
CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcements: