CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 1 released!
Due: January 24t at 11:59PM (Gradescope)

Recap: Asymptotic Analysis

Five Representative Problems

. Algorithmic Techniques: Greedy, Dynamic Programming, Network
Flow,...

. Computationally Intractable Problems: Unlikely that polynomial
time algorithm exists.

Formal Definition of Big O,Q, ©® notation
T(n) € 0(f(n)) ---- f(n) upper bounds T(n)
Means we can find constants ¢, N > O s.t. whenever n> N
T(n) < ¢ X f(n)
Intuition: ¢ x f(n) upperbounds T(n) for large enough

inputs
T(n) € Q(f(n)) ---- f{(n) lower bounds T(n)
T(n) € 0(f(n)) ---- lower bound and upper bound

Polynomial Time function. T(n) € 0(n%) for some constant d
(d is independent of the input size).

2.4 A Survey of Common Running Times

Linear: O(n)
¢ Max/Min
* Merge Sorted Lists

Quasilinear: O(n log n)
e Sorting
* Many algorithms that use sorting as subroutine

Quadratic: O(n?)
* Nadive Algorithm to Find Closest Pair of points in Euclidean Space

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

ho two are joined by an edge? N
k is a constant

O(nk) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an i1Independent set
i1IT (S 1s an independent set)
report S is an iIndependent set

}
}

. Check whether S is an independent set = O(k?).

. Number of k element subsets = (nJ_ n(n-1) (n-2)- (n-k+1) _

. O(k2 nk/ Kkl) = O(nk).
AN

poly-time for k=17,
but not practical

k) k(k=2)(k=2)--(2) ()

nk

Tk

10

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n? 2") solution. Enumerate all subsets.

JON KLEINBERG - EVA TARDOS

PEARSON

e o,
Addison

Wesley

1

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)
. V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

v={12,3,4,56,7,8}

(0 (@
. E={1-2,1-3,2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5,5-6 }
O ONNEL
()—C) ©&

13

14

Some Graph Applications

15

Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

netscape.com

«—

novell.com

World Wide Web

cnn.com

chnsi.com

timewarner.com

'
sorpranos.com

hbo.com <~

9-11 Terrorist Network

[]
Abu Zubeida

L
Jean- Marc Grandwvisir

[
Abu Walid »
Djamal Eeghal

u
Ahmed Ressam

»
Haydar Abu Doha

[}
Mehdi Khammoun

L]
Essoussi Laaroussi

] n
Moharmed.Bensakhria Tarek Mazroufi

[
Lased Ben Heni

[
Seifallah ben Hassine

a
Essid Sami Ben Khemais

L
F=hid al Shakri

n
Abdelghani Mzoudi

-
Madjid Sahoune

-
Samir Kishk =
Mustafa Alimed al- Hisaw

[}
Fayez ARmed

Wail Alshehri

Wialeed Alshehri

¥ Satam Sugami
Motrand Alshehri*

L
- Nabil al-Marabh
Raed Hijazi

=
Saeed Alghamdi*

Abdul Aziz Al-Omari*

B
Kamel Dacudi

u
Abu Gatads

L
Iacarizs Moussaoui

L]
Im=ad Eddin Barakat Yarkas

M Flight AA £77 - Crashed Into P
W Flight UA #93 - Crashed in Pennsylvania
Flight UA #175 - Crashed |

Othe o

n
Mohammed Belfas

| |
Ramzi Bin al-Shibh

Social network graph.
. Node: people.
. Edge:

u
Mizar Trabelsi

n
Jerome Courtaillier

a
Danvid Courtaillier

tagon

0 WTC South

| | |
#gus Budiman Mounir Bl Motassadeg

=
Ahmed-Khalil lbrakhim Samir Al-Ani

)
Zakariya Essabar

Mohzmead Atte "
Said Bahaji

]
¥ Ziad Jarrah
Marwan Al-Shehhi
L2
Latfi Raissi

[]
Ahmed Al Hazrzwi - B
Hani Hanjour

u
I Salem Alhazmi?
Ahmed Alghamdi

u
Mamduh Mahmud Salim

Marmoun Darkazanli

A
Bandar Alhaz mi

L
Rayed Mohammed Abdullah

L
Faisal Al Salmi

n
Majed Maqed

-
Hamza Alghamdi—. g

Nzt Alhar mi

n
Ahrmed Alnami

L)
Khalid Al-Mihdhar

]
Osama Awadallzh

=
- Abdussattar Shaikh
Moharmed Abdi

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

16

relationship between two people.

http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

northem copperbelly H“c-glll IFISh

water snake

o

P shrew

spotted salamander

n algae (magnified)

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?,
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.

