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Recap: Stable Matching Problem

• Definition of Stable Matching Problem
• Gale-Shapley Algorithm

• Unengaged men propose to the top remaining woman w on their 
preference list

• The proposal is (temporarily) accepted if the woman w is 
currently unengaged or if the proposer m is preferred to current 
fiancé m’

• Analysis of Gale-Shapley Algorithm
• Proof of correctness

• Everyone is matched when algorithm terminates
• Gale-Shapley Matching is stable

• Implementation + Running Time Analysis: 
• Runs in at most O(n2) steps

• Implies Stable Matching Always exists
• (Contrast with Stable-Roommate Problem)

• Gale-Shapley Matching is Optimal for Men
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Understanding the Solution

Q.  For a given problem instance, there may be several stable 
matchings. Do all executions of Gale-Shapley yield the same stable 
matching? If so, which one?

Def.  Man m is a valid partner of woman w if there exists some stable 
matching in which they are matched.

Man-optimal assignment.  Each man receives best valid partner.

Claim.  All executions of GS yield man-optimal 
assignment, which is a stable matching!
 No reason a priori to believe that man-optimal 

assignment is perfect, let alone stable.
 Simultaneously best for each and every man.

. . .
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Man Optimality

Claim.  GS matching S* is man-optimal.
Pf.  (by contradiction)
 Suppose some man is paired with someone other than best 

partner.  Men propose in decreasing order of preference 
some man is rejected by valid partner.

 Let Y be first such man, and let A be first valid
woman that rejects him.

 Let S be a stable matching where A and Y are matched.
 When Y is rejected, A forms (or reaffirms)

engagement with a man, say Z, whom she prefers to Y.
 Let B be Z's partner in S.
 Z not rejected by any valid partner at the point when Y is 

rejected by A. Thus, Z prefers A to B.
 But A prefers Z to Y.
 Thus A-Z is unstable in S.  ▪

Bertha-Zeus

Amy-Yancey

S

. . .

since this is first rejection
by a valid partner
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Stable Matching Summary

Stable matching problem.  Given preference profiles of n men and n 
women, find a stable matching.

Gale-Shapley algorithm.  Finds a stable matching in O(n2) time.

Man-optimality.  In version of GS where men propose, each man 
receives best valid partner.

Q.  Does man-optimality come at the expense of the women?

no man and woman prefer to be with
each other than assigned partner

w is a valid partner of m if there exist some
stable matching where m and w are paired
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Woman Pessimality

Woman-pessimal assignment.  Each woman receives worst valid partner.

Claim.  GS finds woman-pessimal stable matching S*.

Pf.
 Suppose A-Z matched in S*, but Z is not worst valid partner for A.
 There exists stable matching S in which A is paired with a man, say 

Y, whom she likes less than Z.
 Let B be Z's partner in S.
 Z prefers A to B.
 Thus, A-Z is an unstable in S.  ▪ Bertha-Zeus

Amy-Yancey

S

. . .

man-optimality
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Extensions: Matching Residents to Hospitals

Ex:  Men  hospitals, Women  med school residents.

Variant 1.  Some participants declare others as unacceptable.

Variant 2.  Unequal number of men and women.

Variant 3.  Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Gale-Shapley Algorithm Still Works. Minor 
modifications to code to handle variations!
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Extensions: Matching Residents to Hospitals

Ex:  Men  hospitals, Women  med school residents.

Variant 1.  Some participants declare others as unacceptable.

Variant 2.  Unequal number of men and women.

Variant 3.  Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Def.  Matching S unstable if there is a hospital h and 
resident r such that:
 h and r are acceptable to each other; and
 either r is unmatched, or r prefers h to her 

assigned hospital; and
 either h does not have all its places filled, or h 

prefers r to at least one of its assigned residents.

