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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 1 released! 
Due: January 24th at 11:59PM (Gradescope)

Recap: Graphs
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Definition of a Graph
• Representations

• Adjacency Matrix
• Adjacency List

• Connectivity, Cycles
• Trees (Connected + No Cycles)

• Rooted Trees/Binary Trees/Balanced Binary Trees

Breadth First Search
• BFS Tree
• O(m+n) algorithm
• Applications: Connected Components, Shortest Path etc…

Testing Bipartiteness
Directed Graphs and Strong Connectivity
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Strong Connectivity:  Algorithm

Theorem.  Can determine if G is strongly connected in O(m + n) time.
Pf.
 Pick any node s.
 Run BFS from s in G.
 Run BFS from s in Grev.
 Return true iff all nodes reached in both BFS executions.
 Correctness follows immediately from previous lemma.   ▪

reverse orientation of every edge in G

strongly connected not strongly connected

3.6  DAGs and Topological Ordering
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Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj.

Def.  A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG

a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence Constraints

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph:  course vi must be taken before vj.
 Compilation:  module vi must be compiled before vj. Pipeline of 

computing jobs:  output of job vi needed to determine input of job vj.

Function F(V)
W:=2 * V;
X:=W + V;
Y:=X * W;
C:=W *W;
Z:=Y + V;
return Z

V W X Y Z

C



1/17/2019

Copyright 2000, Kevin Wayne 2

7

Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a 

directed cycle C.  Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just 

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a 

topological order, we must have j < i, a contradiction.   ▪

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q. If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming 

edge.  Let's see what happens.
 Pick any node v, and begin following edges backward from v.  Since v 

has at least one incoming edge (u, v) we can walk backward to u.

w x u v

 Then, since u has at least one incoming edge (x, u), we 
can walk backward to x.

 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered 

between successive visits to w.  C is a cycle.   ▪
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)
 Base case:  true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G -

{v} in topological order. This is valid since v has no incoming 
edges.   ▪

DAG

v

play
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Topological Sorting Algorithm:  Running Time

Theorem.  Algorithm finds a topological order in O(m + n) 
time.

Pf.  
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization:  O(m + n) via single scan through graph.
 Update:  to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and 

add w to S if c count[w] hits 0
– this is O(1) per edge    ▪
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Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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4.1  Interval Scheduling
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Interval Scheduling

Interval scheduling.
 Job j starts at sj and finishes at fj.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d
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Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of sj.

 [Earliest finish time] Consider jobs in ascending order of fj.

 [Shortest interval] Consider jobs in ascending order of fj - sj.

 [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.
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Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts
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Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the ones already taken.

Implementation.  O(n log n). 
 Remember job j* that was added last to A.
 Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  
for j = 1 to n {

if (job j compatible with A)
A  A  {j}

}
return A  

set of jobs selected 

Interval Scheduling:  Greedy Algorithm

play

…

…
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Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

j1 j2 jr

i1 i2 ir

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

…

… . . .ir+1
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j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal, 
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.1  Interval Partitioning

21

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal:  find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex:  This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4
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Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal:  find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex:  This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3
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Interval Partitioning:  Lower Bound on Optimal Solution

Def.  The depth of a set of open intervals is the maximum number that 
contain any given time.

Key observation.  Number of classrooms needed   depth.

Ex:  Depth of schedule below = 3   schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of intervals?

Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3
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Interval Partitioning:  Greedy Algorithm

Greedy algorithm.  Consider lectures in increasing order of start time:  
assign lecture to any compatible classroom.

Sort intervals by starting time so that s1  s2  ...  sn.
d  0

for j = 1 to n {
if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d  d + 1

}    

number of allocated classrooms

Implementation.  O(n log n).
 For each classroom k, maintain the finish time of the 

last job added.
 Keep the classrooms in a priority queue.
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Interval Partitioning:  Greedy Analysis

Observation.  Greedy algorithm never schedules two incompatible 
lectures in the same classroom.

Theorem.  Greedy algorithm is optimal.
Pf.  
 Let d = number of classrooms that the greedy algorithm allocates.
 Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms.
 These d jobs (including j) each end after sj.
 Since we sorted by start time, all these incompatibilities 

are caused by lectures that start no later than sj.
 Thus, we have d lectures overlapping at time sj + .
 Key observation   all schedules use  d classrooms.  ▪

4.4  Shortest Paths in a Graph

shortest route from Wang Hall to Miami Beach
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Shortest Path Problem

Shortest path network.
 Directed graph G = (V, E).
 Source s, destination t.
 Length e = length of edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6
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Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u
d(u)

S

e

shortest path to some u in explored 
part, followed by a single edge (u, v)
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Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u
d(u)

shortest path to some u in explored 
part, followed by a single edge (u, v)

S

e
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Dijkstra's Algorithm:  Proof of Correctness

Invariant.  For each node u  S, d(u) is the length of the shortest s-u path.
Pf.  (by induction on |S|)
Base case: |S| = 1 is trivial.
Inductive hypothesis: Assume true for |S| = k   1.
 Let v be next node added to S, and let u-v be the chosen edge.
 The shortest s-u path plus (u, v) is an s-v path of length (v).
 Consider any s-v path P. We'll see that it's no shorter than (v).
 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
 P is already too long as soon as it leaves S.

