Announcement: Homework 2 due on Tuesday, February 5th at 11:59PM (Gradescope)
Recap: Minimum Weight Spanning Trees

Cut Property: Minimum weight edge crossing a cut must be in the MST (assume edge weights are distinct)

Cycle Property: Maximum weight edge in a cycle must not be in the MST (assuming edge weights are distinct)

Prim’s Algorithm
- Repeatedly applies cut property to expand tree
- $O(m \log n)$ time with Binary Heap
- $O(m+n \log n)$ time with Fibonacci Heap

Kruskal’s Algorithm
- Consider edges in increasing order of weight
- $O(m \log n)$ running time.

Union-Find Data Structure
Divide and Conquer
Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^2.
- Divide-and-conquer: $n \log n$.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given *n* elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

\[T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + O(n) \]
Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. \(T(n) \) = number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\lfloor n/2 \rfloor \right) + T\left(\lceil n/2 \rceil \right) + n & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with =.
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n=1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

\begin{align*}
T(n) &= \sum_{k=0}^{\log_2 n} \left(T\left(\frac{n}{2^k}\right) + 2(n/2^k) \right) \\
&= \sum_{k=0}^{\log_2 n} n/2^k + 2(n/2^k) \\
&= n + 2(n/2) + 4(n/4) + \ldots + 2^k(n/2^k) \\
&= n + 2n + 4n + \ldots + n/2^k \\
&= n \log_2 n
\end{align*}
Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}
\]

Pf. For $n > 1$:

\[
\begin{align*}
\frac{T(n)}{n} &= \frac{2T(n/2)}{n} + 1 \\
&= \frac{T(n/2)}{n/2} + 1 \\
&= \frac{T(n/4)}{n/4} + 1 + 1 \\
&\vdots \\
&= \frac{T(n/n)}{n/n} + 1 + \cdots + 1 \\
&= \log_2 n
\end{align*}
\]

assumes n is a power of 2
Proof by Induction

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}
\]

- **Base case:** \(n = 1 \).
- **Inductive hypothesis:** \(T(n) = n \log_2 n \).
- **Goal:** show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2T(n) + 2n \\
\quad = 2n \log_2 n + 2n \\
\quad = 2n \left(\log_2 (2n) - 1 \right) + 2n \\
\quad = 2n \log_2 (2n)
\]

assumes \(n \) is a power of 2
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \log n \rceil$.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\lceil n/2 \rceil \right) + T\left(\lfloor n/2 \rfloor \right) + n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on n)

- Base case: $n = 1$.
- Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for $1, 2, \ldots, n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \log n_1 \rceil + n_2 \lfloor \log n_2 \rfloor + n \\
\leq n_1 \lceil \log n_2 \rceil + n_2 \lfloor \log n_2 \rfloor + n \\
= n \lceil \log n_2 \rceil + n \\
\leq n(\lceil \log n \rceil - 1) + n \\
= n \lceil \log n \rceil
\]

\[
n_2 = \lceil n / 2 \rceil \\
\leq 2^{\lceil \log n \rceil / 2} \\
= 2^\lceil \log n \rceil / 2 \\
\Rightarrow \log n_2 \leq \lfloor \log n \rfloor - 1
\]
More General Analysis

Merge Step Cost

\[n^c \]

\[a(n/b)^c = n^c(a/b^c) \]

\[a^2(n/b^2)^c = n^c(a/b^c)^2 \]

\[\ldots \]

\[n^c(a/b^c)^k \]

\[\ldots \]

\[n^c(a/b^c)^{\log_b n} \]

\[T(n) \leq n^c \sum_{i=0}^{\log_b n} \left(\frac{a}{b^c} \right)^i \]

\[T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
 a \times T\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases} \]
A Helpful Identity

Fact: If \(\gamma \neq 1 \) then

\[
1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma^{k+1}}{1 - \gamma}
\]

Proof

\[
1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k = \frac{1 - \gamma}{1 - \gamma} (1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k)
\]

\[
= \frac{(1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k)}{1 - \gamma} - \frac{\gamma (1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k)}{1 - \gamma}
\]

\[
= \frac{1 + \gamma^1 + \gamma^2 + \ldots + \gamma^k}{1 - \gamma} + \frac{-\gamma^1 - \gamma^2 - \ldots - \gamma^k - \gamma^{k+1}}{1 - \gamma}
\]

\[
= \frac{1 - \gamma^{k+1}}{1 - \gamma}
\]
A Helpful Identity

Fact: If $\gamma \neq 1$ then

$$1 + \gamma^1 + \gamma^2 \ldots + \gamma^k = \frac{1 - \gamma^{k+1}}{1 - \gamma}$$

