CS 580: Algorithm Design and Analysis

1/10/2019

Jeremiah Blocki
Purdue University
Spring 2019

Recap: Stable Matching Problem

Definition of Stable Matching Problem
Gale-Shapley Algorithm
. Unengaged men propose to the top remaining woman w on their
preference list
The proposal is (temporarily) accepted if the woman w is
currently unengaged or if the proposer m is preferred to current
fiancé m’
Analysis of Gale-Shapley Algorithm
Proof of correctness
Everyone is matched when algorithm terminates
Gale-Shapley Matching is stable
Implementation + Running Time Analysis:
Runs in at most O(n?) steps
Implies Stable Matching Always exists
(Contrast with Stable-Roommate Problem)
Gale-Shapley Matching is Optimal for Men

Understanding the Solution

Q. For a given problem instance, there may be several stable
matchings. Do all executions of Gale-Shapley yield the same stable
matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable
matching in which they are matched.

Man-optimal assignment. Each man receives best valid partner.

Claim. All executions of 6S yield man-optimal
assignment, which is a stable matching!
- No reason a priori to believe that man-optimal
assignment is perfect, let alone stable.
- Simultaneously best for each and every man.

Man Optimality

Claim. 6S matching S* is man-optimal.
Pf. (by contradiction)
. Suppose some man is paired with someone other than best
partner. Men propose in decreasing order of preference =
some man is rejected by valid partner. s
. Let Y be first such man, and let A be first valid
woman that rejects him.
. Let S be a stable matching where A and Y are matched.
. WhenY is rejected, A forms (or reaffirms)
engagement with a man, say Z, whom she prefers fo Y.
. Let Bbe Z's partner in S.
. Z not rejected by any valid partner at the point when Y is
rejected by A. Thus, Z prefers Ato B. o
. But AprefersZtoV. T ey ciection
. Thus A-Z is unstable in S. =

Amy-Yancey
Bertha-Zeus

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n
women, find a stable matching.
\

o man and woman prefer to be with
each other than assigned partner

Gale-Shapley algorithm. Finds a stable matching in O(n?) time.

Man-optimality. In version of 6S where men propose, each man
receives best valid partner.
A\

w s a valid partner of m if there exist some
stable matching where m and w are paired

Q. Does man-optimality come at the expense of the women?

Copyright 2000, Kevin Wayne

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.
Claim. 65 finds woman-pessimal stable matching S*.

Pf.
- Suppose A-Z matched in S*, but Z is not worst valid partner for A.
. There exists stable matching S in which A is paired with a man, say
Y, whom she likes less than Z.

. Let Bbe Z's partner in S. °
. Zprefers A to B. «— man-optimality Amy-Yancey
. Thus, A-Z is an unstable in S. = Bertha-Zeus

Extensions: Matching Residents to Hospitals

Ex: Men ~ hospitals, Women ~ med school residents.
Variant 1. Some participants declare others as unacceptable.
resident A unwilling to

Variant 2. Unequal number of men and women. work in Cleveland

Variant 3. Limited polygamy.
\

hospital X wants to hire 3 residents

Gale-Shapley Algorithm Still Works. Minor
modifications to code to handle variations!

1/10/2019

Extensions: Matching Residents to Hospitals

Ex: Men ~ hospitals, Women ~ med school residents.

Variant 1. Some participants declare others as unacceptable.

. resident A unwilling to
Variant 2. Unequal humber of men and women. work in Cleveland

Variant 3. Limited polygamy.
\

hospital X wants to hire 3 residents

Def. Matching S unstable if there is a hospital h and
resident r such that:
« hand r are acceptable to each other; and
. either r is unmatched, or r prefers h to her
assigned hospital; and
. either h does not have all its places filled, or h
prefers r to at least one of its assigned residents.

1.2 Five Representative Problems

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

Time

|
|
|
| |
| |
| |
| |
| |
2 3

Copyright 2000, Kevin Wayne

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

Time

Interval Scheduling
Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.
jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

Time

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap

Chapter 4: We will prove that this greedy algorithm always finds the optimal solution!