O~NO OIS WNEBE

OO O0OO0OORPFr O
OCOOFrRRFFPOPRFRN
PFRPORFRPOORPFPW
OO0OOFrROOFr O~
OCOFRPOPFRPFRPEFRO|lu
OCOOPFRrPLROO0OOO0OO
P OOOOPFr OO~
OPrPOO0OOPFr OO

19

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional o m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u

i

1 |2]|e 3

2 |1 3] N {5 ¥
3 (1|et+—|2|e+—5|e 7|0 —8
40 " 5

5 |2|e1—{3|e1—{4|e 6

6

7

8

w w
®
(00)

20

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, V2, .., Vi1, Vi With the property that each consecutive pair v;, v, is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.

Cycles

Def. A cycleis apath vy, v, ..., Vi1, Vi in which v; = v, k > 2, and the
first k-1 nodes are all distinct.

at®

cycle C = 1-2-4-5-3-1

21

22

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.

23

Rooted Trees

Rooted free. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

O OBNOIOIONNO

child of v
(leaf node)
a tree the same tree, rooted at 1

Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a ftree is the number of edges in the longest path from
root to leaf.

root r Height: 6

Thm. Number of nodes in binary tree of
heigh’r hisn < 2h+1 _q (= 204 21 4 22 4 ... 4 zh).

Balanced Binary Tree. Height h = O(logn)

25

3.2 Graph Traversal

28

Connectivity

s-t connectivity problem. Given two node s and 1, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications.
. Navigation (Google Maps).
. Maze traversal.
. Kevin Bacon number (or Erdés Number).
. Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm. S < L — Lo — eee L 1
. Lo={s} B &
. L, = all neighbors of L,.
. L, = all nodes that do not belong to L, or L;, and that
have an edge to a node in L;.
. L;,; = all nodes that do not belong to an earlier layer,
and that have an edge to a node in L,.

Theorem. For each i, L; consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

29

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u,v)
- total time processing edges is ¥, deg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

32

33

Connected Component

Connected component. Find all nodes reachable from s.

i1

Connected component containingnode 1={1,2,3,4,5,6,7,8 }.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob fo blue

eeon Tux Paint /

A= o ot
aint | Stamp RainbowSparkles
. > ° °
Lines Shapes Mirrar " Flip
% L L
Text m Blur ' Blocks
A 2%) ¢ ¢
Undo Rédo MNegative' Fade
20 0 ™ b b
Eraser = New Chalk * Drip
B - — ¢ ¢
en ve Thick " Thin

A ‘T

Coo3 ()
ﬂ Blue!

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

8 oo Tux Paint

fTools) Magid

A= o "

et

aint ' Stamp RalnbawSpérkles
bk) ° ¢

Lines 'Shapes Mirrar Flip
o

Abc =

Text \Magic Blur ' Blocks
AN 0\ e

Undo Redo Negative' Fade
0 rom ¢

Eraser ' New Chalk Drip
o

ngn ;ave Thick " Thin
;rlnt Quit / .b ' Fill '
s

Colord [SR e
W Click in the picture to fill that area with color.

35

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected
component containing s.

. BFS = explore in order of distance from s.

. DFS = explore in a different way.

36

3.4 Testing Bipartiteness

38

Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.

. Stable marriage: men = red, women = blue.
. Scheduling: machines = red, jobs = blue.

a bipartite graph

39

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
. Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
. Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph G another drawing of G

40

An Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

41

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

O O — O
A E<;—h/?i>\<i
L L. Ls Ly L. Ls

Case (i) Case (ii)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
. Suppose no edge (x,y) joins Two nodes in same layer L.
. By previous lemma, this implies all edges (x,y) join nodes
in adjacent layers (i.e., x € L;and y € L;,9).
. Bipartition: red = nodes on odd levels, blue = nodes on
even levels.

