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Reminder: Homework 1 due tonight at 11:59PM! (Gradescope) 



Recap: Greedy Algorithms

2

Minimize Lateness
• Greedy Choice: Sort by earliest deadline
• Proof of Optimality: can always optimal solution into one with 

fewer inversions (Greedy Choice has 0 inversions)
• Running Time: O(n log n)
Optimal Offline Caching
• Goal: Minimize number of cache misses
• Greedy Choice: Evict item used furthest in future [Belady’60]
• Proof of Optimality: Invariant: SFF is optimal through first j+1 

requests.
• Limitation: Need to know sequence in advance.



4.5  Minimum Spanning Tree
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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) 
with real-valued edge weights ce, an MST is a subset of the 
edges T  E such that T is a spanning tree whose sum of edge 
weights is minimized.

Cayley's Theorem.  There are nn-2 spanning trees of Kn.

can't solve by brute force
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G = (V, E) T,  eT ce = 50
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Applications

MST is fundamental problem with diverse applications.

 Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

 Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

 Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a 

network

 Cluster analysis.
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Greedy Algorithms

Kruskal's algorithm.  Start with T = . Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T.

Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T.

Remark. All three algorithms produce an MST.
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S.  Then the MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f.

f 
C

S

e is in the MST

e

f is not in the MST
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Cycles and Cuts

Cycle.  Set of edges of the form a-b, b-c, c-d, …, y-z, z-a. 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1
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Cut S       =  { 4, 5, 8 }
Cutset D =  5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

Cutset.  A cut is a subset of nodes S.  The corresponding 
cutset D is the subset of edges with exactly one endpoint in S.
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Cycle-Cut Intersection

Claim.  A cycle and a cutset intersect in an even number of edges.

Pf.  (by picture)
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S

V - S

C

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6



Pf.  (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D 

corresponding to S   there exists another edge, say f, 
that is in both C and D (even #edges in intersection).

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e.

f 

T*
e

S
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max 
cost edge belonging to C. Then the MST T* does not contain f.

Pf.  (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D 

corresponding to S   there exists another edge, say e, 
that is in both C and D.

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪ f 

T*
e

S



12

Prim's Algorithm:  Proof of Correctness

Prim's algorithm.  [Jarník 1930, Dijkstra 1959, Prim 1957]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to tree T, and add 

one new explored node u to S.

S



Implementation.  Use a priority queue ala Dijkstra.
 Maintain set of explored nodes S.
 For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S.
 O(n2) with an array; O(m log n) with a binary heap; 
 O(m + n log n) with Fibonacci Heap
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Implementation:  Prim's Algorithm

Prim(G, c) {
foreach (v  V) a[v]  
Initialize an empty priority queue Q
foreach (v  V) insert v onto Q
Initialize set of explored nodes S  

while (Q is not empty) {
u  delete min element from Q
S  S  { u }
foreach (edge e = (u, v) incident to u)

if ((v  S) and (ce < a[v]))
decrease priority a[v] to ce

}
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Kruskal's Algorithm:  Proof of Correctness

Kruskal's algorithm.  [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1:  If adding e to T creates a cycle, discard e according to 

cycle property.
 Case 2:  Otherwise, insert e = (u, v) into T according to cut 

property where S = set of nodes in u's connected component. 

Case 1

v

u

Case 2

e

e S
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Implementation:  Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1  c2  ...  cm.
T  

foreach (u  V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T  T  {ei}
merge the sets containing u and v

}
return T

}

Implementation.  Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and  O(m (m, n)) for union-find.

are u and v in different connected components?

merge two components

m  n2  log m is O(log n) essentially a constant
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Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct:  perturb all 
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise 
comparisons.  If perturbations are sufficiently small, MST with 
perturbed costs is MST with original costs. 

boolean less(i, j) {
if      (cost(ei) < cost(ej)) return true
else if (cost(ei) > cost(ej)) return false
else if (i < j)              return true
else            return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

Implementation.  Can handle arbitrarily small perturbations 
implicitly by breaking ties lexicographically, according to index.
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MST Algorithms:  Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d:  O(n log n). compute MST of edges in Delaunay
 k-d:  O(k n2). dense Prim



4.7  Clustering
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Clustering

Clustering.  Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups.

