Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{\delta}}\right)^\mu.$$

Pf. We apply a number of simple transformations.

1. For any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{(1 + \delta)t\mu}].$$

2. Let $Y = e^{tX}$ be a random variable. e^{tX} is a monotonically increasing function.

$$\Pr[X > (1 + \delta)\mu] = \Pr[Y > e^{(1 + \delta)t\mu}] = e^{(1 + \delta)t\mu} \Pr[Y > e^{(1 + \delta)t\mu}].$$

Markov’s inequality: $\Pr[Y > a] \leq \frac{E[Y]}{a}$.

Pf. (cont) We had derived for any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] \leq e^{-(1 + \delta)t\mu} \Pr[Y > e^{(1 + \delta)t\mu}] = e^{-(1 + \delta)t\mu} \sum p_i.$$

Now

$$E[p_i] = E[e^{tX}] = \sum E[e^{tX_{ij}}].$$

Definition of X.

Let $p_i = \Pr[X_i = 1]$. Then,

$$E[e^{tX}] = e^t \sum (1 - p_i)e^{t(1 - p_i)} = 1 + p_i e^t - 1 \leq e^{p_i e^t}$$

for any $t > 0, 1 + a \leq e^a$.

Combining everything:

$$\Pr[X > (1 + \delta)\mu] \leq e^{-(1 + \delta)t\mu} \sum p_i.$$

Let $\Sigma_{X_i, i \leq \mu}$. Then,

$$\Pr[X > (1 + \delta)\mu] \leq e^{-(1 + \delta)t\mu} \sum p_i = e^{-(1 + \delta)t\mu} \sum p_i \leq e^{-(1 + \delta)t\mu} \sum e^{t(1 - p_i)}.$$

Finally, choose $t = \ln(1 + \delta)$.
Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$P(X < (1-\delta)\mu) < e^{\delta^2 \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing

Load Balancing System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil m/n \rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Analysis. (min jobs)

- Let X_i be number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$.
- Then, $X_i = \sum_{j=1}^{m} Y_{ij}$ and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields
 $$P(X_i > c) < e^{c^2 / 2c}$$

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu = E[X]$ and for any $\delta > 0$, we have

$$P(X > (1+\delta)\mu) < e^{\delta \mu / (1+\delta)^2}$$

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Pf.

- Let X_i be as before.
- Applying Chernoff bounds with $\delta = 1$ yields
 $$P(X_i > 2\mu) < e^{rac{\mu}{8}}$$

Fact: the bound is asymptotically tight: with high probability, some processor receives $\Theta(\log \log n)$ jobs.

Union bound, with probability $\geq 1 - 1/n$ no processor receives more than $\theta(n) = \Theta(\log n / \log \log n)$ jobs.
Load Balancing with Asymmetry

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\lceil \frac{m}{n} \rceil \) jobs.
- Suppose each job has cost between 1 and 4
- Round-Robin assignment may be highly unbalanced
 - E.g., \(n=4 \) processors: 1,2,3,4,1,2,3,4,...
 - Processor 1 total cost: \(\frac{m}{4} \)
 - Processor 2 total cost: \(\frac{m}{2} \)
 - Processor 3 total cost: \(\frac{3m}{4} \)
 - Processor 4 total cost: \(m \)
- Fair: \(\frac{2.5m}{4} \) per processor

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned “too many” jobs?
- Still works well in the above scenario (bounded costs)
- Workload on each processor would be \(\approx \frac{2.5m}{4} \) (whp) in above example

Maximum Cut

Maximum cut. Given an undirected graph \(G = (V, E) \) with positive integer edge weights \(w_e \), find a node partition \((A, B)\) such that the total weight of edges crossing the cut is maximized.

\[
W(A, B) = \sum_{u \in A, v \in B} w_{uv}
\]

Toy application.
- \(n \) activities, \(m \) people.
- Each person wants to participate in two of the activities.
- Schedule each activity in the morning or afternoon to maximize number of people that can enjoy both activities.
- Nodes: Activities
- Edge Weights: \(w_{uv} \) = #people who want to participate in both activities

Real applications. Circuit layout, statistical physics.

Maximum Cut: Local Search Analysis

Theorem. Let \((A, B)\) be a locally optimal partition and let \((A^*, B^*)\) be optimal partition. Then \(w(A, B) \geq \frac{1}{2} \sum_{e \in E} w_e \geq \frac{1}{2} w(A^*, B^*) \).

Proof. Local optimality implies that for all \(u \in A \) :
\[
\sum_{v \in B} w_{uv} \leq \sum_{v \in A} w_{uv} = w(A, B)
\]

Adding up all these inequalities yields:
\[
2 \sum_{e \in E} w_{uv} \leq \sum_{u \in A} \sum_{v \in B} w_{uv} = w(A, B)
\]

Similarly,
\[
2 \sum_{e \in E} w_{uv} \leq \sum_{u \in A} \sum_{v \in B} w_{uv} = w(A, B)
\]

Now,
\[
\sum_{e \in E} w_{uv} = \sum_{u \in A} \sum_{v \in B} w_{uv} + \sum_{u \in A} \sum_{v \in A} w_{uv} + \sum_{u \in B} \sum_{v \in B} w_{uv} \leq 2w(A, B)
\]

Maximum Cut: Big Improvement Flips

Local search. Within a factor of 2 for MAX-CUT, but not poly-time!

Big-improvement-flip algorithm. Only choose a node which, when flipped, increases the cut value by at least \(\frac{w(A, B)}{2} \).

Claim. Upon termination, big-improvement-flip algorithm returns a cut \((A, B)\) with \((2 + \epsilon) w(A, B) \geq w(A^*, B^*) \).

Proof idea. Add \(\frac{w(A, B)}{2} \) to each inequality in original proof.

Claim. Big-improvement-flip algorithm terminates after \(O(\epsilon^{-1} \log W) \) flips, where \(W = \sum_e w_e \).
- Each flip improves cut value by at least a factor of \(1 + \frac{\epsilon}{2} \).
- After \(k \) iterations the cut value improved by a factor of \(2^k \).
- Cut value can be doubled at most \(\log W \) times.

\[
f \cdot x \geq 1 \Rightarrow \left(1 + \frac{f}{2}\right)^x \geq 2
\]
Maximum Cut: Context

Theorem. [Sahni-Gonzales 1976] There exists a \(\frac{1}{2} \)-approximation algorithm for MAX-CUT.

- In fact a random cut will cut \(\frac{1}{2} \) of all edges in expectation!

Theorem. [Goemans-Williamson 1995] There exists an 0.878567-approximation algorithm for MAX-CUT.

Theorem. [Håstad 1997] Unless \(P = NP \), no \(16/17 \) approximation algorithm for MAX-CUT.

12.5 Neighbor Relations

Neighbor Relations for Max Cut

1-flip neighborhood. \((A, B)\) and \((A', B')\) differ in exactly one node.

k-flip neighborhood. \((A, B)\) and \((A', B')\) differ in at most k nodes.

- \(\Theta(nk) \) neighbors.

KL-neighborhood. [Kernighan-Lin 1970]

- To form neighborhood of \((A, B)\):
 - Iteration 1: flip node from \((A, B)\) that results in best cut value \((A_1, B_1)\), and mark that node.
 - Iteration i: flip node from \((A_{i-1}, B_{i-1})\) that results in best cut value \((A_i, B_i)\) among all nodes not yet marked.
 - Neighborhood of \((A, B)\) = \((A_1, B_1), \ldots, (A_{n-1}, B_{n-1})\).
 - Neighborhood includes some very long sequences of flips, but without the computational overhead of a k-flip neighborhood.
 - Practice: powerful and useful framework.
 - Theory: explain and understand its success in practice.

12.3 Hopfield Neural Networks

Hopfield Neural Networks

Hopfield networks. Simple model of an associative memory, in which a large collection of units are connected by an underlying network, and neighboring units try to correlate their states.

Input: Graph \(G = (V, E) \) with integer edge weights \(w \).

Configuration. Node assignment \(s_u = \pm 1 \).

Intuition. If \(w_{uv} < 0 \), then u and v want to have the same state; if \(w_{uv} > 0 \) then u and v want different states.

Note. In general, no configuration respects all constraints.

Def. With respect to a configuration \(S \), edge \(e = (u, v) \) is good if \(w_u s_u s_v < 0 \). That is, if \(w_{uv} > 0 \) then \(s_u = s_v \); if \(w_{uv} < 0 \) then \(s_u \neq s_v \).

Def. With respect to a configuration \(S \), a node \(u \) is satisfied if the weight of incident good edges \(\geq \) weight of incident bad edges.

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.
Hopfield Neural Networks

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeatedly flip the state of an unsatisfied node.

```
Hopfield-Flip(G, w) {
    S  \leftarrow  \text{arbitrary configuration}
    \text{while (current configuration is not stable)} {
        u  \leftarrow  \text{unsatisfied node}
        s_u = -s_u
    }
    \text{return } S
}
```

Claim. State-flipping algorithm terminates with a stable configuration after at most \(W = \sum |w_e| \) iterations.