1.2  Five Representative Problems
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Interval Scheduling

Input.  Set of jobs with start times and finish times.
Goal.  Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e
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c

d

h

e

b

jobs don't overlap
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Interval Scheduling
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Goal.  Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.
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Interval Scheduling
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Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.
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Interval Scheduling
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Interval Scheduling

Input.  Set of jobs with start times and finish times.
Goal.  Find maximum cardinality subset of mutually compatible jobs.
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jobs don't overlap

Chapter 4: We will prove that this greedy algorithm always finds the optimal solution!
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Weighted Interval Scheduling

Input.  Set of jobs with start times, finish times, and weights.
Goal.  Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20
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16

13

23

12

20

26

Greedy Algorithm No Longer Works!
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Weighted Interval Scheduling

Input.  Set of jobs with start times, finish times, and weights.
Goal.  Find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling

Input.  Set of jobs with start times, finish times, and weights.
Goal.  Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Problem can be solved using technique called Dynamic Programming
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Bipartite Matching

Input.  Bipartite graph.
Goal.  Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Different from Stable Matching Problem! How?
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Bipartite Matching

Input.  Bipartite graph.
Goal.  Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Problem can be solved using Network Flow Algorithms
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Independent Set

Input.  Graph.
Goal.  Find maximum cardinality independent set.

6

2

5

1

7

3
4

6

5

1

4

subset of nodes such that no two 
joined by an edge

NP-Complete: Unlikely that efficient algorithm exists!

Positive: Can easily check that there is an independent set of size k
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Competitive Facility Location

Input.  Graph with weight on each node.
Game.  Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal.  Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.
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Competitive Facility Location

Input.  Graph with weight on each node.
Game.  Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal.  Select a maximum weight subset of nodes.
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Competitive Facility Location

Input.  Graph with weight on each node.
Game.  Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal.  Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

26

Competitive Facility Location

Input.  Graph with weight on each node.
Game.  Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal.  Select a maximum weight subset of nodes.
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Competitive Facility Location

Input.  Graph with weight on each node.
Game.  Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal.  Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

PSPACE-Complete: Even harder than NP-Complete!

No short proof that player can guarantee value B.  (Unlike previous problem)
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Five Representative Problems

Variations on a theme:  independent set.

Interval scheduling:  n log n greedy algorithm.
Weighted interval scheduling:  n log n dynamic programming algorithm.
Bipartite matching:  nk max-flow based algorithm.
Independent set:  NP-complete.
Competitive facility location:  PSPACE-complete.

29

Chapter 2

Basics of 
Algorithm Analysis

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.1  Computational Tractability

"For me, great algorithms are the poetry of computation. 
Just like verse, they can be terse, allusive, dense, and even 
mysterious. But once unlocked, they cast a brilliant new 
light on some aspect of computing."  - Francis Sullivan
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Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily 
guide the future course of the science.  Whenever any 
result is sought by its aid, the question will arise - By what 
course of calculation can these results be arrived at by the 
machine in the shortest time?  - Charles Babbage

Analytic Engine (schematic)
Def.  An algorithm is poly-time if the above 
scaling property holds.

32

Polynomial-Time

Brute force.  For many non-trivial problems, there is a natural brute 
force search algorithm that checks every possible solution.
 Typically takes 2N time or worse for inputs of size N.
 Unacceptable in practice.

Desirable scaling property.  When the input size doubles, the algorithm 
should only slow down by some constant factor C. 

There exists constants c > 0 and d > 0 such that on every 
input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women
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Worst-Case Analysis

Worst case running time.  Obtain bound on largest possible running time 
of algorithm on input of a given size N.
 Generally captures efficiency in practice.
 Draconian view, but hard to find effective alternative. 

Average case running time.  Obtain bound on running time of 
algorithm on random input as a function of input size N.
 Hard (or impossible) to accurately model real instances 

by random distributions.
 Algorithm tuned for a certain distribution may perform 

poorly on other inputs.

Exceptions.
 Some poly-time algorithms do have high constants 

and/or exponents, and are useless in practice.
 Some exponential-time (or worse) algorithms are widely 

used because the worst-case instances seem to be rare.
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Worst-Case Polynomial-Time

Def.  An algorithm is efficient if its running time is polynomial.

Justification:  It really works in practice!
 Although 6.02  1023  N20 is technically poly-time, it would be useless 

in practice.
 In practice, the poly-time algorithms that people develop almost 

always have low constants and low exponents.
 Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem.

simplex method
Unix grep
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Why It Matters

2.2  Asymptotic Order of Growth
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0  0 
such that for all n  n0 we have T(n)  c ∙ f(n).

Lower bounds.  T(n) is (f(n)) if there exist constants c > 0 and n0  0 
such that for all n  n0 we have T(n)  c ∙ f(n).

Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

Ex:   T(n) = 32n2 + 17n + 32.
 T(n) is O(n2), O(n3), (n2), (n), and (n2) .
 T(n) is not O(n), (n3), (n), or (n3).
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Notation

Slight abuse of notation.  T(n) = O(f(n)).
 Not transitive:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n)  g(n).

 Better notation:  T(n)  O(f(n)).

Meaningless statement.  Any comparison-based sorting algorithm 
requires at least O(n log n) comparisons.
 Statement doesn't "type-check."
 Use  for lower bounds.
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Properties

40

Asymptotic Bounds for Some Common Functions

Polynomials.  a0 + a1n + … + adnd is (nd) if ad > 0. 

Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n.

Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms.  For every x > 0,  log n = O(nx).

Exponentials.  For every r > 1 and every d > 0,  nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial
(even if x=0.000000001)

2.4  A Survey of Common Running Times

42

Linear Time:  O(n)

Linear time.  Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)
max  ai

}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with 

B = b1,b2,…,bn into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.
Pf.  After each comparison, the length of output list 
increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i
else(ai  bj)append bj to output list and increment j

}
append remainder of nonempty list to output list

44

O(n log n) Time

O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that 
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on 
which copies of a file arrive at a server, what is largest 
interval of time when no copies of the file arrive?

also referred to as linearithmic time

O(n log n) solution. Sort the time-stamps.  Scan the 
sorted list in order, identifying the maximum gap between 
successive time-stamps.
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …, 
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d  (xi - xj)2 + (yi - yj)2

if (d < min)
min  d

}
}

don't need to
take square roots

see chapter 5
46

Cubic Time:  O(n3)

Cubic time.  Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}
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Polynomial Time:  O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that 
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets = 
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}



n

k










n (n1) (n 2) (n k 1)
k (k 1) (k  2) (2) (1)

   
nk

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set. Given a graph, what is maximum size of an 
independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S*  S
}

}
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Review: Heap Data Structure
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Heap Extract Minimum
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Heap Summary

Insert: O(log n)
FindMin: O(1)
Delete: O(log n) time
ExtractMin: O(log n) time

Thought Question: O(n log n) time sorting algorithm using heaps?

61
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Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3.1  Basic Definitions and Applications

64

Undirected Graphs

Undirected graph.  G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
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Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires
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World Wide Web

Web graph.
 Node:  web page.
 Edge:  hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com
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9-11 Terrorist Network

Social network graph.
 Node:  people.
 Edge:  relationship between two people.

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs
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Ecological Food Web

Food web graph.
 Node = species. 
 Edge = from prey to predator.

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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Graph Representation:  Adjacency Matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes (1) time. 
 Identifying all edges takes (n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
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Graph Representation:  Adjacency List

Adjacency list.  Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7
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Paths and Connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence P of nodes 
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is 
joined by an edge in E.

Def.  A path is simple if all nodes are distinct.

Def.  An undirected graph is connected if for every pair of nodes u and 
v, there is a path between u and v.

72

Cycles

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1
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Trees

Def.  An undirected graph is a tree if it is connected and does not 
contain a cycle.

Theorem.  Let G be an undirected graph on n nodes. Any two of the 
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.

74

Rooted Trees

Rooted tree.  Given a tree T, choose a root node r and orient each edge 
away from r.

Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

75

Phylogeny Trees

Phylogeny trees.  Describe evolutionary history of species. 

76

GUI Containment Hierarchy

Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy.  Describe organization of GUI widgets.

3.2  Graph Traversal

78

Connectivity

s-t connectivity problem.  Given two node s and t, is there a path 
between s and t?

s-t shortest path problem.  Given two node s and t, what is the length 
of the shortest path between s and t?

Applications.
 Friendster.
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.
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Breadth First Search

BFS intuition.  Explore outward from s in all possible directions, adding 
nodes one "layer" at a time.

BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that have an edge 

to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, and that have 

an edge to a node in Li.

Theorem.  For each i, Li consists of all nodes at distance exactly i
from s.  There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

80

Breadth First Search

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3

81

Breadth First Search:  Analysis

Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation.

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs  n times
– when we consider node u, there are  n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u, v)
– total time processing edges is uV deg(u) = 2m     ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)
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Connected Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue
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Connected Component

Connected component.  Find all nodes reachable from s.

Theorem.  Upon termination, R is the connected component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

s

u v

R

it's safe to add v


