Announcement: Homework 1 released! Due: January 24th at 11:59PM (Gradescope)

Recap: Asymptotic Analysis

Five Representative Problems
- Algorithmic Techniques: Greedy, Dynamic Programming, Network Flow...
- Computationally Intractable Problems: Unlikely that polynomial time algorithm exists.

Formal Definition of Big O, Ω, Θ notation
- \(T(n) \in O(f(n)) \) ---- \(f(n) \) upper bounds \(T(n) \)
 - Means we can find constants \(c, N > 0 \) s.t. whenever \(n > N \)
 \(T(n) < \frac{1}{c} f(n) \)
 - Intuition: \(f(n) \) is an upper bound for large enough inputs
- \(T(n) \in \Omega(f(n)) \) ---- \(f(n) \) lower bounds \(T(n) \)
- \(T(n) \in \Theta(f(n)) \) ---- lower bound and upper bound

Polynomial Time function. \(T(n) \in O(n^d) \) for some constant \(d \) (\(d \) is independent of the input size).

2.4 A Survey of Common Running Times

Linear: \(O(n) \)
- Max/Min
- Merge Sorted Lists

Quasilinear: \(O(n \log n) \)
- Sorting
- Many algorithms that use sorting as subroutine

Quadratic: \(O(n^2) \)
- Naive Algorithm to Find Closest Pair of points in Euclidean Space

Linear Time: \(O(n) \)

Merge. Combine two sorted lists \(A = a_1, a_2, \ldots, a_n \) with \(B = b_1, b_2, \ldots, b_n \) into sorted whole.

```
Claim. Merging two lists of size \( n \) takes \( O(n) \) time.
Proof. After each comparison, the length of output list increases by 1.
```

Linear Time: \(O(n \log n) \) Time

\(O(n \log n) \) time. Arises in divide-and-conquer algorithms. Also referred to as linearithmic time.

Sorting. Mergesort and heapsort are sorting algorithms that perform \(O(n \log n) \) comparisons.

Largest empty interval. Given \(n \) time-stamps \(x_1, \ldots, x_n \) on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

\(O(n \log n) \) solution. Sort the \(n \) time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.
Quadratic Time: $O(n^2)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

$O(n^2)$ solution. Try all pairs of points.

\[
\min_{i=1}^{n} \min_{j=i+1}^{n} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

Remark. $O(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: $O(n^3)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1, \ldots, S_n each of which is a subset of $1, 2, \ldots, n$, is there some pair of these which are disjoint?

$O(n^3)$ solution. For each pair of sets, determine if they are disjoint.

\[
\text{foreach set } S_i \{
\text{foreach other set } S_j \{
\text{foreach element } p \text{ of } S_i \{
\text{determine whether } p \text{ also belongs to } S_j \\
\text{if no element of } S_i \text{ belongs to } S_j \\
\text{report that } S_i \text{ and } S_j \text{ are disjoint}
\}
\}
\}
\]

Polynomial Time: $O(n^k)$ Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

$O(n^k)$ solution. Enumerate all subsets of k nodes.

\[
\text{foreach subset } S \text{ of } k \text{ nodes} \{
\text{check whether } S \text{ is an independent set} \\
\text{if } S \text{ is an independent set} \{
\text{report } S \text{ is an independent set}
\}
\}
\]

\[
\text{Number of } k \text{ element subsets } = \binom{n}{k} = \frac{n!}{k!(n-k)!} \\
\text{is polynomial for } k=17, \text{ but not practicable}
\]

Exponential Time

Independent set. Given a graph, what is the maximum size of an independent set?

$O(2^n)$ solution. Enumerate all subsets.

\[
S^* \leftarrow \phi \\
\text{foreach subset } S \text{ of nodes} \{
\text{check whether } S \text{ is an independent set} \\
\text{if } S \text{ is largest independent set seen so far} \{
\text{update } S^* \leftarrow S
\}
\}
\]

3.1 Basic Definitions and Applications
Undirected Graphs

Undirected graph, $G = (V, E)$
- $V = \text{nodes}$
- $E = \text{edges between pairs of nodes}$
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|$.

Example:

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
$E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6\}$
$n = 8$
$m = 11$

Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Street intersections, highways</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>Computers, fiber optic cables</td>
<td></td>
</tr>
<tr>
<td>World Wide Web</td>
<td>Web pages, hyperlinks</td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td>People, relationships</td>
<td></td>
</tr>
<tr>
<td>Food Web</td>
<td>Species, predator-prey</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>Systems, functions</td>
<td></td>
</tr>
<tr>
<td>Graphs</td>
<td>Functions, function calls</td>
<td></td>
</tr>
<tr>
<td>Circuit</td>
<td>Gates, precedence constraints</td>
<td></td>
</tr>
</tbody>
</table>

World Wide Web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another.

Ecological Food Web

Food web graph.
- Node: species.
- Edge: from prey to predator.

9-11 Terrorist Network

Social network graph.
- Node: people.
- Edge: relationship between two people.

Graph Representation: Adjacency Matrix

Adjacency matrix: $n \times n$ matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.
Graph Representation: Adjacency List

- **Adjacency list** is a node-indexed array of lists.
- Two representations of each edge.
- Space proportional to $m + n$.
- Checking if (u, v) is an edge takes $O(\text{deg}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

- **Definition**: A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.
- **Definition**: A path is simple if all nodes are distinct.
- **Definition**: An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

- **Definition**: A cycle is a path $v_1, v_2, ..., v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

Trees

- **Definition**: An undirected graph is a tree if it is connected and does not contain a cycle.

- **Theorem**: Let G be an undirected graph on n nodes. Any two of the following statements imply the third:
 - G is connected.
 - G does not contain a cycle.
 - G has $n-1$ edges.