Observation 1: If $\gamma = 1$ then $1 + \gamma^1 + \gamma^2 \ldots + \gamma^k = k + 1 \in \Theta(k)$

Observation 2: If $0 < \gamma < 1$ then $1 + \gamma^1 + \gamma^2 \ldots + \gamma^k \approx \frac{1}{1-\gamma} \in \Theta(1)$

Observation 3: If $1 < \gamma$ then $1 + \gamma^1 + \gamma^2 \ldots + \gamma^k \approx \frac{\gamma^{k+1}}{\gamma-1} \in \Theta(\gamma^k)$

Observation 4: In our case $k = \log_b n$ and $\gamma = \left(\frac{a}{bc}\right)$

$$T(n) \leq n^c \sum_{i=0}^{\log_b n} \left(\frac{a}{bc}\right)^i = n^c \left(\frac{1 - \gamma^{k+1}}{1 - \gamma}\right)$$
More General Analysis

Merge Step Cost

\[T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
\frac{a}{b^c} T\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases} \]

Case 1: \(\gamma = \left(\frac{a}{b^c}\right) = 1 \)

\[T(n) \leq n^c \sum_{i=0}^{\log_b n} \left(\frac{a}{b^c}\right)^i \]

\[= n^c \log_b n \]
More General Analysis

\[T(n) \]

\[\ldots \]

\[T(n/b) \]

\[T(n/b^2) \]

\[T(n/b^2) \]

\[T(n/b^2) \]

\[T(n/b^2) \]

\[T(n/b) \]

\[T(n/b) \]

\[T(n/b) \]

\[T(n/b) \]

\[\ldots \]

\[\log_b n \]

Merge Step Cost

\[n^c \]

\[a(n/b)^c = n^c(a/b^c) \]

\[n^c(a/b^c)^2 \]

\[\ldots \]

\[n^c(a/b^c)^k \]

\[\ldots \]

\[n^c(a/b^c)^{\log_b n} \]

Case 2: \(\gamma = \left(\frac{a}{b^c}\right) < 1 \)

\[T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
n^c \times T\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases} \]

\[n^c \cdot \frac{\theta}{(1-\gamma)^i} \]

\[\sum_{i=0}^{\log_b n} \left(\frac{a}{b^c}\right)^i = \Theta(n^c) \]
More General Analysis

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
\alpha \times T\left(\frac{n}{b} \right) + n^c & \text{otherwise}
\end{cases}$$

Case 3: $\gamma = \left(\frac{a}{bc} \right) > 1$

$$T(n) \leq \sum_{i=0}^{\log_b n} n^c \left(\frac{a}{bc} \right)^i = \Theta\left(n^{\log_b a} \right)$$

Merge Step Cost

$$n^c$$

$$a(n/b)^c = n^c(a/b^c)$$

$$n^c(a/b^c)^2$$

$$\ldots$$

$$n^c(a/b^c)^k$$

$$\ldots$$

$$n^c(a/b^c)^{\log_b n}$$
Implications for Divide and Conquer Analysis

- **Merge Cost:** $O(n^c)$ (want c to be small)
- **Branching Factor:** a (smaller branching factor \rightarrow faster)
- **Reduction in Input Size:** b (bigger is better)
- **Key Ratio:** a/b^c

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
a \times T\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases}$$

- **Case 1:** $\left(\frac{a}{b^c}\right) < 1$ \hspace{1cm} $T(n) = \Theta(n^c)$
- **Case 2:** $\gamma = \left(\frac{a}{b^c}\right) < 1$ \hspace{1cm} $T(n) = \Theta(n^c \log n)$
- **Case 3:** $\left(\frac{a}{b^c}\right) > 1$ \hspace{1cm} $T(n) = \Theta(n^{\log_b a})$
Implications for Divide and Conquer Analysis

- **Merge Cost: \(O(n^c) \)**
 (want \(c \) to be small)

- **Branching Factor: \(a \)**
 (smaller branching factor \(\rightarrow \) faster)

- **Reduction in Input Size: \(b \)**
 (bigger is better)

