

2/18/2019

Closest Pair Algorithm	
<pre>Closest-Pair(p1,, pn) { Compute separation line L such that half the points are on one side and half on the other side.</pre>	O(n log n)
$ \begin{array}{l} \delta_1 \ = \ \text{Closest-Pair(left half)} \\ \delta_2 \ = \ \text{Closest-Pair(right half)} \\ \delta \ = \ \min(\delta_1, \ \delta_2) \end{array} $	2T(n / 2)
Delete all points further than δ from separation line 1	- O(n)
Sort remaining points by y-coordinate.	O(n log n)
Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than $\delta,$ update $\delta.$	O(n)
return δ. }	

