CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 1 released!
Due: January 24t at 11:59PM (Gradescope)



Recap: Asymptotic Analysis

Five Representative Problems

. Algorithmic Techniques: Greedy, Dynamic Programming, Network
Flow,...

. Computationally Intractable Problems: Unlikely that polynomial
time algorithm exists.

Formal Definition of Big O,Q, ©® notation
T(n) € 0(f(n)) ---- f(n) upper bounds T(n)
Means we can find constants ¢, N > O s.t. whenever n> N
T(n) < ¢ X f(n)
Intuition: ¢ x f(n) upperbounds T(n) for large enough

inputs
T(n) € Q(f(n)) ---- f{(n) lower bounds T(n)
T(n) € 0(f(n)) ---- lower bound and upper bound

Polynomial Time function. T(n) € 0(n%) for some constant d
(d is independent of the input size).



2.4 A Survey of Common Running Times

Linear: O(n)
¢  Max/Min
* Merge Sorted Lists

Quasilinear: O(n log n)
e Sorting
* Many algorithms that use sorting as subroutine

Quadratic: O(n?)
* Nadive Algorithm to Find Closest Pair of points in Euclidean Space



Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

ho two are joined by an edge? N
k is a constant

O(nk) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an i1Independent set
i1IT (S 1s an independent set)
report S is an iIndependent set

}
}

. Check whether S is an independent set = O(k?).

. Number of k element subsets = (nJ_ n(n-1) (n-2)- (n-k+1) _

. O(k2 nk/ Kkl) = O(nk).
AN

poly-time for k=17,
but not practical

k) k(k=2)(k=2)--(2) ()

nk

Tk
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Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n? 2") solution. Enumerate all subsets.
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3.1 Basic Definitions and Applications




Undirected Graphs

Undirected graph. G = (V, E)
. V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

v={12,3,4,56,7,8}

(0 (@
. E={1-2,1-3,2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5,5-6 }
O ONNEL
()—C) ©&
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Some Graph Applications
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Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

netscape.com

«—

novell.com

World Wide Web

cnn.com

chnsi.com

timewarner.com

'
sorpranos.com

hbo.com <~




9-11 Terrorist Network
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Social network graph.
. Node: people.
. Edge:
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Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs
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relationship between two people.


http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

northem copperbelly H“c-glll IFISh

water snake

o

P shrew

spotted salamander

n algae (magnified)

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff



http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?,
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.

O~NO OIS WNEBE

OO O0OO0OORPFr O
OCOOFrRRFFPOPRFRN
PFRPORFRPOORPFPW
OO0OOFrROOFr O~
OCOFRPOPFRPFRPEFRO|lu
OCOOPFRrPLROO0OOO0OO
P OOOOPFr OO~
OPrPOO0OOPFr OO
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Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional o m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u

i

1 |2]|e 3

2 |1 3] N {5 ¥
3 (1|et+—|2|e+—5|e 7|0 —8
40 " 5

5 |2|e1—{3|e1—{4|e 6

6

7

8

w w
®
(00)
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Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, V2, .., Vi1, Vi With the property that each consecutive pair v;, v, is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.



Cycles

Def. A cycleis apath vy, v, ..., Vi1, Vi in which v; = v, k > 2, and the
first k-1 nodes are all distinct.

at®

cycle C = 1-2-4-5-3-1

21
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Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.
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Rooted Trees

Rooted free. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

O OBNOIOIONNO

child of v
(leaf node)
a tree the same tree, rooted at 1



Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a ftree is the number of edges in the longest path from
root to leaf.

root r Height: 6

Thm. Number of nodes in binary tree of
heigh’r hisn < 2h+1 _q (= 204 21 4 22 4 ... 4 zh).

Balanced Binary Tree. Height h = O(logn)

25



3.2 Graph Traversal
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Connectivity

s-t connectivity problem. Given two node s and 1, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications.
. Navigation (Google Maps).
. Maze traversal.
. Kevin Bacon number (or Erdés Number).
. Fewest number of hops in a communication network.



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm. S < L — Lo — eee L 1
. Lo={s} B &
. L, = all neighbors of L,.
. L, = all nodes that do not belong to L, or L;, and that
have an edge to a node in L;.
. L;,; = all nodes that do not belong to an earlier layer,
and that have an edge to a node in L,.

Theorem. For each i, L; consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

29



Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.




Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u,v)
- total time processing edges is ¥, deg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

32
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Connected Component

Connected component. Find all nodes reachable from s.

i1

Connected component containingnode 1={1,2,3,4,5,6,7,8 }.



