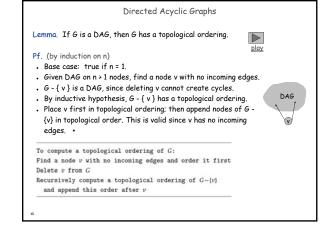


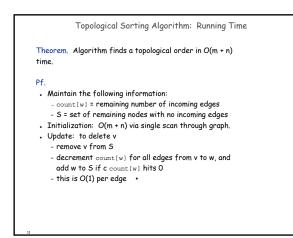
Directed Acyclic Graphs

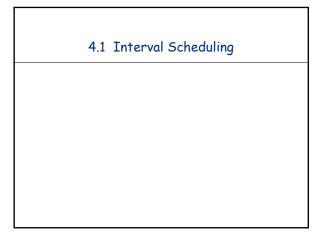
Lemma. If G is a DAG, then G has a node with no incoming edges.

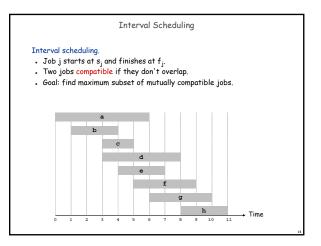
Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge $(u,\,v)$ we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

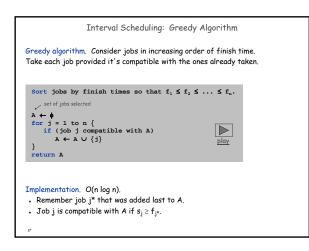


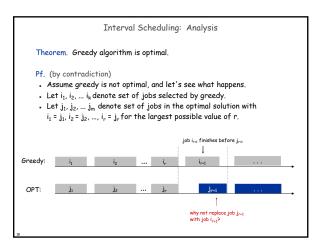


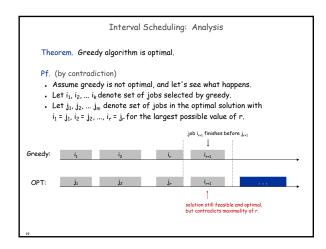


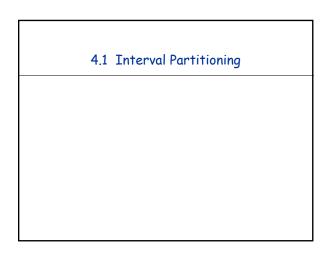


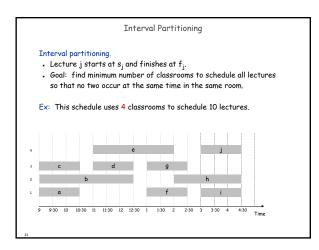
Interval Scheduling: Greedy Algorithms	Interval Scheduling: Greedy Algorithms
Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.	Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.
. [Earliest start time] Consider jobs in ascending order of $\boldsymbol{s}_{j}.$	
. [Earliest finish time] Consider jobs in ascending order of $\boldsymbol{f}_j.$	counterexample for earliest start time
. [Shortest interval] Consider jobs in ascending order of \textbf{f}_j - $\textbf{s}_j.$	counterexample for shortest interval
 [Fewest conflicts] For each job j, count the number of conflicting jobs c_j. Schedule in ascending order of c_j. 	counterexample for fewest conflicts
	16

