CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Recap: Stable Matching Problem

Definition of Stable Matching Problem
Gale-Shapley Algorithm
Unengaged men propose to the tfop remaining woman w on their
preference list
The proposal is (tfemporarily) accepted if the woman w is
currently unengaged or if the proposer m is preferred to current
fiancé m'
Analysis of Gale-Shapley Algorithm
Proof of correctness
Everyone is matched when algorithm terminates
Gale-Shapley Matching is stable
Implementation + Running Time Analysis:
Runs in at most O(n?) steps
Implies Stable Matching Always exists
(Contrast with Stable-Roommate Problem)
Gale-Shapley Matching is Optimal for Men

Understanding the Solution

Q. For a given problem instance, there may be several stable
matchings. Do all executions of Gale-Shapley yield the same stable
matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable
matching in which they are matched.

Man-optimal assignment. Each man receives best valid partner.

Claim. All executions of GS yield man-optimal
assignment, which is a stable matching!
. No reason a priori to believe that man-optimal
assignment is perfect, let alone stable.
. Simultaneously best for each and every man.

Man Optimality

Claim. 6S matching S* is man-optimal.
Pf. (by contradiction)
. Suppose some man is paired with someone other than best
partner. Men propose in decreasing order of preference =
some man is rejected by valid partner. S
. Let VY be first such man, and let A be first valid
woman that rejects him.
. Let S be a stable matching where A and Y are matched.
. WhenY is rejected, A forms (or reaffirms)
engagement with a man, say Z, whom she prefers to VY.
. Let Bbe Z's partnerin S.
. Z not rejected by any valid partner at the point when VY is
rejected by A. Thus, Z prefers A to B. I
since this is first rejection

. But AprefersZto. by a valid partner
. Thus A-Z is unstable in S. =

Amy-Yancey
Bertha-Zeus

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n

women, find a stable matching.
\

no man and woman prefer to be with
each other than assigned partner

Gale-Shapley algorithm. Finds a stable matching in O(n?) time.

Man-optimality. In version of GS where men propose, each man
receives best valid partner.

\

w is a valid partner of m if there exist some
stable matching where m and w are paired

Q. Does man-optimality come at the expense of the women?

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.
Claim. GS finds woman-pessimal stable matching S*.

Pf.

. Suppose A-Z matched in S*, but Z is not worst valid partner for A.
. There exists stable matching S in which A is paired with a man, say
Y, whom she likes less than Z.

. Let Bbe Z's partner in S.
. Zprefers A tfo B. < man-optimality
. Thus, A-Z is an unstable in S. - Bertha-Zeus

S

Amy-Yancey

Extensions: Matching Residents to Hospitals

Ex: Men ~ hospitals, Women ~ med school residents.

Variant 1. Some participants declare others as unacceptable.
\

. resident A unwilling to
Variant 2. Unequal humber of men and women. work in Cleveland

Variant 3. Limited polygamy.
\

hospital X wants to hire 3 residents

Gale-Shapley Algorithm Still Works. Minor
modifications to code to handle variations!

Extensions: Matching Residents to Hospitals

Ex: Men ~ hospitals, Women ~ med school residents.

Variant 1. Some participants declare others as unacceptable.
\

. resident A unwilling to
Variant 2. Unequal humber of men and women. work in Cleveland

Variant 3. Limited polygamy.
\

hospital X wants to hire 3 residents

Def. Matching S unstable if there is a hospital h and
resident r such that:
. hand r are acceptable to each other; and
. either r is unmatched, or r prefers h to her
assigned hospital; and
. either h does not have all its places filled, or h
prefers r to at least one of its assigned residents.

1.2 Five Representative Problems

10

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
!

jobs don't overlap

Time

1

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

> Time

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

/

a /
I e

> Time

12

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

> Time

13

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate ipcompatible jobs.

> Time

14

15

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Chapter 4: We will prove that this greedy algorithm always finds the optimal solution!

Time

16

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Greedy Algorithm No Longer Works!
| 2.3
H 12 H

20

.13=

20

11

BT .

17

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Greedy Algorithm No Longer Works!
2.3

20

20

11

BT .

18

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Problem can be solved using technique called Dynamic Programming
2.3

20

20

11

BT .

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

0, ©
_—

(3
® / O
® ®

Different from Stable Matching Problem! How?