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Greedy Algorithm No Longer Works!

23

20

s

1/10/2019

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

Time

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Greedy Algorithm No Longer Works!

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Problem can be solved using technique called Dynamic Programming

Copyright 2000, Kevin Wayne

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

Different from Stable Matching Problem! How?

1/10/2019

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

Problem can be solved using Network Flow Algorithms

Independent Set

Input. Graph.
Goal. Find maximum cardinality independent set.
)

subset of nodes such that no two
joined by an edge

Brirte-Fares Algevithn: Geack [T
Rursing T = 2° siwps aald

NP-Complete: Unlikely that efficient algorithm exists!

Positive: Can easily check that there is an independent set of size k

Competitive Facility Location
Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

Second player can guarantee 20, but not 25.

Competitive Facility Location
Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

Second player can guarantee 20, but not 25.

Copyright 2000, Kevin Wayne

Competitive Facility Location
Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

Second player can guarantee 20, but not 25.

1/10/2019

Competitive Facility Location Competitive Facility Location
Input. Graph with weight on each node. Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes. Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected. Not allowed to select a node if any of its neighbors have been selected.
Goal. Select a maximum weight subset of nodes. Goal. Select a maximum weight subset of nodes.
10 1 5 15 5 1 5 1 15 10 10 1 5 15 5 1 5 1 15 10
o O—F0C—"8—C—0 0 —0OCO—8—-0 o—O—7"C—"8—OC—0C—@O—e——0O
Second player can guarantee 20, but not 25. Second player can guarantee 20, but not 25.
s =
Competitive Facility Location Five Representative Problems
Input. Graph with weight on each node. Variations on a theme: independent set.
Game. Two competing players alternate in selecting nodes.
Not allowed fo select a node if any of its neighbors have been selected. Interval scheduling: n log n greedy algorithm.
Weighted interval scheduling: n log n dynamic programming algorithm.
Goal. Select a maximum weight subset of nodes. Bipartite matching: nk max-flow based algorithm.
Independent set: NP-complete.
PSPACE-Complete: Even harder than NP-Completel Competitive facility location: PSPACE-complete.

No short proof that player can guarantee value B. (Unlike previous problem)

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

2.1 Computational Tractability

Chapter 2

Basics of
Algorithm Analysis

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even
mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing." - Francis Sullivan

JOM KLEINBERG - EVA TARDOS

Copyright 2000, Kevin Wayne 5

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)

1/10/2019

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
. Typically takes 2N time or worse for inputs of size N.
- Unacceptable in practice.
N

n! for stable matching
with n men and n women

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants ¢ > 0 and d > 0 such that on every
input of size N, its running time is bounded by ¢ N9 steps.

Def. An algorithm is poly-time if the above
scaling property holds.

choose C = 2¢

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.

. Generally captures efficiency in practice.

. Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of
algorithm on random input as a function of input size N.
« Hard (or impossible) to accurately model real instances
by random distributions.
« Algorithm tuned for a certain distribution may perform
poorly on other inputs.

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
. Although 6.02 x 1023 x N2 is technically poly-time, it would be useless
in practice.
- Inpractice, the poly-time algorithms that people develop almost
always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.
- Some poly-time algorithms do have high constants
and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare.

simplex method
Unix grep

Why It Matters

Table 2.1 The running times {rounded up) of different algorithms on inputs of
Increasing size, for a processor a millien high-Jev per socund.
In cases where the nanning time exceeds 10° years, we simply record the algorithm as
raking a very long time.

n n log; n w n? = n!

nw 10 < | sec < | sec < 1 sec < | sec < | sec 4 sec
n =30 < 1sec < | sec < 1 sec < 1sec 18 min 10 years
n =50 =< 1sec < 1 sec < | sec < 1 sec 36 years very long
=100 < 1sec <lsec = 1sec 1 sec 1077 years very long
= 1 sec < 1 sec 1 sec 18 min very long wvery long very long

