
2/18/2019

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)

Recap: Minimum Weight Spanning Trees

2

Cut Property: Minimum weight edge crossing a cut must be in
the MST (assume edge weights are distinct)

Cycle Property: Maximum weight edge in a cycle must not be in
the MST (assuming edge weights are distinct)

Prim’s Algorithm
• Repeatedly applies cut property to expand tree
• O(m log n) time with Binary Heap
• O(m+n log n) time with Fibonacci Heap

Kruskal’s Algorithm
• Consider edges in increasing order of weight
• O(m log n) running time.

Union-Find Data Structure

3

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4

Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

5.1 Mergesort

6

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.
 Sort a list of names.
 Organize an MP3 library.
 Display Google PageRank results.
 List RSS news items in reverse chronological order.

 Find the median.
 Find the closest pair.
 Binary search in a database.
 Identify statistical outliers.
 Find duplicates in a mailing list.

 Data compression.
 Computer graphics.
 Computational biology.
 Supply chain management.
 Book recommendations on Amazon.
 Load balancing on a parallel computer.

. . .

2/18/2019

Copyright 2000, Kevin Wayne 2

7

Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

𝑇 𝑛 ൑ 2 𝑇
𝑛
2

൅ 𝑂ሺ𝑛ሻ
8

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt

9

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input
of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this
recurrence. Initially we assume n is a power of 2 and
replace  with =.

T(n) 
 0 if n 1

T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise








10

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n



T(n) 
0 if n 1

2T(n /2)

sorting both halves
 

 n
merging
 otherwise







Merge Step Cost

11

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:



T(n)

n
 2T(n /2)

n
 1

 T(n /2)

n /2
 1

 T(n / 4)
n / 4

 1  1



 T(n /n)

n /n
 1  1

log2 n
 

 log2 n



T(n) 
0 if n 1

2T(n /2)

sorting both halves
 

 n
merging
 otherwise







assumes n is a power of 2

12

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

T(2n)  2T(n)  2n

 2n log2 n  2n

 2n log2 (2n)1   2n

 2n log2 (2n)

assumes n is a power of 2



T(n) 
0 if n 1

2T(n /2)

sorting both halves
 

 n
merging
 otherwise







2/18/2019

Copyright 2000, Kevin Wayne 3

13

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n)  n lg n.

Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n)  T(n1)  T(n2)  n

 n1 lg n1   n2 lg n2   n

 n1 lg n2   n2 lg n2   n

 n lg n2   n

 n(lg n 1)  n

 n lgn 

 
  

 

  1lglg

2/2

2/2

2/

2

lg

lg

2








nn

nn

n

n



T(n) 
 0 if n 1

T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise








log2n

14

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

a2(n/b2)c = nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ nc ෍
𝑎
𝑏௖

௜
୪୭୥್ ௡

௜ୀ଴
𝑇 𝑛 ൑ ቐ

1 𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. . .

Merge Step Cost

A Helpful Identity

Fact: If 𝛾 ് 1 then

1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞ ൌ
1 െ 𝛾௞ାଵ

1 െ 𝛾

Proof

1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞ ൌ
1 െ 𝛾
1 െ 𝛾

1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞

ൌ
1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞

1 െ 𝛾
െ

𝛾 1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞

1 െ 𝛾

ൌ
1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝜸𝒌

1 െ 𝛾
൅

െ𝛾ଵ െ 𝛾ଶ … െ 𝜸𝒌 െ 𝛾௞ାଵ

1 െ 𝛾

ൌ
1 െ 𝛾௞ାଵ

1 െ 𝛾15

A Helpful Identity

Fact: If 𝛾 ് 1 then

1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞ ൌ
1 െ 𝛾௞ାଵ

1 െ 𝛾

Observation 1: If 𝛾 ൌ 1 then 1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞ ൌ 𝑘 ൅ 1 ∈ Θ 𝑘

Observation 2: If 0 ൏ 𝛾 ൏ 1 then 𝟏 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝛾௞ ൎ ଵ

ଵିఊ
∈ Θ 1

Observation 3: If 1 ൏ 𝛾 then 1 ൅ 𝛾ଵ ൅ 𝛾ଶ … ൅ 𝜸𝒌 ൎ ఊೖశభ

ఊିଵ
∈ Θ 𝛾௞

Observation 4: In our case 𝑘 ൌ log௕ 𝑛 and 𝛾 ൌ ௔

௕೎

𝑇 𝑛 ൑ nc ෍
𝑎
𝑏௖

௜
୪୭୥್ ௡

௜ୀ଴

ൌ 𝑛௖ 1 െ 𝛾௞ାଵ

1 െ 𝛾

16

17

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ nc ෍
𝑎
𝑏௖

௜

୪୭୥್ ௡

௜ୀ଴
ൌ nc log௕ 𝑛

. . .

Case 1: γ ൌ ௔

௕೎ ൌ 1𝑇 𝑛 ൑ ቐ
1 𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Merge Step Cost

18

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ nc ෍
𝑎
𝑏௖

௜

୪୭୥್ ௡

௜ୀ଴
ൌ Θ nc

. . .

Case 2: γ ൌ ௔

௕೎ ൏ 1
𝑇 𝑛 ൑ ቐ

1 𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Merge Step Cost

2/18/2019

Copyright 2000, Kevin Wayne 4

19

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ ෍ nc 𝑎
𝑏௖

௜

୪୭୥್ ௡

௜ୀ଴
ൌ Θ 𝑛୪୭୥್ ௔

. . .