19

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

@ ®
—

(3
© / O
® ®

Problem can be solved using Network Flow Algorithms

20

21

Independent Set

Input. Graph.

Goal. Find maximum cardinality independent set.
I

subset of nodes such that no two
joined by an edge

2

7

Brute-Force Algorithm: Check every possible subset.
RunningTime: > 2™ steps

NP-Complete: Unlikely that efficient algorithm exists!

Positive: Can easily check that there is an independent set of size k

22

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10
O () () () () () () () () O
N\ N\ N\ N\ N\ N\ N\ N\

Second player can guarantee 20, but not 25.

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10
N\ / / N\ N\ N\ N\

Second player can guarantee 20, but not 25.

23

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

o 1 5 1B 5 1 5 1 15 10
O—O0—"0OC0—080—O0— 00— C0C—""C0C—"8——0

Second player can guarantee 20, but not 25.

24

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

o 1 5 1B 5 1 5 1 15 10
e O—O0C—"@——O0O—"F0C—"TC0OC—"CO—"8——0

Second player can guarantee 20, but not 25.

25

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

e O—O0C—"@—O0O—0C—"@ —C0OC—"=8——0

Second player can guarantee 20, but not 25.

26

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

PSPACE-Complete: Even harder than NP-Completel

No short proof that player can guarantee value B. (Unlike previous problem)

10 1 5 15 5 1 5 1 15 10

e O—O0C—"@—O0O—0C—"@ —C0OC—"=8——0

Second player can guarantee 20, but not 25.

27

Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: nlog n greedy algorithm.

Weighted interval scheduling: nlog n dynamic programming algorithm.
Bipartite matching: nk max-flow based algorithm.

Independent set: NP-complete.

Competitive facility location: PSPACE-complete.

28

A\[lﬂﬂh Jesign

JON KLEINBERG - EVA TARDOS

Chapter 2

Basics of
Algorithm Analysis

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)

31

32

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
. Typically takes 2N time or worse for inputs of size N.

. Unacceptable in practice.
N\

n! for stable matching
with n men and n women

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants ¢ > 0 and d > O such that on every
input of size N, its running time is bounded by ¢ N9 steps.

Def. Analgorithm is poly-time if the above
scaling property holds. \Choose C =

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.

. Generally captures efficiency in practice.

. Draconian view, but hard to find effective alternative.

Average case running tfime. Obtain bound on running time of
algorithm on random input as a function of input size N.
- Hard (or impossible) to accurately model real instances
by random distributions.
. Algorithm tuned for a certain distribution may perform
poorly on other inputs.

33

34

Worst-Case Polynomial-Time

Def. Analgorithm is efficient if its running time is polynomial.

Justification: It really works in practicel
. Although 6.02 x 1023 x N29 is technically poly-time, it would be useless
in practice.
. Inpractice, the poly-time algorithms that people develop almost
always have low constants and low exponents.
. Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.
. Some poly-time algorithms do have high constants
and/or exponents, and are useless in practice.
. Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare.

\

simplex method
Unix grep

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10®° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ 1.5" 2" n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 < 1 sec <1lsec < 1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1 sec 1sec 12,892 years 107 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

35

2.2 Asymptotic Order of Growth

37

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and n; >0
such that for all n > ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ >0 and n; >0
such that for all n > ny we have T(n) > ¢ - f(n).

Tight bounds. T(n) is ©(f(n)) if T(n) is both O(f(n)) and Q(f(n)).
Ex: T(n) = 32n%2+ 17n + 32.

. T(n) is O(n?), O(n3), Q(n?), Q(n), and BO(n3) .
. T(n) is not O(n), Q(n3), ®(n), or ®(n3).

Notation

Slight abuse of notation. T(n) = O(f(n)).
- Not transitive:
- f(n) = 5n3; g(n) = 3n?
- f(n) = O(n®) = g(n)
- but f(n) = g(n).
. Better notation: T(n) € O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.

. Statement doesn't "type-check."

. Use Q for lower bounds.

38

39

Properties

Transitivity.
. Iff€ 0(g) and g € O(h) thenf € O(h).
. Iffe Q(g) and g € Q(h) thenf € Q(h).
. Iffe©(g) and g € ©(h) thenf € 0(h).

Additivity.
. Iffe0O(h) andg € O(h) thenf+ g € O(h)
. Iffe Q(h) and g € Q(h) thenf+ g e Q(h).
. Iffe®(h)andg € O(h) thenf+ge O(h) .