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob fo blue

eeon Tux Paint /

A= o ot
aint | Stamp RainbowSparkles
. > ° °
Lines Shapes Mirrar " Flip
% L L
Text m Blur ' Blocks
A 2% ) ¢ ¢
Undo  Rédo MNegative' Fade
20 0 ™ b b
Eraser = New Chalk * Drip
B - — ¢ ¢
en ve Thick " Thin

A ‘T

Coo3 ()
ﬂ Blue!



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

8 oo Tux Paint

fTools) Magid

A= o "

et

aint ' Stamp RalnbawSpérkles
bk ) ° ¢

Lines 'Shapes Mirrar Flip
o

Abc =

Text \Magic Blur ' Blocks
AN 0\ e

Undo  Redo Negative' Fade
0 rom ¢

Eraser ' New Chalk  Drip
o

ngn ;ave Thick " Thin
;rlnt Quit / .b ' Fill '
s

Colord [ SR e
W Click in the picture to fill that area with color.
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Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected
component containing s.

. BFS = explore in order of distance from s.

. DFS = explore in a different way.

36



3.4 Testing Bipartiteness
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Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.

. Stable marriage: men = red, women = blue.
. Scheduling: machines = red, jobs = blue.

a bipartite graph
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Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
. Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
. Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

O O — O
A E<;—h/?i>\<i
L L. Ls Ly L. Ls

Case (i) Case (ii)




Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
. Suppose no edge (x,y) joins Two nodes in same layer L.
. By previous lemma, this implies all edges (x,y) join nodes
in adjacent layers (i.e., x € L;and y € L;,9).
. Bipartition: red = nodes on odd levels, blue = nodes on
even levels.

42



Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

PE. (ii)
. Suppose (X, y) is an edge with x, y in same level L;. z = lca(x, y)
. Let z = lca(x, y) = lowest common ancestor. Layer L,

. Let L, be level containing z.
. Consider cycle that takes edge from x toy,
then path fromy to z, then path from z to x. Layer I, °

. Itslengthis 1 + (j-i) + (j-i), which is odd.
e e

(x,y) path from path from
y to z Z to x

43



Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

44



3.5 Connectivity in Directed Graphs
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Directed Graphs

Directed graph. 6 = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to
another.
. Directedness of graph is crucial.
. Modern web search engines exploit hyperlink structure to
rank web pages by importance.
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Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and 1?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web
pages linked from s, either directly or indirectly.
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Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path.

Ny

ok if paths overlap



Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

. Pick any node s.

. Run BFS from s in G. reverse orientation of every edge in G

. Run BFS from s in Grev,

. Return true iff all nodes reached in both BFS executions.

. Correctness follows immediately from previous lemma. =

d

N\

N\

strongly connected not strongly connected

49



3.6 DAGs and Topological Ordering




Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v,, ..., v, so that for every edge (v;, v;) we have i < j.

\& "\ V3 _ ~

a topological ordering

a DAG

51
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Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v

j.
Applications.

. Course prerequisite graph: course v; must be taken before v;.

. Compilation: module v; must be compiled before v;. Pipeline of

computing jobs: output of job v; needed to determine input of job v;.



Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

. Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

. Let v, be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v;, v)) is an edge.

- By our choice of i, we have i < j.

. On the other hand, since (vJ-, v;) isan edge and vy, ..., v, is a
topological order, we must have j < i, a contradiction.

the directed cycle C

@OMOCFO%DO@

the supposed topological order: vy, ..., v,

53
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Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
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Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

. Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

. Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

. Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

. Repeat until we visit a node, say w, twice.

. Let C denote the sequence of nodes encountered between
successive visits tow. Cis a cycle.




Directed Acyclic Graphs

Lemma. If 6isa DAG, then G has a topological ordering. |
play

Pf. (by induction on n)
. Base case: trueif n=1.
. Given DAG on n > 1 nodes, find a node v with no incoming edges.
. 6-{v}isaDAG, since deleting v cannot create cycles.
. By inductive hypothesis, G - { v } has a topological ordering.
. Place v first in topological ordering; then append nodes of G - {v}
in topological order. This is valid since v has no incoming edges. -

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first DAG
Delete v from G

Recursively compute a topological ordering of G—{v} ‘\E/

and append this order after v (:E:T

56



57

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n)
time.

Pf.

. Maintain the following information:

- count[w] = remaining number of incoming edges

- S = set of remaining nodes with no incoming edges
. Initialization: O(m + n) via single scan through graph.
. Update: to delete v

- remove v from S

- decrement count[w] for all edges from v to w, and

add w to S if ¢ count[w] hits O
- this is O(1) per edge
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