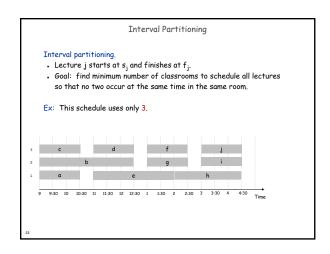


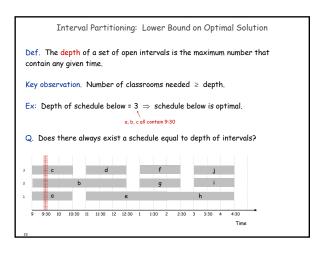


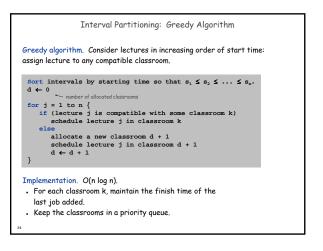












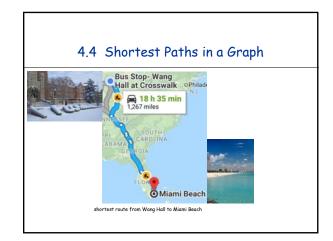
Interval Partitioning: Greedy Analysis

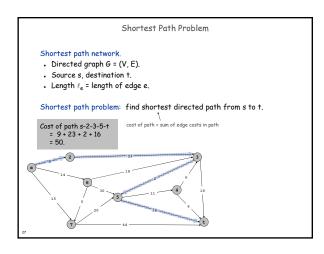
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

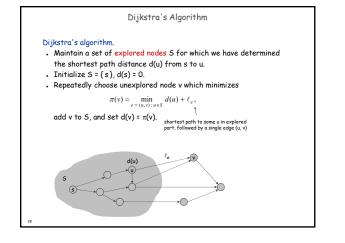
Theorem. Greedy algorithm is optimal.

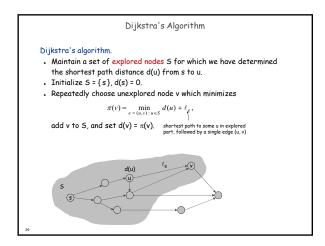
Pf.

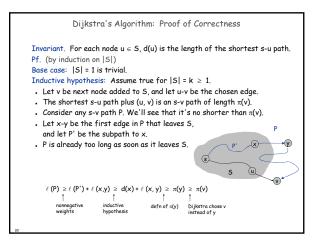
- Let d = number of classrooms that the greedy algorithm allocates.
 Classroom d is opened because we needed to schedule a job, say j,
- that is incompatible with all d-1 other classrooms.
- . These d jobs (including j) each end after \boldsymbol{s}_{j}
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than $\mathbf{s}_{i}.$
- . Thus, we have d lectures overlapping at time $s_j + \epsilon.$
- . Key observation \Rightarrow all schedules use \ge d classrooms. \bullet

