
1/10/2019

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Recap: Stable Matching Problem

• Definition of Stable Matching Problem
• Gale-Shapley Algorithm

• Unengaged men propose to the top remaining woman w on their
preference list

• The proposal is (temporarily) accepted if the woman w is
currently unengaged or if the proposer m is preferred to current
fiancé m’

• Analysis of Gale-Shapley Algorithm
• Proof of correctness

• Everyone is matched when algorithm terminates
• Gale-Shapley Matching is stable

• Implementation + Running Time Analysis:
• Runs in at most O(n2) steps

• Implies Stable Matching Always exists
• (Contrast with Stable-Roommate Problem)

• Gale-Shapley Matching is Optimal for Men

2

3

Understanding the Solution

Q. For a given problem instance, there may be several stable
matchings. Do all executions of Gale-Shapley yield the same stable
matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable
matching in which they are matched.

Man-optimal assignment. Each man receives best valid partner.

Claim. All executions of GS yield man-optimal
assignment, which is a stable matching!
 No reason a priori to believe that man-optimal

assignment is perfect, let alone stable.
 Simultaneously best for each and every man.

. . .

4

Man Optimality

Claim. GS matching S* is man-optimal.
Pf. (by contradiction)
 Suppose some man is paired with someone other than best

partner. Men propose in decreasing order of preference 
some man is rejected by valid partner.

 Let Y be first such man, and let A be first valid
woman that rejects him.

 Let S be a stable matching where A and Y are matched.
 When Y is rejected, A forms (or reaffirms)

engagement with a man, say Z, whom she prefers to Y.
 Let B be Z's partner in S.
 Z not rejected by any valid partner at the point when Y is

rejected by A. Thus, Z prefers A to B.
 But A prefers Z to Y.
 Thus A-Z is unstable in S. ▪

Bertha-Zeus

Amy-Yancey

S

. . .

since this is first rejection
by a valid partner

5

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n
women, find a stable matching.

Gale-Shapley algorithm. Finds a stable matching in O(n2) time.

Man-optimality. In version of GS where men propose, each man
receives best valid partner.

Q. Does man-optimality come at the expense of the women?

no man and woman prefer to be with
each other than assigned partner

w is a valid partner of m if there exist some
stable matching where m and w are paired

6

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S*.

Pf.
 Suppose A-Z matched in S*, but Z is not worst valid partner for A.
 There exists stable matching S in which A is paired with a man, say

Y, whom she likes less than Z.
 Let B be Z's partner in S.
 Z prefers A to B.
 Thus, A-Z is an unstable in S. ▪ Bertha-Zeus

Amy-Yancey

S

. . .

man-optimality

1/10/2019

Copyright 2000, Kevin Wayne 2

7

Extensions: Matching Residents to Hospitals

Ex: Men  hospitals, Women  med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Gale-Shapley Algorithm Still Works. Minor
modifications to code to handle variations!

8

Extensions: Matching Residents to Hospitals

Ex: Men  hospitals, Women  med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Def. Matching S unstable if there is a hospital h and
resident r such that:
 h and r are acceptable to each other; and
 either r is unmatched, or r prefers h to her

assigned hospital; and
 either h does not have all its places filled, or h

prefers r to at least one of its assigned residents.

1.2 Five Representative Problems

10

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

11

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

12

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

1/10/2019

Copyright 2000, Kevin Wayne 3

13

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

14

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

15

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Chapter 4: We will prove that this greedy algorithm always finds the optimal solution!

16

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Greedy Algorithm No Longer Works!

17

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Greedy Algorithm No Longer Works!

18

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Problem can be solved using technique called Dynamic Programming

1/10/2019

Copyright 2000, Kevin Wayne 4

19

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Different from Stable Matching Problem! How?

20

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Problem can be solved using Network Flow Algorithms

21

Independent Set

Input. Graph.
Goal. Find maximum cardinality independent set.

6

2

5

1

7

3
4

6

5

1

4

subset of nodes such that no two
joined by an edge

NP-Complete: Unlikely that efficient algorithm exists!

Positive: Can easily check that there is an independent set of size k

22

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

23

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

24

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

1/10/2019

Copyright 2000, Kevin Wayne 5

25

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

26

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

27

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

PSPACE-Complete: Even harder than NP-Complete!

No short proof that player can guarantee value B. (Unlike previous problem)

28

Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: n log n greedy algorithm.
Weighted interval scheduling: n log n dynamic programming algorithm.
Bipartite matching: nk max-flow based algorithm.
Independent set: NP-complete.
Competitive facility location: PSPACE-complete.

29

Chapter 2

Basics of
Algorithm Analysis

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even
mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing." - Francis Sullivan

1/10/2019

Copyright 2000, Kevin Wayne 6

31

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)
Def. An algorithm is poly-time if the above
scaling property holds.