Distance function.  Numeric value specifying "closeness" of two objects.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

Fundamental problem.  Divide into clusters so that points 
in different clusters are far apart.
 Routing in mobile ad hoc networks.
 Identify patterns in gene expression.
 Document categorization for web search.
 Similarity searching in medical image databases
 Skycat:  cluster 109 sky objects into stars, quasars, 

galaxies.
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Clustering of Maximum Spacing

k-clustering.  Divide objects into k non-empty groups.

Distance function.  Assume it satisfies several natural properties.
 d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
 d(pi, pj)  0 (nonnegativity)
 d(pi, pj) = d(pj, pi) (symmetry)

Spacing.  Min distance between any pair of points in different clusters.

Clustering of maximum spacing.  Given an integer k, find a 
k-clustering of maximum spacing.

spacing

k = 4
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Greedy Clustering Algorithm

Single-link k-clustering algorithm.
 Form a graph on the vertex set U, corresponding to n clusters.
 Find the closest pair of objects such that each object is in a 

different cluster, and add an edge between them.
 Repeat n-k times until there are exactly k clusters.

Key observation.  This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark.  Equivalent to finding an MST and deleting the k-1 most 
expensive edges.
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Greedy Clustering Algorithm:  Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf.  Let C denote some other clustering C1, …, Ck.
 The spacing of C* is the length d* of the (k-1)st most expensive edge (in MST).
 Let pi, pj be in the same cluster in C*, say C*r, but different clusters in C, say 

Cs and Ct.
 Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.
 All edges on pi-pj path have length  d*

since Kruskal chose them.
 Spacing of C is  d* since p and q

are in different clusters.  ▪

p qpi pj

Cs Ct

C*r



Union Find Data-Structure



Union-Find Operations

Three Operations

• MakeUnionFind(S)
• Initialize a Union-Find data structure where all elements in 

S are in separate sets
• Find(u)

• Input: u ∈ 𝑆
• Output: Name of the set A containing u 
• Require: If u,v in the same set A then Find(u)=Find(v)

• Union(A,B)
• Input: Names of sets A and B in the Union-Find data 

structure
• No Output: Merge the sets A and B into a single set 𝐴 ∪ 𝐵
• Require: If we had u ∈ 𝐴 and v ∈ 𝐵 then we require that 

Find(u)=Find(v) after this operation is completed
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Union-Find Applications

• Efficient Implementation of Kruskal’s Algorithm

• Initially all nodes are in different sets (no edges added to T)
• Find(u) = u for each node u
• Indicates that each node is its own connected component (initially)

• Add edge (u,v) to T 
• Merges two connected components containing u and v respectively
• Union(A,B) where A = Find(u) and B=Find(v)
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• Check if adding edge (u,v) induces a cycle in T
• Observation: (u,v) induces a cycle if and only u and v 

are already in the same connected component.
• Test: Find(u) = Find(v)?

• Yes  u,v are in same component (u,v) would 
induce cycle

• No  u,v are not in same component (u,v) won’t 
induce cycle



Union-Find Implementation

MakeUnionFind(S)
Initialization: S={1,…,n}

……
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1 null 2 n

Pointers to parent in rooted tree

1 null1 null1

Size of set

List<Node> Sets;

MakeUnionFind(n)
for (i=1 to n) {

Node v;
v.Index = i;
v.Size = 1;
v.Parent = null;
Sets.Add(v)

}
}

Set 1 Set 2 Set n

struct Node {
int Index; 
Node * Parent; 
int Size;

}



Union-Find Implementation

MakeUnionFind(S)
Initialization: S={1,…,n}

……
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1 null 2 n

Pointers to parent

1 null1 null1

Size of set

node Find(v) {
if (v.parent == null) 

return v
else

vRoot =Find(v.parent)
return vRoot

}

Node 1 Node 2 Node n



Union-Find Implementation

Example: Find(v) = x
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u v1 1

x null3

node Find(v) {
if (v.parent == null) 

return v
else

vRoot =Find(v.parent)
return vRoot

}



Union-Find Implementation

Example: Union(u,v)
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u w1 1

x null3

y 1

v null2

Union(Node u, Node v){
uRoot = Find(u),  vRoot=Find(v) 
if (uRoot=vRoot) return
else if (uRoot.size > vRoot.size)

vRoot.Parent = uRoot; uRoot.size+= vRoot.size;
else

uRoot.Parent = vRoot; vRoot.size+= uRoot.size;
}

uRoot is new root of 
Merged set

vRoot is new root of 
Merged set



Union-Find Implementation

Example: Union(u,v)