 (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)   (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'
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Dijkstra's Algorithm:  Implementation

For each unexplored node, explicitly maintain 

 Next node to explore = node with minimum (v).
 When exploring v, for each incident edge e = (v, w), update

Efficient implementation.  Maintain a priority queue of unexplored 
nodes, prioritized by (v).

†  Individual ops are amortized bounds

PQ Operation

Insert
ExtractMin
ChangeKey

Binary heap

log n
log n
log n

Fib heap †

1
log n

1

Array

n
n
1

IsEmpty 1 11

Priority Queue

Total m log n m + n log nn2

Dijkstra

n
n
m
n

d-way Heap

d log d n
d log d n
log d n

1
m log m/n n

  
 (v)  min

e  (u,v) : uS
d (u)   e  .


 (w)  min {  (w),   (v)  e }.

play

Extra Slides

4.2  Scheduling to Minimize Lateness
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Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj. 
 Lateness:  j = max { 0,  fj - dj }.
 Goal:  schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6
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Minimizing Lateness:  Greedy Algorithms

Greedy template.  Consider jobs in some order. 

 [Shortest processing time first] Consider jobs in ascending order 
of processing time tj.

 [Earliest deadline first] Consider jobs in ascending order of 
deadline dj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

36

Greedy template.  Consider jobs in some order. 

 [Shortest processing time first] Consider jobs in ascending order 
of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness:  Greedy Algorithms
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj  t, fj  t + tj
t  t + tj

output intervals [sj, fj]

Minimizing Lateness:  Greedy Algorithm

Greedy algorithm.  Earliest deadline first.

38

Minimizing Lateness: No Idle Time

Observation.  There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12
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Minimizing Lateness: Inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation.  Greedy schedule has no inversions.

Observation.  If a schedule (with no idle time) has an inversion, it has 
one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

fi

inversion

[ as before, we assume jobs are numbered so that d1  d2  …  dn ]
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Minimizing Lateness: Inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim.  Swapping two consecutive, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness.

Pf.  Let  be the lateness before the swap, and let  ' be it afterwards.
  'k = k for all k  i, j
  'i  i
 If job j is late:

ij

i j

before swap

after swap



j  f j  d j (definition)

 fi  d j ( j finishes at time fi )

 fi  di (i  j)

  i (definition)

f'j

fi

inversion
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Minimizing Lateness: Analysis of Greedy Algorithm

Theorem.  Greedy schedule S is optimal.
Pf.  Define S* to be an optimal schedule that has the fewest number of 
inversions, and let's see what happens.
 Can assume S* has no idle time.
 If S* has no inversions, then S = S*.
 If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and 
strictly decreases the number of inversions

– this contradicts definition of S*  ▪

42

Greedy Analysis Strategies

Greedy algorithm stays ahead.  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's. 

Structural.  Discover a simple "structural" bound asserting that every 
possible solution must have a certain value. Then show that your 
algorithm always achieves this bound.

Exchange argument.  Gradually transform any solution to the one found 
by the greedy algorithm without hurting its quality.

Other greedy algorithms.  Kruskal, Prim, Dijkstra, Huffman, …
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4.3 Optimal Caching
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Optimal Offline Caching

Caching.
 Cache with capacity to store k items.
 Sequence of m item requests d1, d2, …, dm.
 Cache hit:  item already in cache when requested.
 Cache miss:  item not already in cache when requested:  must bring 

requested item into cache, and evict some existing item, if full.

Goal.  Eviction schedule that minimizes number of cache misses.

Ex:  k = 2, initial cache = ab,
requests:  a, b, c, b, c, a, a, b.

Optimal eviction schedule:  2 cache misses.

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a ba
a bb

cacherequests

red = cache miss

45

Optimal Offline Caching:  Farthest-In-Future

Farthest-in-future.  Evict item in the cache that is not requested until 
farthest in the future.

Theorem.  [Bellady, 1960s] FF is optimal eviction schedule.
Pf.  Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ... 

current cache: c d e f

future queries:

cache miss eject this one

46

Reduced Eviction Schedules

Def.  A reduced schedule is a schedule that only inserts an item into 
the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one 
with no more cache misses.

a x

an unreduced schedule

c
a d c
a d b
a c b
a x b
a c b
a b c
a b c

a
c
d
a
b
c
a
a

a b

a reduced schedule

c
a b c
a d c
a d c
a d b
a c b
a c b
a c b

a
c
d
a
b
c
a
a

a b ca a b ca
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Reduced Eviction Schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 
schedule S' with no more cache misses.
Pf.  (by induction on number of unreduced items)
 Suppose S brings d into the cache at time t, without a request.
 Let c be the item S evicts when it brings d into the cache.
 Case 1:  d evicted at time t', before next request for d.
 Case 2:  d requested at time t' before d is evicted.  ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d  evicted at time t',
before next request

e

doesn't enter cache at requested 
time

Case 1 Case 2
48

Farthest-In-Future:  Analysis

Theorem.  FF is optimal eviction algorithm.
Pf.  (by induction on number or requests j)

Let S be reduced schedule that satisfies invariant through j requests. 
We produce S' that satisfies invariant after j+1 requests.
 Consider (j+1)st request d = dj+1.
 Since S and SFF have agreed up until now, they have the same cache 

contents before request j+1.
 Case 1:  (d is already in the cache).  S' = S satisfies invariant.
 Case 2: (d is not in the cache and S and SFF evict the same element).