32

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
 Typically takes 2N time or worse for inputs of size N.
 Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women

33

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.
 Generally captures efficiency in practice.
 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of
algorithm on random input as a function of input size N.
 Hard (or impossible) to accurately model real instances

by random distributions.
 Algorithm tuned for a certain distribution may perform

poorly on other inputs.

Exceptions.
 Some poly-time algorithms do have high constants

and/or exponents, and are useless in practice.
 Some exponential-time (or worse) algorithms are widely

used because the worst-case instances seem to be rare.

34

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
 Although 6.02  1023  N20 is technically poly-time, it would be useless

in practice.
 In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.
 Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

simplex method
Unix grep

35

Why It Matters

2.2 Asymptotic Order of Growth

1/10/2019

Copyright 2000, Kevin Wayne 7

37

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have T(n)  c ∙ f(n).

Lower bounds. T(n) is (f(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have T(n)  c ∙ f(n).

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

Ex: T(n) = 32n2 + 17n + 32.
 T(n) is O(n2), O(n3), (n2), (n), and (n2) .
 T(n) is not O(n), (n3), (n), or (n3).

38

Notation

Slight abuse of notation. T(n) = O(f(n)).
 Not transitive:

– f(n) = 5n3; g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n)  g(n).

 Better notation: T(n)  O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.
 Statement doesn't "type-check."
 Use  for lower bounds.

39

Properties

40

Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + … + adnd is (nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d independent
of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial
(even if x=0.000000001)

2.4 A Survey of Common Running Times

42

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)
max  ai

}

1/10/2019

Copyright 2000, Kevin Wayne 8

43

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with

B = b1,b2,…,bn into sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list
increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i
else(ai  bj)append bj to output list and increment j

}
append remainder of nonempty list to output list

44

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on
which copies of a file arrive at a server, what is largest
interval of time when no copies of the file arrive?

also referred to as linearithmic time

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap between
successive time-stamps.

45

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d  (xi - xj)2 + (yi - yj)2

if (d < min)
min  d

}
}

don't need to
take square roots

see chapter 5
46

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}

47

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets =
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}



n

k










n (n1) (n 2) (n k 1)
k (k 1) (k  2) (2) (1)

 
nk

k!

poly-time for k=17,
but not practical

k is a constant

48

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S*  S
}

}

1/10/2019

Copyright 2000, Kevin Wayne 9

Review: Heap Data Structure

49

10

11

53

6

9

44 Next

Heap Insertion

50

10

11

53

6

9

44 3

Heap.Insert(3)

Heap Insertion

51

10

11

53

6

9

44 3

Heap.Insert(3)

Heap Insertion

52

10

11

53

6

3

44 9

Heap.Insert(3)

Heap Insertion

53

10

11

53

6

3

44 9

Heap.Insert(3)

Heap Insertion

54

10

11

53

3

6

44 9

Heap.Insert(3)

Next

1/10/2019

Copyright 2000, Kevin Wayne 10

Heap Extract Minimum

55

10

11

53

3

6

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

56

10

11

53

3

6

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

57

10

11

53

6

3

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

58

10

11

53

6

3

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

59

10

11

53

6

44

9

Heap.ExtractMin()

Next

3

Heap Extract Minimum

60

10

11

53

6

44

9

Heap.ExtractMin()

Next

1/10/2019

Copyright 2000, Kevin Wayne 11

Heap Summary

Insert: O(log n)
FindMin: O(1)
Delete: O(log n) time
ExtractMin: O(log n) time

Thought Question: O(n log n) time sorting algorithm using heaps?

61

10

11

53

3

6

44 9

62

Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3.1 Basic Definitions and Applications

64

Undirected Graphs

Undirected graph. G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

65

Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

66

World Wide Web

Web graph.
 Node: web page.
 Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

1/10/2019

Copyright 2000, Kevin Wayne 12

67

9-11 Terrorist Network

Social network graph.
 Node: people.
 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

68

Ecological Food Web

Food web graph.
 Node = species.
 Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

69

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes (1) time.
 Identifying all edges takes (n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

70

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

71

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

72

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1/10/2019

Copyright 2000, Kevin Wayne 13

73

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.

74

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

75

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

76

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy. Describe organization of GUI widgets.

3.2 Graph Traversal

78

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
 Friendster.
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.

1/10/2019

Copyright 2000, Kevin Wayne 14

79

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

80

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3

81

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs  n times
– when we consider node u, there are  n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u, v)
– total time processing edges is uV deg(u) = 2m ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

82

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

83

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

84

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

1/10/2019

Copyright 2000, Kevin Wayne 15

85

Connected Component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

s

u v

R

it's safe to add v

