CS 580: Algorithm Design and Analysis

2/18/2019

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5t at 11:59PM (Gradescope)

Recap: Minimum Weight Spanning Trees

Cut Property: Minimum weight edge crossing a cut must be in
the MST (assume edge weights are distinct)

Cycle Property: Maximum weight edge in a cycle must not be in
the MST (assuming edge weights are distinct)

Prim's Algorithm
Repeatedly applies cut property to expand tree
O(m log n) time with Binary Heap
O(m+n log n) time with Fibonacci Heap

Kruskal's Algorithm
Consider edges in increasing order of weight

O(m log n) running time.

Union-Find Data Structure

JOM KLEINBERG - EVA TARDOS

Divide-and-Conquer

Divide-and-conquer.

. Break up problem into several parts.

« Solve each part recursively.

. Combine solutions to sub-problems into overall solution.

Most common usage.

. Break up problem of size n into two equal parts of size 3n.
. Solve two parts recursively.

. Combine two solutions into overall solution in linear time.

5.1 Mergesort

Copyright 2000, Kevin Wayne

Consequence. Divide ef impera.
. Brute force: n?. Veni, vidi, vici.
. Divide-and-conquer: n log n. - Julius Caesar
.
Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.
- Sort alist of names.
. Organize an MP3 library. obvious applications
Display Google PageRank results.
- List RSS news items in reverse chronological order.

« Find the median.
- Find the closest pair.
Binary search in a database.
« Identify statistical outliers.
- Find duplicates in a mailing list.

problems become easy once
items are in sorted order

Data compression.
. Computer graphics.
« Computational biology.
- Supply chain management.
Book recommendations on Amazon.
« Load balancing on a parallel computer.

non-obvious applications

2/18/2019

Mergesort Merging
Mergesort.

. Divide array into two halves.

- Recursively sort each half.

- Merge two halves to make sorted whole.

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? IE|
- Linear number of comparisons.

05demo-merge.ppt
- Use temporary array.

Jon von Neumann (1945)

AL 6 0 R I T H M s ety o QG s T

A L G O R I T H M s dvide O@) R
A G L 0 R H I M s | T sort 2T(n/2)
A G H I L M O R s T merge O(n) Challenge for the bored. In-place merge. [Kronrud, 1969]
!
n using only a constant amount of extra storage

T(n) <2 T(Z) +0(m)

A Useful Recurrence Relation Proof by Recursion Tree

Merge Step Cost

Def. T(n) = number of comparisons to mergesort an input T(n) n
of size n.
T(n/2 2(n/2)
Mergesort recurrence. ‘A/Z) ‘/(ng
0 if n=1 T(n/4) T(n/4) T(n/4) T(n/4) 4(n/4)
T <1 T(Mn2l) + T(ln/2]) + n otherwise logzn
— 2 = = ...
solve left half solve right half ~ MeTeIng
2%(n/ 2%
. |
Solution. T(n) = O(n log, n). T2 TR T Te) TE) TR T T /2 (2)
nlog,n
Assorted proofs. We describe several ways to prove this 0 if n=1
recurrence. Initially we assume n is a power of 2 and T(n) = 2T(/2) + n otherwise
replace < with =. Sorting both halves merging

Proof by Telescoping Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n. Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

assumes n s a power of 2 assumes n is a power of 2

0 if n=1 0

T(n) = 2T(n/2) + n otherwise T(n) =
—— ot

sorting both halves ~merging

if n=1
2T(n/2) + n otherwise

sorting both halves merging

Pf. Forn>1: T _ 2T(/2) ol Pf. (by induction on n)
n n . Basecase: n=1.
_ To2) 1 - Inductive hypothesis: T(n)= nlog, n.
n/2 . Goal: show that T(2n) = 2n log, (2n).
- Ty
n/4
T@n) = 2T(n) + 2n
_ T/my et = 2nlogyn + 2n
nn on - 2n(log,@n)-1) + 2n
= logyn

= 2nlog,(2n)

Copyright 2000, Kevin Wayne 2

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <n[lgnl.
t
0 if n=1 logen
T <1 T(ln2l) + T(n/2])+ n otherwise
—_— —_— ot
solve left half solve right half ~ ™METENE

Pf. (by induction on n)
- Basecase: n=1.
. Defineny=ln/2l, ny=n/2l
. Induction step: assume true for 1,2, .., n-1.