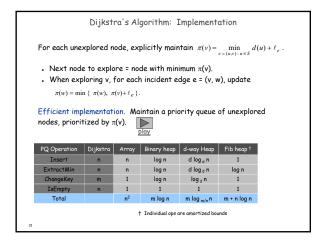


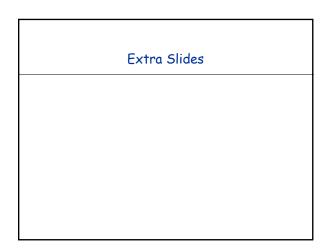


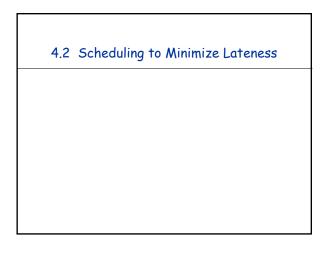


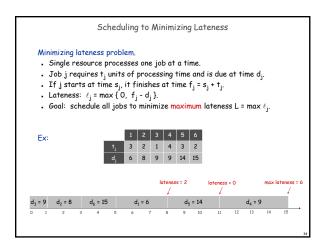


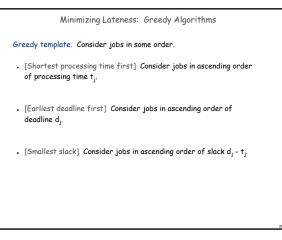


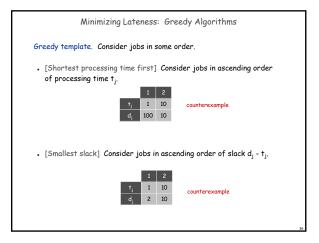


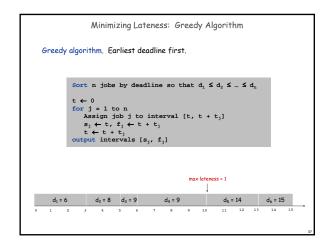


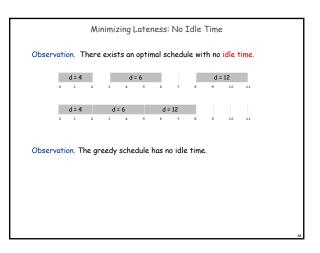


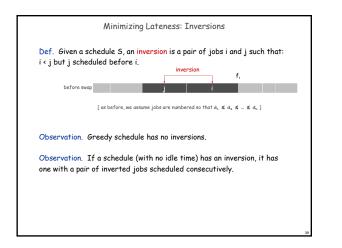


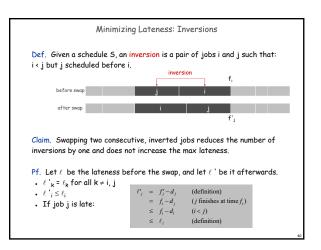


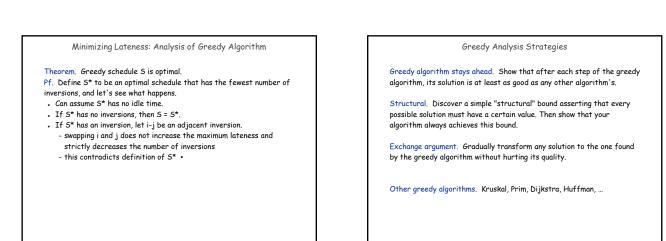


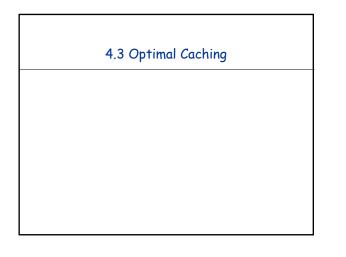


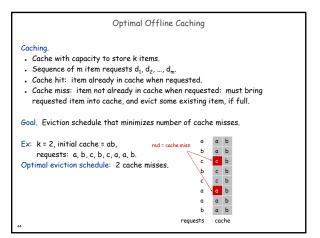


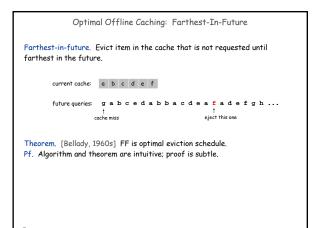


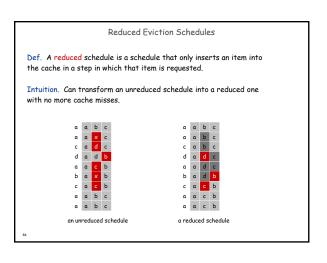


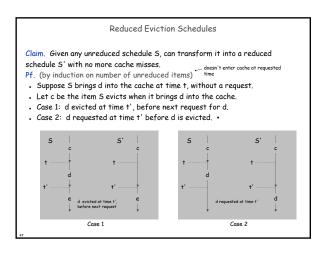


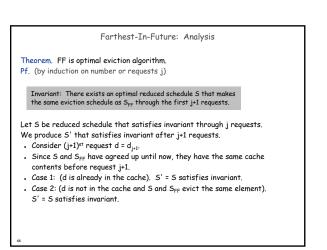


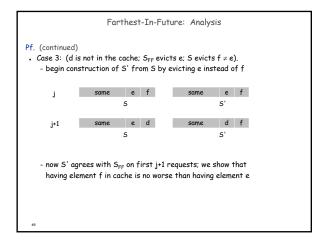


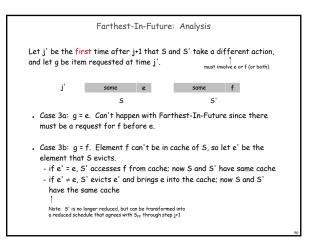


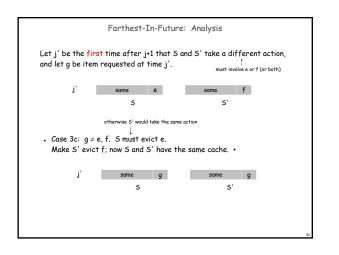


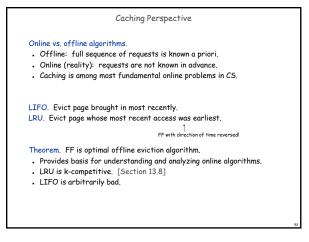


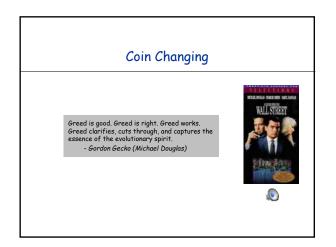


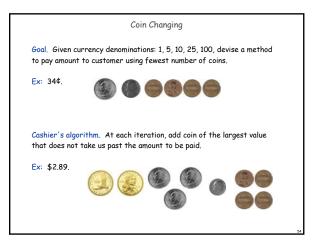


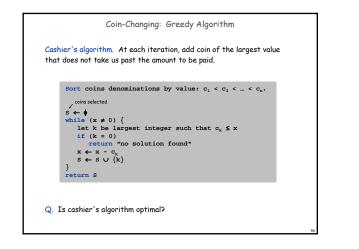




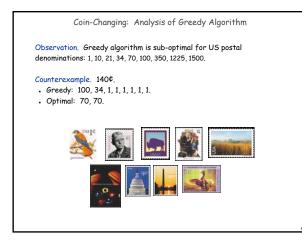


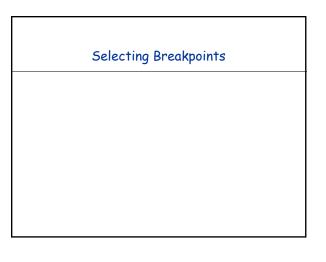