S' = S satisfies invariant.

Invariant:  There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFF through the first j+1 requests.
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j 

Farthest-In-Future:  Analysis

Pf.  (continued)
 Case 3:  (d is not in the cache; SFF evicts e; S evicts f  e).

– begin construction of S' from S by evicting e instead of f

– now S' agrees with SFF on first j+1 requests; we show that 
having element f in cache is no worse than having element e

same f same fee

S S'

j same d same fde

S S'
j+1

50

Farthest-In-Future:  Analysis

Let j' be the first time after j+1 that S and S' take a different action, 
and let g be item requested at time j'.

 Case 3a:  g = e.  Can't happen with Farthest-In-Future since there 
must be a request for f before e.

 Case 3b:  g = f.  Element f can't be in cache of S, so let e' be the 
element that S evicts.

– if e' = e, S' accesses f from cache; now S and S' have same cache
– if e'  e, S' evicts e' and brings e into the cache; now S and S' 

have the same cache

same e same f

S S'

j'

Note:  S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)

51

Farthest-In-Future:  Analysis

Let j' be the first time after j+1 that S and S' take a different action, 
and let g be item requested at time j'.

 Case 3c:  g  e, f.  S must evict e.
Make S' evict f; now S and S' have the same cache.  ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

52

Caching Perspective

Online vs. offline algorithms.
 Offline:  full sequence of requests is known a priori.
 Online (reality):  requests are not known in advance.
 Caching is among most fundamental online problems in CS.

LIFO.  Evict page brought in most recently.
LRU.  Evict page whose most recent access was earliest.

Theorem.  FF is optimal offline eviction algorithm.
 Provides basis for understanding and analyzing online algorithms.
 LRU is k-competitive.  [Section 13.8]
 LIFO is arbitrarily bad.

FF with direction of time reversed!

Coin Changing

Greed is good. Greed is right. Greed works. 
Greed clarifies, cuts through, and captures the 
essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

54

Coin Changing

Goal.  Given currency denominations: 1, 5, 10, 25, 100, devise a method 
to pay amount to customer using fewest number of coins.

Ex:  34¢.

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid.

Ex:  $2.89.
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Coin-Changing:  Greedy Algorithm

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid.

Q.  Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S  
while (x  0) {

let k be largest integer such that ck  x
if (k = 0)

return "no solution found"
x  x - ck
S  S  {k}

}
return S

coins selected 

56

Coin-Changing:  Analysis of Greedy Algorithm

Theorem.  Greed is optimal for U.S. coinage:  1, 5, 10, 25, 100.
Pf. (by induction on x)
 Consider optimal way to change ck  x < ck+1 :  greedy takes coin k.
 We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x
– table below indicates no optimal solution can do this

 Problem reduces to coin-changing x - ck cents, which, by induction, is 
optimally solved by greedy algorithm.  ▪

1

ck

10

25

100

P  4

All optimal solutions
must satisfy

N + D  2

Q  3

5 N  1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

57

Coin-Changing:  Analysis of Greedy Algorithm

Observation.  Greedy algorithm is sub-optimal for US postal 
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample.  140¢.
 Greedy:  100, 34, 1, 1, 1, 1, 1, 1.
 Optimal:  70, 70.

Selecting Breakpoints

59

Selecting Breakpoints

Selecting breakpoints.
 Road trip from Princeton to Palo Alto along fixed route.
 Refueling stations at certain points along the way.
 Fuel capacity = C.
 Goal:  makes as few refueling stops as possible.

Greedy algorithm.  Go as far as you can before refueling.

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

60

Truck driver's algorithm.

Implementation.  O(n log n)
 Use binary search to select each breakpoint p. 

Selecting Breakpoints:  Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S  {0}
x  0

while (x  bn)
let p be largest integer such that bp  x + C
if (bp = x)

return "no solution"
x  bp
S  S  {p}

return S

breakpoints selected
current location
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
 Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in an optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
 Note: gr+1 > fr+1 by greedy choice of algorithm. 

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr
why doesn't optimal solution 
drive a little further?

gr+1

fr+1
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
 Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in an optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
 Note: gr+1 > fr+1 by greedy choice of algorithm. 

another optimal solution has
one more breakpoint in common
 contradiction

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1
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Edsger W. Dijkstra

The question of whether computers can think is like the 
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple 
on the surface of our culture.  In their capacity as 
intellectual challenge, they are without precedent in the 
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, 
therefore, be regarded as a criminal offence. 

APL is a mistake, carried through to perfection. It is the 
language of the future for the programming techniques 
of the past:  it creates a new generation of coding bums.