T(n) T(n) + T(ny) + n

2/18/2019

More General Analysis

Merge Step Cost

T(n) ne
T(n/b) < 7 T(n/b) (.Sf a(n/b)c =n(a/bc)
< <

@
T(n/b2) T(n/b2)

>
T(/b?) T(n/b?) ({‘S' @?(n/b?):= ne(a/be)2
0

n<(a/be)k

T@) TR TR T@ T@ T T@ T n<(a/b)ose "

logp n i
T(n) < n¢ Z (bi)

1 ifn=1 i=0
T(n) < n: - .
axT (;) +n° otherwise

s n, = |n/2
< n[ign]+ nl1gn,]+ n : |— —‘
< nl1ign 1+ nfign, T+ n < I_Z(lgﬂ/Z-‘
= nlign,]+ n — 2|'lg"1/2
< n(fignk1)y+n
=l =lgn,<lgn]H1
A Helpful Identity
Fact: If y # 1 then
1 —pkt
T+t +y? oyl =——
ty +yo.ty -y

Proof
1-—
1+y1+y2...+y":—1_;:(1+y1+y2...+y")

:(1+y1+y2...+y")7y(1+y1+y2...+y")

1-y 1-y
=1+V1 +]/2...+]/k+—]/1—)/2 ...—yk—ka
1-y 1-y
1_yk+l
" - 1-y

A Helpful Identity

Fact: If y # 1 then

7yk+1
T+t +y? 4yl =——
MRS o s e

Observation 1: If y = 1then1+y! +y%..+y* =k + 1€ 0(k)

Observation 2: If 0 <y < 1then1+y! +y% .. +y* ~ ﬁ €0(1)
k+1

Observation 3: If 1 <ythenl+y' +y*..+v* =T c00®)

Observation 4: Inour case k =log,nandy = (&)

logy n

rasr . (3 =n(S50)

i=0

More General Analysis

Merge Step Cost

T(n) ne
T(n/b) h T(n/b) a(n/b)e =n<(a/bc)
T(nm/b?) T(m/bz) logun ne(a/be)?
(@b
TR) TR) T TR TR TR TR TE@) ne(a/beyleEsn

1 ifn=1 logon
«
T =V axr(®)ene otherwise Caseliy= (5)=1 T@<ne Z)
=nclog,n

i

Copyright 2000, Kevin Wayne

More General Analysis

Merge Step Cost

T(n) ne
T(n/b) - T(n/b) a(n/b): =n<(a/be)
T(nm/bz) T(m/b?) hogun ne(a/be)?
;\;(.cl/b‘)k
T@2) T@) T(@) Tzz) T2) T@) TR TE@) ne(a/beyloEsn

1 ifn=1 logp n .
T(n) < axT(§)+nf otherwise g 2:Y=([‘:_c)< 1 Tsrne Z (%)
o 4 — e
C (z-z)f ¥t = 3) =0m9)
n U‘”)Z:O ([‘U}

More General Analysis

logp n c
ne (i) Z (Y glogsn — plogya
be pelogon

2/18/2019

Merge Step Cost

T(n) ne
T(n/b) T(n/b) a(n/b)< =n<(a/b<)
T(n/b?) T(n/b?) T(n/b?) T(n/b?) n<(a/bey?
logy,n
ne(a/b)k
\
T@) TR T TR T T@ T@ TE@ ne(a/be)'osen

1 ifn=1 ogn
LOE P T(g) +n¢ otherwise Case 3ty = (:_[) >1 T(n) < Z ne (F)

=0
= e(nlﬂg» a)

Implications for Divide and Conquer Analysis

Merge Cost: O(n<) (want ¢ to be small)
Branching Factor: a (smaller branching factor > faster)

Reduction in Input Size: b (bigger is better)
Key Ratio: a/b¢

1 ifn=1
T(n) < n

axT (E) +n¢ otherwise

Case 1: (bi) <1 T(n) = 0(n°)
Case 2:y = (&) =1 T(n) = 0(nlogn)
Case3: (%)>1 T =0(n®)

Implications for Divide and Conquer Analysis

Merge Cost: O(n°) (want ¢ to be small)
Branching Factor: a (smaller branching factor > faster)

Reduction in Input Size: b (bigger is better)
Key Ratio: a/b¢

1000000 if n<100
T < axT (g + 50) +n¢ otherwise
(e - c
Case 1: (£) <1 T(n) = 0(n°)

Case 2:y = (bic) =1 T(n) = 0(n‘logn)

Case 3: (&) >1 T(n) = 0(n'oer)

Other Recurrences

. Tm)=T(n—=1)+1 (Unroll: T(n) =n)

. T(n) =2 X T(n—10) (Exponential)
Two branches Only constant reduction in input size
. T(n) = T(E)+T(2?n)+n

(Solution: T(n) € ©(n))

=1 () e

(Solution: T(n) € ©(nlogn))

Other Recurrences

- T(n) =2xT(n—10) (Exponential)

Two branches Only constant reduction in input size

T(n) = 0(c")
How to find c? [Trick]
) T(n) ¢
T T(n—10) ¢n-10
- cl0=2

-c="2~ 107177

Must verify solution by induction

5.3 Counting Inversions

Copyright 2000, Kevin Wayne

2/18/2019

Counting Inversions

Music site tries o match your song preferences with others.
- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- Myrank: 1,2, .., n.