- **Key Ratio: \(a/b^c \)**

\[
T(n) \leq \begin{cases}
1000000 & \text{if } n \leq 100 \\
 a \times T\left(\frac{n}{b^c} + 50\right) + n^c & \text{otherwise}
\end{cases}
\]

Case 1: \(\left(\frac{a}{b^c}\right) < 1 \)
\(T(n) = \Theta(n^c) \)

Case 2: \(\gamma = \left(\frac{a}{b^c}\right) < 1 \)
\(T(n) = \Theta(n^c \log n) \)

Case 3: \(\left(\frac{a}{b^c}\right) > 1 \)
\(T(n) = \Theta(n^{\log_b a}) \)
Other Recurrences

- \(T(n) = T(n - 1) + 1 \) \textbf{(Unroll:} \(T(n) = n \))

- \(T(n) = 2 \times T(n - 10) \) \textbf{(Exponential)}

- \(T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{2n}{3}\right) + n \)
 \textbf{(Solution:} \(T(n) \in \Theta(n) \))

- \(T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + n \)
 \textbf{(Solution:} \(T(n) \in \Theta(n \log n) \))
Other Recurrences

- $T(n) = 2 \times T(n - 10)$ (Exponential)
 - Two branches
 - Only constant reduction in input size

- $T(n) = \Theta(c^n)$

- How to find c? [Trick]
 \[
 2 = \frac{T(n)}{T(n - 10)} = \frac{c^n}{c^{n-10}}
 \]
 \[
 \rightarrow c^{10} = 2
 \]
 \[
 \rightarrow c = 10^{\sqrt{2}} \approx 1.07177
 \]

- **Must verify solution by induction**
5.3 Counting Inversions
Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: \(a_1, a_2, ..., a_n \).
- Songs i and j inverted if \(i < j \), but \(a_i > a_j \).

Counting Inversions

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

| Inversions | 3-2, 4-2 |

Brute force: check all \(\Theta(n^2) \) pairs i and j.
Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide:** separate list into two pieces.

```
1  5  4  8  10  2  6  9  12  11  3  7
```

Divide: $O(1)$.

```
1  5  4  8  10  2  
6  9  12  11  3  7
```
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1)\).

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Conquer: \(2T(n/2)\)

5 blue-blue inversions
- 5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions
- 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.
- **Combine**: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

```
1 5 4 8 10 2 6 9 12 11 3 7
```

Divide: \(O(1) \).

```
1 5 4 8 10 2
5 blue-blue inversions
```

```
6 9 12 11 3 7
8 green-green inversions
```

Conquer: \(2T(n / 2) \)

```
9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7
```

Combine: ???

```
Total = 5 + 8 + 9 = 22.
```
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

13 blue-green inversions: $6 + 3 + 2 + 2 + 0 + 0$

Count: $O(n)$

Merge: $O(n)$

$$T(n) \leq T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lceil n/2 \right\rceil \right) + O(n) \Rightarrow T(n) = O(n \log n)$$
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L

    Divide the list into two halves A and B
    (r_A, A) ← Sort-and-Count(A)
    (r_B, B) ← Sort-and-Count(B)
    (r, L) ← Merge-and-Count(A, B)

    return r = r_A + r_B + r and the sorted list L
}
```
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

↑ to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. ← seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance \(< \delta \).
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

δ = min(12, 21)
Closest Pair of Points

Def. Let \(s_i \) be the point in the \(2\delta \)-strip, with the \(i^{th} \) smallest \(y \)-coordinate.

Claim. If \(|i - j| \geq 12 \), then the distance between \(s_i \) and \(s_j \) is at least \(\delta \).

Pf.
- No two points lie in same \(\frac{1}{2}\delta \)-by-\(\frac{1}{2}\delta \) box.
- Two points at least 2 rows apart have distance \(\geq 2(\frac{1}{2}\delta) \).

Fact. Still true if we replace 12 with 7.
Closest-Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 \textbf{Compute} separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)}\]
 \[\delta_2 = \text{Closest-Pair(right half)}\]
 \[\delta = \min(\delta_1, \delta_2)\]

 \textbf{Delete} all points further than \(\delta\) from separation line L

 \textbf{Sort} remaining points by y-coordinate.

 \textbf{Scan} points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta\), update \(\delta\).

 \textbf{return} \(\delta\).
}
Closest Pair of Points: Analysis

Running time.

\[
T(n) \leq 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n)
\]

Q. Can we achieve \(O(n \log n)\)?

A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by **merging** two pre-sorted lists.

\[
T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n)
\]