42

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

PE. (ii)
. Suppose (X, y) is an edge with x, y in same level L;. z = lca(x, y)
. Let z = lca(x, y) = lowest common ancestor. Layer L,

. Let L, be level containing z.
. Consider cycle that takes edge from x toy,
then path fromy to z, then path from z to x. Layer I, °

. Itslengthis 1 + (j-i) + (j-i), which is odd.
e e

(x,y) path from path from
y to z Z to x

43

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

44

3.5 Connectivity in Directed Graphs

46

Directed Graphs

Directed graph. 6 = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to
another.
. Directedness of graph is crucial.
. Modern web search engines exploit hyperlink structure to
rank web pages by importance.

47

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and 1?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web
pages linked from s, either directly or indirectly.

48

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path.

Ny

ok if paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

. Pick any node s.

. Run BFS from s in G. reverse orientation of every edge in G

. Run BFS from s in Grev,

. Return true iff all nodes reached in both BFS executions.

. Correctness follows immediately from previous lemma. =

d

N\

N\

strongly connected not strongly connected

49

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v,, ..., v, so that for every edge (v;, v;) we have i < j.

\& "\ V3 _ ~

a topological ordering

a DAG

51

52

Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v

j.
Applications.

. Course prerequisite graph: course v; must be taken before v;.

. Compilation: module v; must be compiled before v;. Pipeline of

computing jobs: output of job v; needed to determine input of job v;.

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

. Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

. Let v, be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v;, v)) is an edge.

- By our choice of i, we have i < j.

. On the other hand, since (vJ-, v;) isan edge and vy, ..., v, is a
topological order, we must have j < i, a contradiction.

the directed cycle C

@OMOCFO%DO@

the supposed topological order: vy, ..., v,

53

54

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

55

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

. Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

. Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

. Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

. Repeat until we visit a node, say w, twice.

. Let C denote the sequence of nodes encountered between
successive visits tow. Cis a cycle.

Directed Acyclic Graphs

Lemma. If 6isa DAG, then G has a topological ordering. |
play

Pf. (by induction on n)
. Base case: trueif n=1.
. Given DAG on n > 1 nodes, find a node v with no incoming edges.
. 6-{v}isaDAG, since deleting v cannot create cycles.
. By inductive hypothesis, G - { v } has a topological ordering.
. Place v first in topological ordering; then append nodes of G - {v}
in topological order. This is valid since v has no incoming edges. -

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first DAG
Delete v from G

Recursively compute a topological ordering of G—{v} ‘\E/

and append this order after v (:E:T

56

57

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n)
time.

Pf.

. Maintain the following information:

- count[w] = remaining number of incoming edges

- S = set of remaining nodes with no incoming edges
. Initialization: O(m + n) via single scan through graph.
. Update: to delete v

- remove v from S

- decrement count[w] for all edges from v to w, and

add w to S if ¢ count[w] hits O
- this is O(1) per edge

	CS 580: Algorithm Design and Analysis
	Recap: Asymptotic Analysis
	2.4 A Survey of Common Running Times
	Polynomial Time: O(nk) Time
	Exponential Time
	Chapter 3��Graphs
	3.1 Basic Definitions and Applications
	Undirected Graphs
	Some Graph Applications
	World Wide Web
	9-11 Terrorist Network
	Ecological Food Web
	Graph Representation: Adjacency Matrix
	Graph Representation: Adjacency List
	Paths and Connectivity
	Cycles
	Trees
	Rooted Trees
	Binary Tree
	3.2 Graph Traversal
	Connectivity
	Breadth First Search
	Breadth First Search
	Breadth First Search: Analysis
	Connected Component
	Flood Fill
	Flood Fill
	Connected Component
	3.4 Testing Bipartiteness
	Bipartite Graphs
	Testing Bipartiteness
	An Obstruction to Bipartiteness
	Bipartite Graphs
	Bipartite Graphs
	Bipartite Graphs
	Obstruction to Bipartiteness
	3.5 Connectivity in Directed Graphs
	Directed Graphs
	Graph Search
	Strong Connectivity
	Strong Connectivity: Algorithm
	3.6 DAGs and Topological Ordering
	Directed Acyclic Graphs
	Precedence Constraints
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Topological Sorting Algorithm: Running Time