- Your rank: a;, @y, ..., .

+ Songs i and j inverted if i < j, but a; > q;.

Songs
[A |8 | c D E] e
1 2 3 4 5 nversions
3-2,4-2

You 1 3 4 2 5
[

Brute force: check all ©(n?) pairs i and j.

Applications

Applications.

Voting theory.

Collaborative filtering.

Measuring the "sortedness" of an array.

Sensitivity analysis of Google's ranking function.

Rank aggregation for meta-searching on the Web.
Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

[1]5]4]6 w02Qeloli2luls]7]

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Dvideo

OOEOEE - oo

5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
+ Combine: count inversions where q; and q; are in different halves,
and return sum of three quantities.

1 5 4 8 102 6 9 1211 3 7 Divide: O(1).

DOODONE OEENEE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 777
5-3,4-3, 8-6, 8-3,8-7,10-6, 10-9, 10-3,10-7

Total =5+8+9 =22

Copyright 2000, Kevin Wayne

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted.

« Count inversions where q; and g; are in different halves.
. Merge two sorted halves into sorted whole.

to maintain sorted invariant

(3 |7 (10114 e |15 Qi 2 [t [a7 |23 | 25|
6 3 2 2 0 0

13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25

Merge: O(n)

T(m<T(n/2))+T(n/2])+0(n)=T(n) = O(nlogn)

i/

2/18/2019

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(ra, A) « Sort-and-Count(A)

(rg, B) « Sort-and-Count(B)

(r , L) « Merge-and-Count(A, B)

return r = r, + rg + r and the sorted list L

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.

. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ©(n?)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

° L o . °
° ° °
° ° ° . ¢
° °
°) ° . .)
°
° © ° ° °
. °
° ° ° .
° °

Copyright 2000, Kevin Wayne

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

° o L O
° :. ':c
Se ¢ % °
°
e o
° o © oo
°
° oo ° :
u..‘ ..‘ °
°
o 06 © o o
e °

2/18/2019

Closest Pair of Points Closest Pair of Points

Algorithm. Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side. . Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.

Closest Pair of Points Closest Pair of Points
Algorithm. Find closest pair with one point in each side, assuming that distance < 8.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively. 5 = min(12, 21)

. Combine: find closest pair with one point in each side. « seems like 6(n?)
- Return best of 3 solutions.

Closest Pair of Points Closest Pair of Points
Find closest pair with one point in each side, assuming that distance < 5. Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within 5 of line L. . Observation: only need to consider points within & of line L.

. Sort points in 25-strip by their y coordinate.
5 = min(12, 21)
5 = min(12, 21)

Copyright 2000, Kevin Wayne 7

2/18/2019

Closest Pair of Points Closest Pair of Points
Find closest pair with one point in each side, assuming that distance < 3. Def. Let s; be the point in the 25-strip, with
. Observation: only need to consider points within & of line L. the it smallest y-coordinate.
. Sort points in 25-strip by their y coordinate. 000
. Only check distances of those within 11 positions in sorted list! Q] Claim. If |i- j| >12, then the distance between
o . S
5 = min(12, 21) :,fand s; is af least 3.
o . . o 15 = No two points lie in same 35-by-33 box.
2
° ° 2 rows « Two points af least 2 rows apart
. ° ° J) () 15 have distance > 2(33). -
° /
. 1s
o . 21 . . i@ @
o
1.2/. ° A A . = (22} Fact. Still true if we replace 12 with 7.
L X}
L L °
o
a3 3 8 8
M
Closest Pair Algorithm Closest Pair of Points: Analysis
Running time.
Closest-Pair(p;, .., py) {
Compute separation line L such that half the points 0O(n log n)
are on one side and half on the other side. T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log2 n)
8, = Closest-Pair(left half)
8, = Closest-Pair(right half) 2T/ 2)
& = min(s;, &)

Q. Can we achieve O(n log n)?
Delete all points further than § from separation line L O(n)

Sort remaining points by y-coordinate. O(n log n) A. Yes. Don't sort points in strip from scratch each time.
« Each recursive returns two lists: all points sorted by y

Scan points in y-order and compare distance between : : .

each goint and xext 11 neighbogs. If any of these o) coordinate, and all points sorted by x coordinate.

distances is less than §, update 3. - Sort by merging two pre-sorted lists.

return §. T(n) < 2T(n/2) + O(n) = T(n) = O(n logn)

Copyright 2000, Kevin Wayne 8