< | sec « | sec 2 min 12 days very long very long very long

= 1 sec 2 sec 3 hours 32 years very long wvery long very long

= 1,000,000 1 sec 20sec I2days 31,710 years very long very long very long

2.2 Asymptotic Order of Growth

Copyright 2000, Kevin Wayne

1/10/2019

Asymptotic Order of Growth

such that for all n > ny we have T(n) < ¢ - f(n).

such that for all n > ny we have T(n) = ¢ - f(n).
Tight bounds. T(n) is ©(f(n)) if T(n) is both O(f(n)) and Q(f(n)).
Ex: T(n)=32n2+17n+ 32,

. T(n) is O(n?), O(n%), Q(n?), Q(n), and ©(n?) .
. T(n) is not O(n), Q(n3), &(n), or B(n3).

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny >0

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ >0 and ny > 0

Notation

Slight abuse of notation. T(n) = O(f(n)).
« Not transitive:
- f(n) = 5n3; g(n) = 3n?
- f(n) = O(n®) = g(n)
- but f(n) = g(n).
. Better notation: T(n) € O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.

. Statement doesn't "type-check."

- Use Q for lower bounds.

Properties

Transithvity.

« IF € D{g) and g € O(h) Hhen £ € OCh).
« If f € 00z and g € Ofh) thes € £ 0.
« I f& B(g) ond g & B(h) thenf & (k).

Additivity,

« Iff & O(k) ond g & O(h) thex F+ g € (k)
« IFf€ 0(h) and g € R{E) than f+g € S1(h).
- I fe B(h) ond g€ B(h) then £+ g € B() .

Pruof of AL (If £ € O(h) and g € O(k) thex{+ g € Ofh))

= f& 0{k) maans that for some consionts £, ¥, we hom
Fim) € e; ifn) forollm > N,

= g€ O{h) menns that for some constonts c;, ¥, we have
#8) £ &, 3 h(e) for all= = N,

. Sll::-:z_-l-_q,u'_ﬂ_lh-miﬂ_.,l;}fﬂ'lﬁn&ﬂn—nn:{ﬂ,,ﬂ,}

Asymptotic Bounds for Some Common Functions

Polynomials. ap+ajn+ ... + agnd is ©(nd) if ay> 0.

Polynomial time. Running time is O(nd) for some constant d independent
of the input size n.

Logarithms. O(log o n)]: O(log , n) for any constants a, b > 0.
can avoid specifying the base
Logarithms. For every x >0, log h = O(n¥).
1

log grows slower than every polynomial
(even if x=0.000000001)

Exponentials. For every r>1and every d >0, nd= O(r").
1

every exponential grows faster than every polynomial

2.4 A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a;, ..., a,.

max <« a;
for i =2 ton {
if (a; > max)
max <« a;

Copyright 2000, Kevin Wayne

1/10/2019

Linear Time: O(n)

Merge. Combine two sorted lists A = a,,a,,..,a, with
B = b,,b,,..,b, into sorted whole.

[serg

1,j=1
le (both lists are nonempty) {

if (a; < by) append a; to output list and increment i
else append b; to output list and increment j

s
append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list
increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
N
also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps xy, ..., X, on
which copies of a file arrive at a server, what is largest
interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap between
successive time-stamps.

Quadratic Time: O(n?)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x;, yy), ..,
(Xn. Yn), find the pair that is closest.

O(n?) solution. Try all pairs of points.

don't need o

min « (4 - X)2 + (Y, - ¥»)? take square roots

for i =1 ton {
for j = i+l to n {
d < G - X2 + (y; - Y)?
if (d < min)
min « d

Remark. Q(n?) seems inevitable, but this is just an illusion.
[

see chapter 5

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets Sy, ..., S, each of which is a subset of
1,2, .., n, is there some pair of these which are disjoint?

