Announcement: Homework 1 released!
Due: January 24th at 11:59PM (Gradescope)
Recap: Asymptotic Analysis

Five Representative Problems
- Algorithmic Techniques: Greedy, Dynamic Programming, Network Flow,...
- Computationally Intractable Problems: Unlikely that polynomial time algorithm exists.

Formal Definition of Big O, Ω, Θ notation
- $T(n) \in O(f(n))$ ---- $f(n)$ upper bounds $T(n)$
 - Means we can find constants $c,N > 0$ s.t. whenever $n > N$
 $$T(n) < c \times f(n)$$
 - **Intuition:** $c \times f(n)$ upper bounds $T(n)$ for large enough inputs
- $T(n) \in \Omega(f(n))$ ---- $f(n)$ lower bounds $T(n)$
- $T(n) \in \Theta(f(n))$ ---- lower bound and upper bound

Polynomial Time function. $T(n) \in O(n^d)$ for some constant d (d is independent of the input size).
2.4 A Survey of Common Running Times

Linear: $O(n)$
- Max/Min
- Merge Sorted Lists

Quasilinear: $O(n \log n)$
- Sorting
- Many algorithms that use sorting as subroutine

Quadratic: $O(n^2)$
- Naïve Algorithm to Find Closest Pair of points in Euclidean Space
Polynomial Time: $O(n^k)$ Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

$O(n^k)$ solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
 check whether S in an independent set
 if (S is an independent set)
 report S is an independent set
}

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets $= \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \leq \frac{n^k}{k!}$
- $O(k^2 n^k / k!) = O(n^k)$.

poly-time for $k=17$, but not practical
Independent set. Given a graph, what is maximum size of an independent set?

\(O(n^2 2^n)\) solution. Enumerate all subsets.

\[
\begin{align*}
S^* & \leftarrow \emptyset \\
\text{foreach subset } S \text{ of nodes } & \\
\quad & \text{check whether } S \text{ in an independent set} \\
\quad & \text{if (} S \text{ is largest independent set seen so far)} \\
\quad & \quad \text{update } S^* \leftarrow S \\
\end{align*}
\]
3.1 Basic Definitions and Applications
Undirected Graphs

Undirected graph. \(G = (V, E) \)

- \(V \) = nodes.
- \(E \) = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: \(n = |V|, m = |E| \).

\[
V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}
\]

\[
E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 \}
\]

\[
n = 8
\]

\[
m = 11
\]
Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
Web graph.
- Node: web page.
- Edge: hyperlink from one page to another.
9-11 Terrorist Network

Social network graph.
- **Node:** people.
- **Edge:** relationship between two people.

Ecological Food Web

Food web graph.
- **Node = species.**
- **Edge = from prey to predator.**

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
5 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
7 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
8 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to \(m + n \).
- Checking if \((u, v)\) is an edge takes \(O(\text{deg}(u))\) time.
- Identifying all edges takes \(\Theta(m + n)\) time.

degree = number of neighbors of \(u\)
Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A *cycle* is a path \(v_1, v_2, \ldots, v_{k-1}, v_k \) in which \(v_1 = v_k \), \(k > 2 \), and the first \(k-1 \) nodes are all distinct.

![diagram](cycle.png)

cycle \(C = 1-2-4-5-3-1 \)
Def. An undirected graph is a **tree** if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.
Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.
Def. A rooted tree in which each node has at most 2 children.

Def. Height of a tree is the number of edges in the longest path from root to leaf.

Thm. Number of nodes in binary tree of height h is $n \leq 2^{h+1} - 1$ ($= 2^0 + 2^1 + 2^2 + \cdots + 2^h$).

Balanced Binary Tree. Height $h = O(\log n)$.
3.2 Graph Traversal
Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Applications.
- Navigation (Google Maps).
- Maze traversal.
- Kevin Bacon number (or Erdős Number).
- Fewest number of hops in a communication network.
Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- $L_0 = \{ s \}$.
- $L_1 =$ all neighbors of L_0.
- $L_2 =$ all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- $L_{i+1} =$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\deg(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \deg(u) = 2m$

Each edge (u, v) is counted exactly twice in sum: once in $\deg(u)$ and once in $\deg(v)$.
Connected Component

Connected component. Find all nodes reachable from \(s \).

Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.
Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- **Node:** pixel.
- **Edge:** two neighboring lime pixels.
- **Blob:** connected component of lime pixels.

![Diagram of Tux Paint with a green blob being recolored to blue]
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- **Node**: pixel.
- **Edge**: two neighboring lime pixels.
- **Blob**: connected component of lime pixels.

recolor lime green blob to blue
Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \not\in R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.
- DFS = explore in a different way.
3.4 Testing Bipartiteness
Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

\[\text{a bipartite graph} \]
Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge (x,y) joins two nodes in same layer L_i.
- By previous lemma, this implies all edges (x,y) join nodes in adjacent layers (i.e., $x \in L_i$ and $y \in L_{i+1}$).
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) = \text{lowest common ancestor}$.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd. \hfill \blacksquare
Corollary. A graph G is bipartite iff it contain no odd length cycle.
3.5 Connectivity in Directed Graphs
Directed Graphs

Directed graph. $G = (V, E)$

- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong Connectivity

Def. Node \(u \) and \(v \) are **mutually reachable** if there is a path from \(u \) to \(v \) and also a path from \(v \) to \(u \).

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let \(s \) be any node. \(G \) is strongly connected iff every node is reachable from \(s \), and \(s \) is reachable from every node.

Pf. \(\Rightarrow \) Follows from definition.

Pf. \(\Leftarrow \) Path from \(u \) to \(v \): concatenate \(u \)-\(s \) path with \(s \)-\(v \) path.

Path from \(v \) to \(u \): concatenate \(v \)-\(s \) path with \(s \)-\(u \) path.

\(\Box \)

ok if paths overlap
Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.
3.6 DAGs and Topological Ordering
Directed Acyclic Graphs

Def. An **DAG** is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A **topological order** of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. ▪
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. □
Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- $G - \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G - \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{v\}$ in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$ and append this order after v
Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.

- Maintain the following information:
 - $\text{count}[w] = \text{remaining number of incoming edges}$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge