine solutions to sub-problems into overall solution.

- **Most common usage**
 - Break up problem of size \(n\) into two equal parts of size \(\frac{n}{2}\).
 - Solve two parts recursively.
 - Combine two solutions into overall solution in linear time.

- **Consequence**
 - Brute force: \(n^2\).
 - Divide-and-conquer: \(n \log n\).

5.1 Mergesort

Sorting

- **Sorting** Given \(n\) elements, rearrange in ascending order.

- **Applications**
 - Sort a list of names.
 - Organize an MP3 library.
 - Display Google PageRank results.
 - List RSS news items in reverse chronological order.
 - Find the median.
 - Find the closest pair.
 - Binary search in a database.
 - Identify statistical outliers.
 - Find duplicates in a mailing list.
 - Data compression.
 - Computer graphics.
 - Computational biology.
 - Supply chain management.
 - Book recommendations on Amazon.
 - Load balancing on a parallel computer.

Copyright 2000, Kevin Wayne
Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
T(n/2) + \frac{n}{2} & \text{if } n > 1
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with =.

Proof by Recursion Tree

Proof by Telescoping

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

Pf. For \(n = 1 \):

\[
T(1) = \begin{cases}
0 & \text{if } n = 1 \\
T(n/2) + \frac{n}{2} & \text{if } n > 1
\end{cases}
\]

obtained n is a power of 2

Proof by Induction
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) = n \lceil \lg n \rceil$.

Pf. (by induction on n)

- Base case: $n = 1$.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.

- Induction step: assume true for $1, 2, \ldots, n-1$.

$$T(n) \leq T(n_1) + T(n_2) + n \leq n_1 \lg n_1 + n_2 \lg n_2 + n \leq n_1 \lg n_2 + n_2 \lg n_2 + n = \lg n \leq \lg n_2 \leq \lceil \lg n \rceil.$$

More General Analysis

$$T(n) \leq \sum_{i=0}^{\log_2 n} n \cdot \frac{1}{2^i}$$

A Helpful Identity

Fact: If $\gamma \leq 1$ then

$$1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma^{k+1}}{1 - \gamma}$$

Proof

$$1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma^k}{1 - \gamma}$$

Observation 1: If $\gamma = 1$ then $1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = k + 1 \in \Theta(k)$

Observation 2: If $0 < \gamma < 1$ then $1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma^{k+1}}{1 - \gamma} \in \Theta(1)$

Observation 3: If $1 < \gamma$ then $1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma^{k+1}}{1 - \gamma} \in \Theta(1)$

Observation 4: In our case $k = \log_2 n$ and $\gamma = \left(\frac{1}{2}\right)$

$$T(n) \leq \sum_{i=0}^{\log_2 n} n \cdot \frac{1}{2^i} = \Theta(n \log_2 n)$$
More General Analysis

$$T(n) = T(n/b) + T(n/b^2) + \cdots + T(n/b^k) + \text{merge cost}$$

Mergesort - Divide & Conquer - Implications for Divide and Conquer Analysis

- **Merge Cost:** $O(nc)$ (want c to be small)
- **Branching Factor:** a (smaller branching factor \to faster)
- **Reduction in Input Size:** b (bigger is better)
- **Key Ratio:** a/bc

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ a \times T\left(\frac{n}{b}\right) + w' & \text{otherwise} \end{cases}$$

Case 1: $\frac{n}{b^n} \leq 1 \Rightarrow T(n) = \Theta(n^c)$
Case 2: $\gamma = \frac{c}{b} < 1 \Rightarrow T(n) = \Theta(n^c \log n)$
Case 3: $\gamma > 1 \Rightarrow T(n) = \Theta(n^c \log n)$

Other Recurrences

- $T(n) = 2 \times T(n - 10)$ (Exponential)
- $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$ (Solution: $T(n) \in \Theta(n \log n)$)

5.3 Counting Inversions
Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: a₁, a₂, ..., aₙ.
- Songs i and j inverted if i < j, but aᵢ > aⱼ.

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Brute force: check all n(n⁻¹) pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Divide: separate list into two pieces.

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Conquer: recursively count inversions in each half.

Divide: O(1).

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Conquer: 2T(n / 2)

5 blue-blue inversions
5-4, 5-2, 4-2, 8-6, 8-2, 10-2

8 green-green inversions
6-5, 9-5, 7-9, 7-12, 3-12, 12-9, 11-3, 11-7

Combine: 9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Combine

Combine: count blue-green inversions
- Assume each half is sorted.
- Count inversions where \(a_i \) and \(a_j \) are in different halves.
- Merge two sorted halves into sorted whole.

\[
\begin{array}{cccccc}
1 & 7 & 10 & 14 & 18 & 19 \\
2 & 11 & 16 & 17 & 23 & 25 \\
\end{array}
\]

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0 \)

To maintain sorted invariant

Count Inv. = \(O(n) \)

Combine: \(O(n \log n) \)

Count Inv. = \(O(n^2) \)

\[
T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) = \Omega(n^2) = \Theta(n^2)
\]

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] \(A \) and \(B \) are sorted.
Post-condition. [Sort-and-Count] \(L \) is sorted.

Sort-and-Count(\(L \))
- if list \(L \) has one element
 return 0 and the list \(L \)
- Divide the list into two halves \(A \) and \(B \)
 \((r_A, A) \leftarrow \text{Sort-and-Count}(A) \)
 \((r_B, B) \leftarrow \text{Sort-and-Count}(B) \)
 \((r, L) \leftarrow \text{Merge-and-Count}(A, B) \)
- return \(r = r_A + r_B + r \) and the sorted list \(L \)

5.4 Closest Pair of Points

Closest pair. Given \(n \) points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems,
 molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Fast closest pair inspired fast algorithm for these problems

Brute force. Check all pairs of points \(p \) and \(q \) with \(\Theta(n^2) \)
comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.
Assumption. No two points have same \(x \) coordinate.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure \(n/4 \) points in each piece.
Closest Pair of Points

Algorithm:
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.
- **Combine**: find closest pair with one point in each side.
 - Return best of 3 solutions.

Find closest pair with one point in each side, assuming that distance $< \delta$.
- **Observation**: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
- Observation: only need to consider points within δ of line L.
- Only check distances of those within 11 positions in sorted list!

Closest Pair Algorithm

Closest-Pair(p1, ..., pn) {
 Compute separation line L such that half the points are on one side and half on the other side.
 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)
 Delete all points further than δ from separation line L
 Sort remaining points by y-coordinate.
 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.
 return δ.
}

Closest Pair of Points: Analysis

Running time.

T(n) ≤ 2T(n/2) + O(n log n) ⇒ T(n) = O(n log² n)

Can we achieve O(n log n)?

Yes. Don’t sort points in strip from scratch each time.
- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

T(n) ≤ 2T(n/2) + O(n) ⇒ T(n) = O(n log n)