O(nd) solution. For each pairs of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {
determine whether p also belongs to S;
3
if (no element of S; belongs to S;)

report that S; and S; are dis

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

no two are joined by an edge? N
kis a constant

O(n) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set
3
3

. Check whether S is an independent set = O(k?).
. Number of k element subsets = [n} n(n-1(n-2)--(n—k-+1) nk

« O(k2 nk / Kl) = O(nk). k)” K(k=D)(k=2)-(2) (1))
N\

poly-time for k=17,
but not practical

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n? 2") solution. Enumerate all subsets.

S* « ¢
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)
update S* « S
3
b

Copyright 2000, Kevin Wayne

Review: Heap Data Structure

®
/ ©
N
Min Hanp Order: For aach nada v in the free
Paront(v}). Valne < v. Valoo

Mot Huop Order: For woch node v in the tres
Paront(v). Valoe 2 v Valoe

1/10/2019

Heap Insertion

; Heap.Insert(3)
() @
@ ® ®

én Heap Ordar: For sach rade v in the trea
Parent{v).Valos < v. Valos

Heap Insertion

€
; Heap.Insert(3)
e
) @ ©
Min Hemp Order: Far each sede v in The tres
Paront(x). Valoe =5 v. Vil

Heap Insertion
Heap.Insert(3)
() ©)
@ ® ©® ©

Win Hexp Order: For wach rede vin The tree
Parent(v}. Valoe < v Valoe

Heap Insertion

Heap.Insert(3)

®
1
@ 6) ®
Mim Haop Order: For sach neda v in the tree
Porem{v).Volor < v. Volos

Copyright 2000, Kevin Wayne

Heap Insertion

Heap.Insert(3)

(i 6

@ 6 ® O

Hén Haop Ordar: For aach nede vin the tree
Poreot(v}.Velor < v. Valns

Thaormm 212 [KTE: The procedurs Hespify-up Foms the hoop
property and ollows s fo insert & ew slemant inhe a heap of B

alaments in Ofog nl tima.

Heap Extract Minimum

Heap.ExtractMin()

Jin Haop Order: For sach nada v in the fres
Paront{v).Valne < v Valos

Theorsm 213 [KT]: The procadurs. Hespify-dosm fiooes the heop
proparty and olioss ue to delate an aiment in g heop of n slemantz in
Ofiog u) Yne.

1/10/2019

Heap Extract Minimum

Heap.ExtractMin()

@ & o O

#én Heap Ordar: For sach rede v in the trea
Parent{v).Valos < v. Valos

Theorem 2.13 [KTE The proceshure: Hespify-dowm fiooss the heap
property ancd oBows ug Yo delete on elment in & haop of n aleventa in
Oftog u) Yime.

Heap Extract Minimum

Heap.ExtractMin()

Min Heap Order: Far wach rade v in The tree
Paront(x). Veloe < v. Valo:

Theorem 2,13 [KT]: The procadurs Heapffy-dowm fixes the heap
proparty snd alloet u tn delata on alment in s hecp of n alemanit in
Ofog R) Tne.

Heap Extract Minimum

Heap.ExtractMin()

@)

Nin Hexp Order: For each rade v in The Tree
Praccat (). Vislor < . Valoe

Theoress 2,13 [KT} The pracedurs Heapffy-down fixes the heap
property snd olina 2t o delats on alment in s haap of nalkepentes in
Ofog K) Time.

Heap Extract Minimum

Heap.ExtractMin()

®
AN
@) O

Mim Haop Order: For asch neda v In The tree
Porent(y}.Volor < v. Valor

Thaorem 2.13 [KT]: The procedurs Haspify-dowm fixes the heap
proparty and olisss w3 te delete on alment in & heap of n elements in
Offag B} Yime.

Copyright 2000, Kevin Wayne

Heap Extract Minimum

Heap.ExtractMin()

@ @ © i
Hén Haop Ordar: For aach nede vin the tree
Poreot(v).Velos < v. Velos

Thaorwim £.13 (T The procsdura HespiFy-dom fims the keap
property and oliown s fo delede an slment in & hiap of nelesents in

Olteg) Vime,

10

Heap Summary

® & o O

Insert: O(log n)

FindMin: O(1)

Delete: O(log n) time
ExtractMin: O(log n) time

Thought Question: O(n log n) time sorting algorithm using heaps?