Proof of A1 (If f € O(h) and g € O(h) thenf+ g€ O(h))
= f€ 0(h) means that for some constants c;, N, we have
f(n) <cy xh(n) foralln>N,
= g € 0(h) means that for some constants c¢,, N, we have
gn) <c, xh(n) foralln=> N,
= Setc=c;+c,and N :=max{N,, N,}for all n > N := max{NN,}

40

Asymptotic Bounds for Some Common Functions

Polynomials. ap +a;n + ... + aynd is ©(nd) if ay > 0.

Polynomial time. Running time is O(n9) for some constant d independent
of the input size n.

Logarithms. O(log, n)Tz O(log, n) for any constants a, b > O.

can avoid specifying the base

Logarithms. For every x >0, log n = O(n).
!

log grows slower than every polynomial
(even if x=0.000000001)

Exponentials. For every r>1and every d >0, nd=O(rn).
f

every exponential grows faster than every polynomial

2.4 A Survey of Common Running Times

42

Linear Time: O(n)

Linear time. Running time is proportional o input size.

Computing the maximum. Compute maximum of n numbers qy, ..., a,.

max < a,

for 1 =2 ton {

1T (a; > max)
max < a;

43

Linear Time: O(n)

Merge. Combine two sorted lists A = a;,a,,..,a, with
B = b,,b,,..,b, into sorted whole.
‘////AMWVGi A

/// |bj B

Merged result

1 =1, J =1

while (both lists are nonempty) {
iIT (a; < b;) append a; to output list and iIncrement 1
else append b; to output list and iIncrement j

}

append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list

increases by 1.

44

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
N\

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps X, ..., X,, on
which copies of a file arrive at a server, what is largest
interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap between
successive time-stamps.

45

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x4, y;), ...

(X, Y,), find the pair that is closest.

O(n?) solution. Try all pairs of points.

don't need to

min « (X; = X)? + (Y1 - ¥,)? take square roots

for 1 =1 ton {
for J = 1+1 to n {
d « X - X2+ Vi - Yj?
if (d < min)
min « d

Remark. Q(n?) seems inevitable, but this is just an illusion.
\

see chapter 5

46

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets Sy, ..., S, each of which is a subset of
1,2, .., n,is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {
determine whether p also belongs to S;
+
iT (no element of S; belongs to S;)
report that S; and S; are disjoint

47

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

ho two are joined by an edge? N
k is a constant

O(nk) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an i1Independent set
i1IT (S 1s an independent set)
report S is an iIndependent set

}
}

. Check whether S is an independent set = O(k?).

. Number of k element subsets = (nJ_ n(n-1) (n-2)- (n-k+1) _

. O(k2 nk/ Kkl) = O(nk).
AN

poly-time for k=17,
but not practical

k) k(k=2)(k=2)--(2) ()

nk

Tk

48

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n? 2") solution. Enumerate all subsets.

49

Review: Heap Data Structure

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Max Heap Order: For each node v in the tree
Parent(v).Value > v. Value

50

Heap Insertion

Heap.Insert(3)

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

51

Heap Insertion

Heap.Insert(3)

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

52

Heap Insertion

Heap.Insert(3)

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

53

Heap Insertion

Heap.Insert(3)

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

54

Heap Insertion

Heap.Insert(3)

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.12 [KT]: The procedure Heapify-up fixes the heap
property and allows us to insert a new element into a heap of n
elements in O(log n) time.

55

Heap Extract Minimum

Heap.ExtractMin()

(11) &)

(44 6 © (©

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

56

Heap Extract Minimum

Heap.ExtractMin()

(44 6 © (©

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

57

Heap Extract Minimum

Heap.ExtractMin()

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

58

Heap Extract Minimum

Heap.ExtractMin()

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

59

Heap Extract Minimum

@\

(1) (9)

Heap.ExtractMin()

#H ® ©® @

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

60

Heap Extract Minimum

@\

(1) (9)

Heap.ExtractMin()

49 69

Min Heap Order: For each node v in the tree
Parent(v).Value < v.Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

61

Heap Summary

Insert: O(log n)

FindMin: O(1)

Delete: O(log n) time
ExtractMin: O(log n) time

Thought Question: O(n log n) time sorting algorithm using heaps?

