CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2019 Announcement: Homework 1 due soon! Due: January 24th at 11:59PM (Gradescope) ## Recap: Graphs ## Directed Acyclic Graphs - Topological Ordering - Algorithm to Compute Topological Order ### Interval Scheduling - Goal: Maximize number of meeting requests scheduled in single conference room - · Greedy Algorithm: Sort by earliest finish time - · Running Time: O(n log n) ## Interval Partitioning - Goal: Minimize number of classrooms needed to assign all lectures - · Greedy Algorithm: Sort by earliest start time - Running Time: O(n log n) ## Dijkstra's Shortest Path Algorithm - Invariant: minimum distance d(u) to all nodes in explored set S - Greedy Choice: Add node v to S with minimum value $\pi(v)$ - Running Time: O(m + n log n) with Fibonacci Heap # Dijkstra's Algorithm: Implementation For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$. - Next node to explore = node with minimum $\pi(v)$. - When exploring v, for each incident edge e = (v, w), update $$\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$$ Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$. | PQ Operation | Dijkstra | Array | Binary heap | d-way Heap | Fib heap † | |--------------|----------|-------|-------------|------------------------|-------------| | Insert | n | n | log n | d log _d n | 1 | | ExtractMin | n | n | log n | d log _d n | log n | | ChangeKey | m | 1 | log n | log _d n | 1 | | IsEmpty | n | 1 | 1 | 1 | 1 | | Total | | n² | m log n | m log _{m/n} n | m + n log n | [†] Individual ops are amortized bounds ## Remarks about Dijkstra's Algorithm Yields shortest path tree from origin s. . Shortest path from s to every other node v shortest route from Wang Hall to Miami Beach ## Maximum Capacity Path Problem Maximum Capacity Path Problem Each edge e has capacity c_e (e.g., maximum height) Capacity of a path is Minimum capacity of any Edge in path Goal: Find path from s to t with maximum capacity **Solution**: Use Dijkstra! With Small Modification $$\pi(v) = \max_{e=(u,v):u\in S} \min\{\pi(u), c_e\}$$ # Greedy Algorithms Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. # 4.2 Scheduling to Minimize Lateness ## Scheduling to Minimizing Lateness ## Minimizing lateness problem. - Single resource processes one job at a time. - Job j requires t_j units of processing time and is due at time d_j . - If j starts at time s_j , it finishes at time $f_j = s_j + t_j$. - Lateness: $\ell_j = \max\{0, f_j d_j\}$. - Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$. Ex: | | 1 | 2 | 3 | 4 | 5 | 6 | |----------------|---|---|---|---|----|----| | † _j | 3 | 2 | 1 | 4 | 3 | 2 | | dj | 6 | 8 | 9 | 9 | 14 | 15 | ## Minimizing Lateness: Greedy Algorithms Greedy template. Consider jobs in some order. • [Shortest processing time first] Consider jobs in ascending order of processing time $t_{\rm j}$. [Earliest deadline first] Consider jobs in ascending order of deadline d_i. • [Smallest slack] Consider jobs in ascending order of slack d_j - t_j . ## Minimizing Lateness: Greedy Algorithms Greedy template. Consider jobs in some order. • [Shortest processing time first] Consider jobs in ascending order of processing time t_i . | | 1 | 2 | |----------------|-----|----| | † _j | 1 | 10 | | dj | 100 | 10 | counterexample • [Smallest slack] Consider jobs in ascending order of slack d_j - t_j . | | 1 | 2 | |----------------|---|----| | † _j | 1 | 10 | | d_{j} | 2 | 10 | counterexample ## Minimizing Lateness: Greedy Algorithm Greedy algorithm. Earliest deadline first. ``` Sort n jobs by deadline so that d_1 \leq d_2 \leq ... \leq d_n t \leftarrow 0 for j = 1 to n \text{Assign job j to interval [t, t + t_j]} s_j \leftarrow t, f_j \leftarrow t + t_j t \leftarrow t + t_j output intervals [s_j, f_j] ``` # Minimizing Lateness: No Idle Time Observation. There exists an optimal schedule with no idle time. Observation. The greedy schedule has no idle time. ## Minimizing Lateness: Inversions Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j (i.e., $d_i < d_i$) but j scheduled before i. [as before, we assume jobs are numbered so that $d_1 \le d_2 \le ... \le d_n$] Observation. Greedy schedule has no inversions. Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively. ## Minimizing Lateness: Inversions Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j but j scheduled before i. Claim. Swapping two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness. Pf. Let ℓ be the lateness before the swap, and let ℓ be it afterwards. - $\ell'_{k} = \ell_{k}$ for all $k \neq i, j$ - $\ell'_{i} \leq \ell_{i}$ - If job j is late: $$\ell'_{j} = f'_{j} - d_{j}$$ (definition) $= f_{i} - d_{j}$ (j finishes at time f_{i}) $\leq f_{i} - d_{i}$ (i < j) $\leq \ell_{i}$ (definition) ## Minimizing Lateness: Analysis of Greedy Algorithm Theorem. Greedy schedule S is optimal. Pf. Define 5* to be an optimal schedule that has the fewest number of inversions, and let's see what happens. - Can assume 5* has no idle time. - If S^* has no inversions, then $S = S^*$. - If S* has an inversion, let i-j be an adjacent inversion. - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions - this contradicts definition of 5* • ## Greedy Analysis Strategies Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's. Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound. Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality. Other greedy algorithms. Kruskal, Prim, Dijkstra, Huffman, ... # 4.3 Optimal Caching ## Optimal Offline Caching ## Caching. - Cache with capacity to store k items. - Sequence of m item requests d_1 , d_2 , ..., d_m . - Cache hit: item already in cache when requested. - Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full. Goal. Eviction schedule that minimizes number of cache misses. ## Optimal Offline Caching: Farthest-In-Future Farthest-in-future. Evict item in the cache that is not requested until farthest in the future. Theorem. [Bellady, 1960s] FF is optimal eviction schedule. Pf. Algorithm and theorem are intuitive; proof is subtle. #### Reduced Eviction Schedules Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested. Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses. a reduced schedule #### Reduced Eviction Schedules Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more cache misses. Pf. (by induction on number of unreduced items) time - Suppose S brings d into the cache at time t, without a request. - Let c be the item S evicts when it brings d into the cache. - Case 1: d evicted at time t', before next request for d. - Case 2: d requested at time t' before d is evicted. • Case 1 Case 2 Theorem. FF is optimal eviction algorithm. Pf. (by induction on number or requests j) Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first j+1 requests. Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after j+1 requests. - Consider $(j+1)^{s+1}$ request $d = d_{j+1}$. - Since S and S_{FF} have agreed up until now, they have the same cache contents before request j+1. - Case 1: (d is already in the cache). S' = S satisfies invariant. - Case 2: (d is not in the cache and S and S_{FF} evict the same element). S' = S satisfies invariant. ### Pf. (continued) - Case 3: (d is not in the cache; S_{FF} evicts e; S evicts $f \neq e$). - begin construction of S' from S by evicting e instead of f - now S' agrees with $S_{\rm FF}$ on first j+1 requests; we show that having element f in cache is no worse than having element e Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'. \uparrow must involve e or f (or both) - Case 3a: g = e. Can't happen with Farthest-In-Future since there must be a request for f before e. - Case 3b: g = f. Element f can't be in cache of S, so let e' be the element that S evicts. - if e' = e, S' accesses f from cache; now S and S' have same cache - if e' ≠ e, S' evicts e' and brings e into the cache; now S and S' have the same cache Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with S_{FF} through step j+1 Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'. \uparrow must involve e or f (or both) otherwise 5' would take the same action • Case 3c: $g \neq e$, f. S must evict e. Make S' evict f; now S and S' have the same cache. • ## Caching Perspective ## Online vs. offline algorithms. - Offline: full sequence of requests is known a priori. - Online (reality): requests are not known in advance. - Caching is among most fundamental online problems in CS. LIFO. Evict page brought in most recently. LRU. Evict page whose most recent access was earliest. FF with direction of time reversed! Theorem. FF is optimal offline eviction algorithm. - Provides basis for understanding and analyzing online algorithms. - LRU is k-competitive. [Section 13.8] - LIFO is arbitrarily bad. # 4.5 Minimum Spanning Tree ## Minimum Spanning Tree Minimum spanning tree. Given a connected graph G = (V, E) with real-valued edge weights c_e , an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized. Cayley's Theorem. There are n^{n-2} spanning trees of K_n . can't solve by brute force ## **Applications** #### MST is fundamental problem with diverse applications. - Network design. - telephone, electrical, hydraulic, TV cable, computer, road - Approximation algorithms for NP-hard problems. - traveling salesperson problem, Steiner tree - Indirect applications. - max bottleneck paths - LDPC codes for error correction - image registration with Renyi entropy - learning salient features for real-time face verification - reducing data storage in sequencing amino acids in a protein - model locality of particle interactions in turbulent fluid flows - autoconfig protocol for Ethernet bridging to avoid cycles in a network - Cluster analysis. ## Greedy Algorithms Kruskal's algorithm. Start with $T = \phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle. Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T. Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T. Remark. All three algorithms produce an MST. ## Greedy Algorithms Simplifying assumption. All edge costs c_e are distinct. Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e. Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f. # Cycles and Cuts Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a. Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S. # Cycle-Cut Intersection Claim. A cycle and a cutset intersect in an even number of edges. Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 Intersection = 3-4, 5-6 ## Pf. (by picture) # Greedy Algorithms Simplifying assumption. All edge costs c_e are distinct. Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e. ## Pf. (exchange argument) - Suppose e does not belong to T*, and let's see what happens. - Adding e to T* creates a cycle C in T*. - Edge e is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say f, that is in both C and D. - $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree. - Since $c_e < c_f$, $cost(T') < cost(T^*)$. - This is a contradiction. ■ ## Greedy Algorithms Simplifying assumption. All edge costs c_e are distinct. Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T* does not contain f. ## Pf. (exchange argument) - Suppose f belongs to T*, and let's see what happens. - Deleting f from T* creates a cut S in T*. - Edge f is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say e, that is in both C and D. - $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree. - Since $c_e < c_f$, $cost(T') < cost(T^*)$. - This is a contradiction. # Prim's Algorithm: Proof of Correctness Prim's algorithm. [Jarník 1930, Dijkstra 1959, Prim 1957] - Initialize S = any node. - Apply cut property to S. - Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S. #### Implementation: Prim's Algorithm Implementation. Use a priority queue ala Dijkstra. - Maintain set of explored nodes S. - For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge v to a node in S. - $O(n^2)$ with an array; $O(m \log n)$ with a binary heap; - O(m + n log n) with Fibonacci Heap ``` Prim(G, c) { foreach (v ∈ V) a[v] ← ∞ Initialize an empty priority queue Q foreach (v ∈ V) insert v onto Q Initialize set of explored nodes S ← φ while (Q is not empty) { u ← delete min element from Q S ← S ∪ { u } foreach (edge e = (u, v) incident to u) if ((v ∉ S) and (ce < a[v])) decrease priority a[v] to ce }</pre> ``` # Kruskal's Algorithm: Proof of Correctness #### Kruskal's algorithm. [Kruskal, 1956] - Consider edges in ascending order of weight. - Case 1: If adding e to T creates a cycle, discard e according to cycle property. - Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component. Case 1 Case 2 #### Implementation: Kruskal's Algorithm Implementation. Use the union-find data structure. - Build set T of edges in the MST. - Maintain set for each connected component. - $O(m \log n)$ for sorting and $O(m \alpha (m, n))$ for union-find. $m \le n^2 \Rightarrow \log m \text{ is } O(\log n)$ essentially a constant ``` Kruskal(G, c) { Sort edges weights so that c_1 \leq c_2 \leq \ldots \leq c_m. T \leftarrow \phi foreach (u \in V) make a set containing singleton u for i = 1 to m are u and v in different connected components? (u,v) = e_i if (u and v are in different sets) { T \leftarrow T \cup \{e_i\} merge the sets containing u and v merge two components } return T } ``` #### Lexicographic Tiebreaking To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties. Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs. e.g., if all edge costs are integers, perturbing cost of edge e; by i / n² Implementation. Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index. #### MST Algorithms: Theory #### Deterministic comparison based algorithms. O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka] O(m log log n).[Cheriton-Tarjan 1976, Yao 1975] • $O(m \beta(m, n))$. [Fredman-Tarjan 1987] • $O(m \log \beta(m, n))$. [Gabow-Galil-Spencer-Tarjan 1986] • $O(m \alpha (m, n))$. [Chazelle 2000] Holy grail. O(m). #### Notable. O(m) randomized. [Karger-Klein-Tarjan 1995] O(m) verification. [Dixon-Rauch-Tarjan 1992] #### Euclidean. 2-d: O(n log n). compute MST of edges in Delaunay • k-d: $O(k n^2)$. dense Prim # 4.7 Clustering #### Clustering Distance function. Numeric value specifying "closeness" of two objects. number of corresponding pixels whose intensities differ by some threshold Fundamental problem. Divide into clusters so that points in different clusters are far apart. - Routing in mobile ad hoc networks. - Identify patterns in gene expression. - Document categorization for web search. - Similarity searching in medical image databases - Skycat: cluster 10⁹ sky objects into stars, quasars, galaxies. # Clustering of Maximum Spacing k-clustering. Divide objects into k non-empty groups. Distance function. Assume it satisfies several natural properties. - $d(p_i, p_j) = 0$ iff $p_i = p_j$ (identity of indiscernibles) - $d(p_i, p_j) \ge 0$ (nonnegativity) - $d(p_i, p_j) = d(p_j, p_i)$ (symmetry) Spacing. Min distance between any pair of points in different clusters. Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing. # Greedy Clustering Algorithm #### Single-link k-clustering algorithm. - Form a graph on the vertex set U, corresponding to n clusters. - Find the closest pair of objects such that each object is in a different cluster, and add an edge between them. - Repeat n-k times until there are exactly k clusters. Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components). Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges. # Greedy Clustering Algorithm: Analysis Theorem. Let C^* denote the clustering C^*_1 , ..., C^*_k formed by deleting the k-1 most expensive edges of a MST. C^* is a k-clustering of max spacing. Pf. Let C denote some other clustering $C_1, ..., C_k$. - The spacing of C^* is the length d^* of the $(k-1)^{s+1}$ most expensive edge. - Let p_i , p_j be in the same cluster in C^* , say C^*_r , but different clusters in C, say C_s and C_t . - Some edge (p, q) on p_i - p_j path in C^*_r spans two different clusters in C. - All edges on p_i - p_j path have length $\leq d^*$ since Kruskal chose them. - Spacing of C is $\leq d^*$ since p and q are in different clusters. • # Extra Slides # Coin Changing Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit. - Gordon Gecko (Michael Douglas) # Coin Changing Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins. Ex: 34¢. Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid. Ex: \$2.89. #### Coin-Changing: Greedy Algorithm Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid. ``` Sort coins denominations by value: c_1 < c_2 < ... < c_n. \begin{array}{c} \text{coins selected} \\ \text{S} \leftarrow \phi \\ \text{while } (\mathbf{x} \neq \mathbf{0}) \ \{ \\ \text{let } k \text{ be largest integer such that } c_k \leq \mathbf{x} \\ \text{if } (k = \mathbf{0}) \\ \text{return "no solution found"} \\ \text{x} \leftarrow \mathbf{x} - c_k \\ \text{S} \leftarrow \text{S} \cup \{k\} \\ \end{array} ``` Q. Is cashier's algorithm optimal? # Coin-Changing: Analysis of Greedy Algorithm Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100. Pf. (by induction on x) - Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k. - We claim that any optimal solution must also take coin k. - if not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x - table below indicates no optimal solution can do this - Problem reduces to coin-changing $x c_k$ cents, which, by induction, is optimally solved by greedy algorithm. • | k | c _k | All optimal solutions must satisfy | Max value of coins
1, 2,, k-1 in any OPT | |---|----------------|------------------------------------|---| | 1 | 1 | P ≤ 4 | - | | 2 | 5 | N ≤ 1 | 4 | | 3 | 10 | N + D ≤ 2 | 4 + 5 = 9 | | 4 | 25 | Q ≤ 3 | 20 + 4 = 24 | | 5 | 100 | no limit | 75 + 24 = 99 | # Coin-Changing: Analysis of Greedy Algorithm Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500. Counterexample. 140¢. • Greedy: 100, 34, 1, 1, 1, 1, 1. • Optimal: 70, 70. # Selecting Breakpoints # Selecting Breakpoints #### Selecting breakpoints. - Road trip from Princeton to Palo Alto along fixed route. - Refueling stations at certain points along the way. - Fuel capacity = C. - Goal: makes as few refueling stops as possible. Greedy algorithm. Go as far as you can before refueling. #### Selecting Breakpoints: Greedy Algorithm #### Truck driver's algorithm. ``` Sort breakpoints so that: 0 = b_0 < b_1 < b_2 < \ldots < b_n = L S \leftarrow \{0\} \leftarrow \text{breakpoints selected} \\ x \leftarrow 0 \leftarrow \text{current location} while (x \neq b_n) let p be largest integer such that b_p \leq x + C if (b_p = x) return "no solution" x \leftarrow b_p S \leftarrow S \cup \{p\} return S ``` #### Implementation. O(n log n) Use binary search to select each breakpoint p. #### Selecting Breakpoints: Correctness Theorem. Greedy algorithm is optimal. #### Pf. (by contradiction) - Assume greedy is not optimal, and let's see what happens. - Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy. - Let $0 = f_0 < f_1 < ... < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, ..., f_r = g_r$ for largest possible value of r. - Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm. #### Selecting Breakpoints: Correctness Theorem. Greedy algorithm is optimal. #### Pf. (by contradiction) - Assume greedy is not optimal, and let's see what happens. - Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy. - Let $0 = f_0 < f_1 < ... < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, ..., f_r = g_r$ for largest possible value of r. - Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm. #### Edsger W. Dijkstra The question of whether computers can think is like the question of whether submarines can swim. Do only what only you can do. In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind. The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence. APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.