Rooted Trees

- **Definition**: A rooted tree is a tree with a designated root node r.

- **Importance**: Models hierarchical structure.

Phylogeny Trees

- **Definition**: Phylogeny trees describe evolutionary history of species.
Binary Tree

Def. A rooted tree in which each node has at most 2 children.

Def. Height of a tree is the number of edges in the longest path from root to leaf.

Thm. Number of nodes in binary tree of height h is $n \leq 2^{h+1} - 1 = 2^h + 2^{h-1} + \ldots + 2^0$.

Balanced Binary Tree. Height $h = O(\log n)$.

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.
- Navigation (Google Maps).
- Maze traversal.
- Kevin Bacon number (or Erdős Number).
- Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- $L_0 = \{s\}$.
- L_i = all neighbors of L_{i-1}.
- L_i = all nodes that do not belong to L_0 or L_{i-1} and that have an edge to a node in L_{i-1}.
- L_i = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth First Search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.
- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\deg(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \deg(u) \leq 2m$

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Connected Component

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

recolor lime green blob to blue
3.4 Testing Bipartiteness

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
- Many graph problems become:
 - Easier if the underlying graph is bipartite (matching)
 - Tractable if the underlying graph is bipartite (independent set)
Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

A bipartite graph G another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite (2-colorable) not bipartite (not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
- Suppose no edge (x,y) joins two nodes in same layer L_i.
- By previous lemma, this implies all edges (x,y) join nodes in adjacent layers (i.e., $x \in L_i$ and $y \in L_{i+1}$).
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

Pf. (ii)
- Suppose an edge (x,y) joins two nodes in same layer L_i.
- By previous lemma, this implies all edges (x,y) join nodes in adjacent layers (i.e., $x \in L_i$ and $y \in L_{i+1}$).
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (ii)
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

\begin{itemize}
 \item Suppose (x, y) is an edge with x, y in same level L_j.
 \item Let $z = lca(x, y)$ = lowest common ancestor.
 \item Let L_i be level containing z.
 \item Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
 \item Its length is $1 + (j-i) + (j-i)$, which is odd.
\end{itemize}

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

Directed Graphs

Directed graph. $G = (V, E)$

- Edge (u, v) goes from node u to node v.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Directed reachability. Given a node s, find all nodes reachable from s.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \(\Rightarrow \) Follows from definition.

Pf. \(\Leftarrow \) Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path.

\[\text{Path if paths overlap} \]
Strong Connectivity: Algorithm

Theorem. Can determine if \(G \) is strongly connected in \(O(m + n) \) time.

Pf.

1. Pick any node \(s \).
2. Run BFS from \(s \) in \(G \).
3. Run BFS from \(s \) in \(G^{rev} \).
4. Return true iff all nodes reached in both BFS executions.
5. Correctness follows immediately from previous lemma.

Def. An **DAG** is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i \) must precede \(v_j \).

Def. A **topological order** of a directed graph \(G = (V, E) \) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n \) so that for every edge \((v_i, v_j)\) we have \(i < j \).

Directed Acyclic Graphs

Lemma. If \(G \) has a topological order, then \(G \) is a DAG.

Pf. (by contradiction)

1. Suppose that \(G \) has a topological order \(v_1, \ldots, v_n \) and that \(G \) also has a directed cycle \(C \). Let’s see what happens.
2. Let \(v_i \) be the lowest-indexed node in \(C \), and let \(v_j \) be the node just before \(v_i \), thus \((v_j, v_i)\) is an edge.
3. By our choice of \(i \), we have \(i < j \).
4. On the other hand, since \((v_j, v_i)\) is an edge and \(v_1, \ldots, v_i \) is a topological order, we must have \(j < i \), a contradiction.

Directed Acyclic Graphs

Lemma. If \(G \) has a topological order, then \(G \) is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If \(G \) is a DAG, then \(G \) has a node with no incoming edges.

Pf. (by contradiction)
- Suppose that \(G \) is a DAG and every node has at least one incoming edge. Let’s see what happens.
- Pick any node \(v \), and begin following edges backward from \(v \). Since \(v \) has at least one incoming edge \((u, v)\) we can walk backward to \(u \).
- Then, since \(u \) has at least one incoming edge \((x, u)\), we can walk backward to \(x \).
- Repeat until we visit a node, say \(w \), twice.
- Let \(C \) denote the sequence of nodes encountered between successive visits to \(w \). \(C \) is a cycle. □

Directed Acyclic Graphs

Lemma. If \(G \) is a DAG, then \(G \) has a topological ordering.

Pf. (by induction on \(n \))
- **Base case:** true if \(n = 1 \).
- **Given DAG on \(n > 1 \) nodes, find a node \(v \) with no incoming edges.
- \(G - \{ v \} \) is a DAG, since deleting \(v \) cannot create cycles.
- By inductive hypothesis, \(G - \{ v \} \) has a topological ordering.
- Place \(v \) first in topological ordering; then append nodes of \(G - \{ v \} \) in topological order. This is valid since \(v \) has no incoming edges. □

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in \(O(m + n) \) time.

Pf. Maintain the following information:
- \(\text{count}[w] \) = remaining number of incoming edges
- \(S \) = set of remaining nodes with no incoming edges
- **Initialization:** \(O(m + n) \) via single scan through graph.
- **Update:** to delete \(v \)
 - remove \(v \) from \(S \)
 - decrement \(\text{count}[w] \) for all edges from \(v \) to \(w \), and
 - add \(w \) to \(S \) if \(\text{count}[w] \) hits 0
- this is \(O(1) \) per edge □