30

u w1 1

x null5

y 1

v 2

Union(Node u, Node v){
uRoot = Find(u),  vRoot=Find(v) 
if (uRoot=vRoot) return
else if (uRoot.size > vRoot.size)

vRoot.Parent = uRoot; uRoot.size+= vRoot.size;
else

uRoot.Parent = vRoot; vRoot.size+= uRoot.size;
}



Path Compression

Example: Find(y) 
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u

w

1

1

x null5

y 1

v 2

node Find(v) {
if (v.parent == null) 

return v
else

vRoot =Find(v.parent)
v.Parent = vRoot;
return vRoot

}



Path Compression

Example: Find(y)  - every node on path from y to 
root x now points directly to x
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u

w

1

1

x null5

y 1

v 2

node Find(v) {
if (v.parent == null) 

return v
else

vRoot =Find(v.parent)
v.Parent = vRoot;
return vRoot

}



Union Find: Running Time

(Path Compression + Union by Size)

• Amortized Running Time: per 
operation

• - Inverse Ackermann Function                    
• (Grows Incredibly Slowly)

• for any value of n you will ever 
use on a computer!

• Could achieve same result with union by 
rank (height of tree)

33
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MST Algorithms:  Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d:  O(n log n). compute MST of edges in Delaunay
 k-d:  O(k n2). dense Prim
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Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar



5.1  Mergesort
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obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting

Sorting.  Given n elements, rearrange in ascending order.

Applications.
 Sort a list of names.
 Organize an MP3 library.
 Display Google PageRank results.
 List RSS news items in reverse chronological order.

 Find the median. 
 Find the closest pair.
 Binary search in a database.
 Identify statistical outliers.
 Find duplicates in a mailing list.

 Data compression.
 Computer graphics. 
 Computational biology.
 Supply chain management.
 Book recommendations on Amazon.
 Load balancing on a parallel computer.

. . .
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Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

𝑇 𝑛 ൑ 2 𝑇
𝑛
2 ൅ 𝑂ሺ𝑛ሻ
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored.  In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace  with =.

T(n) 
 0 if  n 1
T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise







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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise







Merge Step Cost
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

  

T(n)
n

 2T(n /2)
n

 1

 T(n /2)
n /2

 1

 T(n / 4)
n / 4

 1  1



 T(n /n)
n /n

 1  1
log2 n

 

 log2 n

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise







assumes n is a power of 2



44

Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

T(2n)  2T(n)    2n
 2n log2 n    2n
 2n log2 (2n)1    2n
 2n log2 (2n)

assumes n is a power of 2

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise






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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)   n lg n.

Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

T(n)  T(n1)    T(n2 )    n
 n1 lgn1    n2 lg n2    n
 n1 lgn2    n2 lg n2    n
 n lg n2    n
 n( lgn 1 )    n
 n lgn 

  

n2  n /2 

 2 lg n  / 2 
 2 lg n  / 2

 lgn2  lg n  1

  

T(n) 
 0 if  n 1
T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise








log2n
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ ෍ nc 𝑎
𝑏௖

௜୪୭୥್ ௡

௜ୀ଴
𝑇 𝑛 ൑ ቐ

1                        𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏 ൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. . .

Merge Step Cost
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ ෍ nc 𝑎
𝑏௖

௜
 

୪୭୥್ ௡

௜ୀ଴
ൌ nc log௕ 𝑛

. . .

Case 1: γ ൌ  ௔
௕೎ ൌ 1𝑇 𝑛 ൑ ቐ

1                        𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏 ൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ ෍ nc 𝑎
𝑏௖

௜
 

୪୭୥್ ௡

௜ୀ଴
ൌ Θ nc

. . .

Case 2: γ ൌ ௔
௕೎ ൏ 1

𝑇 𝑛 ൑ ቐ
1                        𝑖𝑓 𝑛 ൌ 1

𝑎 ൈ 𝑇
𝑛
𝑏 ൅ 𝑛௖ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺ𝑎/𝑏௖ሻ୪୭୥್ ௡

. . .

. . .
logbn

𝑇 𝑛 ൑ ෍ nc 𝑎
𝑏௖

௜
 

୪୭୥್ ௡

௜ୀ଴
ൌ Θ 𝑛୪୭୥್ ௔

𝑇 𝑛 ൑ ቐ
1                        𝑖𝑓

𝑎 ൈ 𝑇
𝑛
𝑏 ൅ 𝑛௖

. . .

Case 3: ௔
௕೎ ൐ 1