JON KLEINBERG - EVA TARDOS

PEARSON

e o,
Addison

Wesley

62

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)
. V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

v={12,3,4,5,6,7,8}

() ()
. E={1-2 1-3, 2-3 2-4 2-5,3-5,3-7, 3-8, 4-5 5-6}
WV
FOAL
(D)—CG) &)
()

64

65

Some Graph Applications

66

Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

netscape.com

«—

novell.com

World Wide Web

cnn.com

chnsi.com

timewarner.com

'
sorpranos.com

hbo.com <~

9-11 Terrorist Network

[]
Abu Zubeida

L
Jean- Marc Grandwvisir

[
Abu Walid »
Djamal Eeghal

u
Ahmed Ressam

»
Haydar Abu Doha

[}
Mehdi Khammoun

L]
Essoussi Laaroussi

] n
Moharmed.Bensakhria Tarek Mazroufi

[
Lased Ben Heni

[
Seifallah ben Hassine

a
Essid Sami Ben Khemais

L
F=hid al Shakri

n
Abdelghani Mzoudi

-
Madjid Sahoune

-
Samir Kishk =
Mustafa Alimed al- Hisaw

[}
Fayez ARmed

Wail Alshehri

Wialeed Alshehri

¥ Satam Sugami
Motrand Alshehri*

L
- Nabil al-Marabh
Raed Hijazi

=
Saeed Alghamdi*

Abdul Aziz Al-Omari*

B
Kamel Dacudi

u
Abu Gatads

L
Iacarizs Moussaoui

L]
Im=ad Eddin Barakat Yarkas

M Flight AA £77 - Crashed Into P
W Flight UA #93 - Crashed in Pennsylvania
Flight UA #175 - Crashed |

Othe o

n
Mohammed Belfas

| |
Ramzi Bin al-Shibh

Social network graph.
. Node: people.
. Edge:

u
Mizar Trabelsi

n
Jerome Courtaillier

a
Danvid Courtaillier

tagon

0 WTC South

| | |
#gus Budiman Mounir Bl Motassadeg

=
Ahmed-Khalil lbrakhim Samir Al-Ani

)
Zakariya Essabar

Mohzmead Atte "
Said Bahaji

]
¥ Ziad Jarrah
Marwan Al-Shehhi
L2
Latfi Raissi

[]
Ahmed Al Hazrzwi - B
Hani Hanjour

u
I Salem Alhazmi?
Ahmed Alghamdi

u
Mamduh Mahmud Salim

Marmoun Darkazanli

A
Bandar Alhaz mi

L
Rayed Mohammed Abdullah

L
Faisal Al Salmi

n
Majed Maqed

-
Hamza Alghamdi—. g

Nzt Alhar mi

n
Ahrmed Alnami

L)
Khalid Al-Mihdhar

]
Osama Awadallzh

=
- Abdussattar Shaikh
Moharmed Abdi

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

67

relationship between two people.

Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

& ey 9

reat egret

{ox A
B nurtlmir‘&" o~ blue-gill fish
L kl.‘*l\t" ! water shake

oy \ ’ A

spotted salamandes

i i B
- 3 :-'-a;_l- ['ﬁ
AR\
) 2 earthworm
mosquito i
\ S|l|g

i algae (magnified)
cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/ SalGraphics/salfoodweb.gif f

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?,
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.

o o 12345678
101100000

. 210111000
e e 31171001011
' 401011000
o o o 501110100
600001000

7lo0o100001

e 800100010

70

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional o m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u

i

1 |2]|e 3

2 |1 3] N {5 ¥
3 (1|et+—|2|e+—5|e 7|0 —8
40 " 5

5 |2|e1—{3|e1—{4|e 6

6

7

8

w w
®
(00)

71

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, .., Vi1, Vi With the property that each consecutive pair v;, v, is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

ONNGENORNO
"
(=
5 D ©

72

Cycles

Def. A cycleis apath vy, v, ..., Vi1, Vi in which v; = v, k > 2, and the
first k-1 nodes are all distinct.

cycle € = 1-2-4-5-3-1

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.