Proof attempt. Consider measure of progress \(\Phi(S) = \# \text{ satisfied nodes} \).

Conclusion: Some local flips actually decrease \# satisfied nodes.

Complexity of Hopfield Neural Network

Hopfield network search problem. Given a weighted graph, find a stable configuration if one exists.

Hopfield network decision problem. Given a weighted graph, does there exist a stable configuration?

Remark. The decision problem is trivially solvable (always yes), but there is no known poly-time algorithm for the search problem.
Dictionary Data Type

Dictionary. Given a universe \(U \) of possible elements, maintain a subset \(S \subseteq U \) so that inserting, deleting, and searching in \(S \) is efficient.

Dictionary interface.
- Create(): Initialize a dictionary with \(S = \emptyset \).
- Insert(u): Add element \(u \in U \) to \(S \).
- Delete(u): Delete \(u \) from \(S \), if \(u \) is currently in \(S \).
- Lookup(u): Determine whether \(u \) is in \(S \).

Challenge. Universe \(U \) can be extremely large so defining an array of size \(|U|\) is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. \(h : U \rightarrow \{0, 1, \ldots, n-1\} \).

Hashing. Create an array \(H \) of size \(n \). When processing element \(u \), access array element \(H[h(u)] \).

Collision. When \(h(u) = h(v) \) but \(u \neq v \).
- A collision is expected after \(\Theta(\sqrt{n}) \) random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: \(H[i] \) stores linked list of elements \(u \) with \(h(u) = i \).

Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

Deterministic: If \(|U| \geq n^2\), then for any fixed hash function \(h \), there is a subset \(S \subseteq U \) of \(n \) elements that all hash to same slot. Thus, \(h(n) \) time per search in worst-case.

Challenge. But isn’t ad hoc hash function good enough in practice?

Hashing Performance

Idealistic hash function. Maps \(m \) elements uniformly at random to \(n \) hash slots.
- Running time depends on length of chains.
- Average length of chain = \(a = m / n \).
- Choose \(n = m \Rightarrow \) on average \(O(1) \) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of \(h \).

Adversary knows the randomized algorithm you’re using, but doesn’t know random choices that the algorithm makes.

Algorithmic Complexity Attacks

When can’t we live with ad hoc hash function?
- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
- For any pair of elements \(u, v \in U \), \(Pr_{h \in H} [h(u) = h(v)] \leq 1/n \).
- Can select random \(h \) efficiently.
- Can compute \(h(u) \) efficiently.

Ex. \(U = \{a, b, c, d, e, f\}, n = 2 \).

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

```
```
Universal Hashing

Universal hashing property. Let \(H \) be a universal class of hash functions; let \(h \in H \) be chosen uniformly at random from \(H \); and let \(u \in U \). For any subset \(S \subseteq U \) of size at most \(n \), the expected number of items in \(S \) that collide with \(u \) is at most 1.

\[
Pf. \text{ For any element } s \in S, \text{ define indicator random variable } X_s = 1 \text{ if } h(s) = h(u) \text{ and } X_s = 0 \text{ otherwise. Let } X = \text{a random variable counting the total number of collisions with } u.
\]

\[
E_{h \in H}[X] = E \left[\sum_{s \in S} X_s \right] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \frac{|S|}{n} \leq 1 \\
\text{linearity of expectation, } X_s \text{ is a 0-1 random variable}
\]

Designing a Universal Class of Hash Functions

Theorem. \(H = \{ h_a : a \in A \} \) is a universal class of hash functions.

\[
Pf. \text{ Let } x = (x_1, x_2, \ldots, x_r) \text{ and } y = (y_1, y_2, \ldots, y_r) \text{ be two distinct elements of } U. \text{ We need to show that } \Pr[h_a(x) = h_a(y)] \leq 1/n.
\]

- Since \(x = y \), there exists an integer \(j \) such that \(x_j \neq y_j \).
- We have \(h_a(x) = h_a(y) \) iff
 \[
a_j(y_j - x_j) = \sum_{i \neq j} a_i (x_i - y_i) \quad \text{mod } p
\]
- Can assume \(a \) was chosen uniformly at random by first selecting all coordinates \(a_i \) where \(i = j \), then selecting \(a_j \) at random. Thus, we can assume \(a_j \) is fixed for all coordinates \(i \neq j \).
- Since \(p \) is prime, \(a_j z \equiv m \text{ mod } p \) has at most one solution among \(0 \leq z < p \).
- Thus \(\Pr[h_a(x) = h_a(y)] = 1/p < 1/n \).