Case 3: γ ൌ ௔

௕೎ ൐ 1𝑇 𝑛 ൑ ቐ
1 𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Merge Step Cost

nc 𝑎
𝑏௖

୪୭୥್ ௡
ൌ

nc

𝑏௖ ୪୭୥್ ௡ ൈ 𝑎୪୭୥್ ௡ ൌ 𝑛୪୭୥್ ௔

Implications for Divide and Conquer Analysis

• Merge Cost: O(nc) (want c to be small)

• Branching Factor: a (smaller branching factor  faster)

• Reduction in Input Size: b (bigger is better)
• Key Ratio: a/bc

20

Case 3: ௔

௕೎ ൐ 1 𝑇 𝑛 ൌ Θ 𝑛୪୭୥್ ௔

𝑇 𝑛 ൑ ቐ
1 𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Case 1: ௔

௕೎ ൏ 1 𝑇 𝑛 ൌ Θ 𝑛௖

Case 2: γ ൌ ௔

௕೎ ൌ 1 𝑇 𝑛 ൌ Θ 𝑛௖ log 𝑛

Implications for Divide and Conquer Analysis

• Merge Cost: O(nc) (want c to be small)

• Branching Factor: a (smaller branching factor  faster)

• Reduction in Input Size: b (bigger is better)
• Key Ratio: a/bc

21

Case 3: ௔

௕೎ ൐ 1 𝑇 𝑛 ൌ Θ 𝑛୪୭୥್ ௔

𝑇 𝑛 ൑ ቐ
𝟏𝟎𝟎𝟎𝟎𝟎𝟎 𝒊𝒇 𝒏 ൑ 𝟏𝟎𝟎

𝑎 ൈ 𝑇
𝑛
𝑏

൅ 𝟓𝟎 ൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Case 1: ௔

௕೎ ൏ 1 𝑇 𝑛 ൌ Θ 𝑛௖

Case 2: γ ൌ ௔

௕೎ ൌ 1 𝑇 𝑛 ൌ Θ 𝑛௖ log 𝑛

Other Recurrences

• T n ൌ T n െ 1 ൅ 1 (Unroll: T n ൌ n)

• T n ൌ 2 ൈ T n െ 10 (Exponential)

• T n ൌ T ୬

ସ
൅ 𝑇 ଶ௡

ଷ
൅ 𝑛

(Solution: T n ∈ Θ 𝑛)

• T n ൌ T ୬

ସ
൅ 𝑇 ଷ௡

ସ
൅ 𝑛

(Solution: T n ∈ Θ 𝑛 log 𝑛)
22

Only constant reduction in input sizeTwo branches

Other Recurrences

• T n ൌ 2 ൈ T n െ 10 (Exponential)

T n ൌ Θ cn

• How to find c? [Trick]

2 ൌ
T n

T n െ 10
ൌ

cn

𝑐௡ିଵ଴

→ c10 ൌ 2

→ c ൌ 2భబ ൎ 1.07177

• Must verify solution by induction
23

Only constant reduction in input sizeTwo branches

5.3 Counting Inversions

2/18/2019

Copyright 2000, Kevin Wayne 5

25

Music site tries to match your song preferences with others.
 You rank n songs.
 Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
 My rank: 1, 2, …, n.
 Your rank: a1, a2, …, an.
 Songs i and j inverted if i < j, but ai > aj.

Brute force: check all (n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

26

Applications

Applications.
 Voting theory.
 Collaborative filtering.
 Measuring the "sortedness" of an array.
 Sensitivity analysis of Google's ranking function.
 Rank aggregation for meta-searching on the Web.
 Nonparametric statistics (e.g., Kendall's Tau distance).

27

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

28

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

29

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.
 Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

30

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

2/18/2019

Copyright 2000, Kevin Wayne 6

31

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves.
 Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

     )log()T()(2/2/)(nnOnnOnTnTnT 

6 3 2 2 0 0

to maintain sorted invariant

play

32

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A)  Sort-and-Count(A)
(rB, B)  Sort-and-Count(B)
(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4 Closest Pair of Points

34

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with (n2)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

35

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

36

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

2/18/2019

Copyright 2000, Kevin Wayne 7

37

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.

L

38

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.

12

21

L

39

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.
 Combine: find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like (n2)

40

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

41

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.

12

21



L

 = min(12, 21)

42

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

2/18/2019

Copyright 2000, Kevin Wayne 8

43

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation: only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

44

Closest Pair of Points

Def. Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim. If |i – j|  12, then the distance between
si and sj is at least .
Pf.
 No two points lie in same ½-by-½ box.
 Two points at least 2 rows apart

have distance  2(½). ▪



27

29
30

31

28

26

25



½

2 rows
½

½

39

i

j

Fact. Still true if we replace 12 with 7.

45

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

1 = Closest-Pair(left half)
2 = Closest-Pair(right half)
 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than , update .

return .
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

46

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
 Each recursive returns two lists: all points sorted by y

coordinate, and all points sorted by x coordinate.
 Sort by merging two pre-sorted lists.

 T(n)  2T n /2   O(n)  T(n)  O(n log n)

 T(n)  2T n /2   O(n log n)  T(n)  O(n log2 n)