73

74

Rooted Trees

Rooted free. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

o o o @ o o child of v

a tree the same tree, rooted at 1

75

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

gut bacteria
trees
mushrooms
fizh

mamma 1=
birds
dragonflies

beetles

GUT Containment Hierarchy

GUT containment hierarchy. Describe organization of GUI widgets

o
| 1Panel {custam content pane) |

— Converter = ||5) 1Frame JPalne'I JPa|ne1
JPanel (ComversionPanel) (ConversionPanel)
1TextField
1574ider
1ConboBox JFanel | 1ComboBox | | 1ComboBEox | JPanel
JPanel {custorm) {custam)
JTextField | | | |
IsTider ITextField ITextField
(DecimalField) (DecimalFiaeld)

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

76

13lider

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and 1, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications.
. Friendster.
. Maze traversal.
- Kevin Bacon number.
. Fewest number of hops in a communication network.

S

78

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

— — |
5\ Ll — Lz — eeoe Ln—l

BFS algorithm.
- Lo={s}
. L, = all neighbors of L,.
. L, = all nodes that do not belong to L, or L, and that have an edge
to anode inL,.
. L;,; = all nodes that do not belong to an earlier layer, and that have
an edge tfoa node in L,

P
—_—

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

79

Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

S

80

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u, v)
- total fime processing edges is X, deg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

81

Connected Component

Connected component. Find all nodes reachable from s.

A1)

Connected component containingnode 1={1,2,3,4,5,6,7,8}.

82

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob fo blue

eeon Tux Paint /

A= o ot
aint | Stamp RainbowSparkles
. > ° °
Lines Shapes Mirrar " Flip
% L L
Text m Blur ' Blocks
A 2%) ¢ ¢
Undo Rédo MNegative' Fade
20 0 ™ b b
Eraser = New Chalk * Drip
B - — ¢ ¢
en ve Thick " Thin

A ‘T

Coo3 ()
ﬂ Blue!

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

8 oo Tux Paint

fTools) Magid

A= o "

et

aint ' Stamp RalnbawSpérkles
bk) ° ¢

Lines 'Shapes Mirrar Flip
o

Abc =

Text \Magic Blur ' Blocks
AN 0\ e

Undo Redo Negative' Fade
0 rom ¢

Eraser ' New Chalk Drip
o

ngn ;ave Thick " Thin
;rlnt Quit / .b ' Fill '
s

Colord [SR e
W Click in the picture to fill that area with color.

84

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile .
it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

. BFS =explore in order of distance from s.
. DFS = explore in a different way.

85

	CS 580: Algorithm Design and Analysis
	Recap: Stable Matching Problem
	Understanding the Solution
	Man Optimality
	Stable Matching Summary
	Woman Pessimality
	Extensions: Matching Residents to Hospitals
	Extensions: Matching Residents to Hospitals
	1.2 Five Representative Problems
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Weighted Interval Scheduling
	Weighted Interval Scheduling
	Weighted Interval Scheduling
	Bipartite Matching
	Bipartite Matching
	Independent Set
	Competitive Facility Location
	Competitive Facility Location
	Competitive Facility Location
	Competitive Facility Location
	Competitive Facility Location
	Competitive Facility Location
	Five Representative Problems
	Chapter 2��Basics of �Algorithm Analysis
	Computational Tractability
	Polynomial-Time
	Worst-Case Analysis
	Worst-Case Polynomial-Time
	Why It Matters
	2.2 Asymptotic Order of Growth
	Asymptotic Order of Growth
	Notation
	Properties
	Asymptotic Bounds for Some Common Functions
	2.4 A Survey of Common Running Times
	Linear Time: O(n)
	Linear Time: O(n)
	O(n log n) Time
	Quadratic Time: O(n2)
	Cubic Time: O(n3)
	Polynomial Time: O(nk) Time
	Exponential Time
	Review: Heap Data Structure
	Heap Insertion
	Heap Insertion
	Heap Insertion
	Heap Insertion
	Heap Insertion
	Heap Extract Minimum
	Heap Extract Minimum
	Heap Extract Minimum
	Heap Extract Minimum
	Heap Extract Minimum
	Heap Extract Minimum
	Heap Summary
	Chapter 3��Graphs
	3.1 Basic Definitions and Applications
	Undirected Graphs
	Some Graph Applications
	World Wide Web
	9-11 Terrorist Network
	Ecological Food Web
	Graph Representation: Adjacency Matrix
	Graph Representation: Adjacency List
	Paths and Connectivity
	Cycles
	Trees
	Rooted Trees
	Phylogeny Trees
	GUI Containment Hierarchy
	3.2 Graph Traversal
	Connectivity
	Breadth First Search
	Breadth First Search
	Breadth First Search: Analysis
	Connected Component
	Flood Fill
	Flood Fill
	Connected Component