1/10/2019

JOM KLEINBERG - EVA TARDOS

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. 6 = (V, E)

= V= nodes.

- E = edges between pairs of nodes.

. Captures pairwise relationship between objects.
. Graph size parameters: n= V|, m = |E|.

V={1,23,4,5,6,7,8}
E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6 }
n=8

m=11

Some Graph Applications

transportation street intersections highways

communication computers fiber optic cables
World Wide Web web pages hyperlinks
social people relationships
food web species predator-prey
software systems functions function calls
scheduling tasks precedence constraints
circuits gates wires

Copyright 2000, Kevin Wayne

World Wide Web

Web graph.
- Node: web page.
. Edge: hyperlink from one page to another.

cnn.com

netscape.com novell.com cnnsi.com timewarner.com

hbo.com

sorpranos.com

1

1/10/2019

9-11 Terrorist Network

Social network graph.
o . Node: people.

Reference: Valdis Krebs, http://www firstmonday org/issues/issue7_4/krebs

. Edge: relationship between two people.

Ecological Food Web

Food web graph.
- Node = species.
- Edge = from prey to predator.

Reference: K t

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-nmatrix with A, = 1if (u, v) is an edge.
- Two representations of each edge.
. Space proportional to n2.
. Checking if (u, v) is an edge takes O(1) time.
. Identifying all edges takes ©(n?) time.

1234567
0 0
1

OrOOOr OOo®

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
- Two representations of each edge.
- Space proportional to m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
« Identifying all edges takes ©(m + n) time.

degree = number of neighbors of u

® N o oA w N e

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vz, -, Vi1, Vk With the property that each consecutive pair v, vi.; is
Jjoined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of nodes uand
v, there is a path between u and v.

Cycles

Def. A cycleis apath vy, vy, ..., Vi, Vi in which v; = v, k> 2, and the
first k-1 nodes are all distinct.

cycle € = 1-2-4-5-3-1

Copyright 2000, Kevin Wayne

12

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. Gis connected.

. G does not contain a cycle.

. 6 has n-1 edges.

1/10/2019

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

root r

(1) parent of v

4} childofv

atree the same tree, rooted at 1

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

gut bacteria

trees

mushrooms
Fish

mammals

birds
dragonflies

beetles

GUI Containment Hierarchy

GUT containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun

3.2 Graph Traversal

Copyright 2000, Kevin Wayne

Connectivity

s-1 connectivity problem. Given two node s and t, is there a path
between s and +?

s-1 shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications.

. Friendster.

- Maze traversal.

- Kevin Bacon number.

. Fewest number of hops in a communication network.

13

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

s
L L e -

BFS algorithm.
- Lo={s}
- L, = all neighbors of L.
. L, = all nodes that do not belong to L, or L;, and that have an edge
toanodeinl;.
- Liy = all nodes that do not belong to an earlier layer, and that have
an edge to a node inL;.

Theorem. For each i, L; consists of all nodes at distance exactly i
froms. There is a path from s to t iff t appears in some layer.

1/10/2019

Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
6. Then the level of x and y differ by at most 1.

[} i» (=)

L

L

Ls

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

- Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is %,., deg(u) = 2m
!

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1={1,2,3,4,5,6,7,8}.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

- Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

Copyright 2000, Kevin Wayne

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

- Node: pixel.

. Edge: two neighboring lime pixels.

« Blob: connected component of lime pixels.

recolor lime green blob to blue

ﬁ Tk 1o e W s i

14

Connected Component

Connected component. Find all nodes reachable from s.

R
£ will consist of nodes to which 5 has a path
Initially R=(s)
While there is an edge (u.1) whore ucR and vgR

Add v to R

Endwhil o
Endwhile it's safe to add v

Theorem. Upon termination, R is the connected component containing s.
. BFS = explore in order of distance from s.
. DFS = explore in a different way.

Copyright 2000, Kevin Wayne

1/10/2019

15

