CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

Announcements: Homework 6 due tonight at 11:59 PM

Practice Final Exam Released on Piazza

Course Evaluation Survey: Live until 4/28/2019 at 11:59PM. Your feedback is valued! (Current Response Rate: 25%)

Chernoff Bounds (below mean)

Theorem. Suppose $X_1, \, ..., \, X_n$ are independent 0-1 random variables. Let X = X1 + ... + Xn. Then for any $\mu \leq \mathsf{E}[X]$ and for any 0 < δ < 1, we have

 $\Pr[X < (1 - \delta)\mu] \ < \ e^{-\delta^2 \mu \, / 2}$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Load Balancing

Analysis. (m=n jobs)

- Let X_i = number of jobs assigned to processor i.
- . Let Y_{ij} = 1 if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$ Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$

Theorem. Suppose $X_1,...,X_n$ are independent 0-1 random variables. Let X = X_1 + ... + X_m . Then for any $\mu \ge E[X]$ and for any δ > 0, we have μ

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\ell}$$

Analysis. (m=n jobs) • Let X _i = number of jobs assigned to processor i. • Let Y _{ij} = 1 if job j assigned to processor i, and 0 otherwise. • We have E[Y _{ij}] = 1/n Thus Y = Y _{ij} = ord u = E[Y] = 1	
• Thus, $x_i - \sum_j r_{ij}$, and $\mu - c_{L}x_{ij} - 1$. • Applying Chernoff bounds with $\delta = c - 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$	
• Let $\gamma(\mathbf{n})$ be number x such that $\mathbf{x}^{x} = \mathbf{n}$, and choose $\mathbf{c} = \mathbf{e} \gamma(\mathbf{n})$.	
$\Pr[X_i > c] < \frac{1}{c^c} < \left(\frac{1}{c}\right) = \left(\frac{1}{\gamma(n)}\right) = < \frac{1}{r^2}$ • Union bound \Rightarrow with probability $\ge 1 - 1/n$ no processor receives	
more than e $\gamma(n) = \Theta(\log n / \log \log n)$ jobs. Fact: this bound is asymptotically tight: with high probability, some processor receives $\Theta(\log n / \log \log n)$	

Neighbor Relations for Max Cut

1-flip neighborhood. (A, B) and (A', B') differ in exactly one node.

k-flip neighborhood. (A, B) and (A', B') differ in at most k nodes. Θ(n^k) neighbors.

cut value of (A_1, B_1) may be worse than (A, B)KL-neighborhood. [Kernighan-Lin 1970]

- To form neighborhood of (A, B):
 - Iteration 1: flip node from (A, B) that results in best cut value (A1, B1), and mark that node.
 - Iteration i: flip node from (A_{i-1}, B_{i-1}) that results in best cut value (Ai, Bi) among all nodes not yet marked.
- Neighborhood of (A, B) = (A₁, B₁), ..., (A_{n-1}, B_{n-1}).
- . Neighborhood includes some very long sequences of flips, but without the computational overhead of a k-flip neighborhood.
- Practice: powerful and useful framework.
- Theory: explain and understand its success in practice.

12.3 Hopfield Neural Networks

Designing a Universal Class of Hash Functions Theorem. H = { $h_a : a \in A$ } is a universal class of hash functions. Pf. Let x = (x₁, x₂, ..., x_r) and y = (y₁, y₂, ..., y_r) be two distinct elements of U. We need to show that $Pr[h_a(x) = h_a(y)] \le 1/n$. • Since x ≠ y, there exists an integer j such that x_j ≠ y_j. • We have $h_a(x) = h_a(y)$ iff $a_j (\underbrace{y_j - x_j}_{z}) = \underbrace{\sum_{i \neq j} a_i(x_i - y_i) \mod p}_{i \neq j} \mod p$ • Can assume a was chosen uniformly at random by first selecting all coordinates a_i where i ≠ j, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates i ≠ j. • Since p is prime, a_j z = m mod p has at most one solution among p possibilities. --- see lemma on next slide • Thus Pr[h_a(x) = h_a(y)] = 1/p \le 1/n.

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then αz = m mod p has at most one solution $0 \leq \alpha < p$.

Pf.

- Suppose α and β are two different solutions.
- . Then $(\alpha \beta)z = 0 \mod p$; hence $(\alpha \beta)z$ is divisible by p.
- Since $z \neq 0 \mod p$, we know that z is not divisible by p;
- it follows that $(\alpha \beta)$ is divisible by p.
- This implies $\alpha = \beta$. •

Bonus fact. Can replace "at most one" with "exactly one" in above fact. Pf idea. Euclid's algorithm.