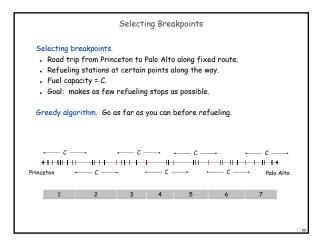




Coin-Changing: Analysis of Greedy Algorithm						
Pf. (by ir Consi We c - if - tat Probl	nductio der op laim th not, it ole bel em rec	n on x) timal w nat any needs e ow india duces to	ay to change c _k ≤x optimal solution mu enough coins of type cates no optimal solu	c ₁ ,, c _{k-1} to add up to ution can do this r _k cents, which, by induc	×	
	k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT		
	1	1	$P \leq 4$	-		
	2	5	$N \leq 1$	4		
	3	10	$N + D \le 2$	4 + 5 = 9		
	4	25	$Q \leq 3$	20 + 4 = 24		
	5	100	no limit	75 + 24 = 99		

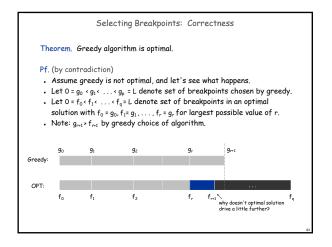


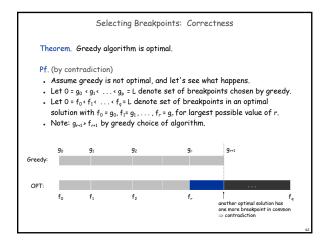




Tru	ck driver's algorithm.
	Sort breakpoints so that: 0 = $b_0 < b_1 < b_2 < \ldots < b_n$ = L
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	while $(x \neq b_n)$ let p be largest integer such that $b_p \leq x + C$ if $(b_p = x)$ return "no solution" $x \leftarrow b_p$ $S \leftarrow S \cup \{p\}$ return S
	lementation. O(n log n) Use binary search to select each breakpoint p.

60





Edsger W. Dijkstra

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

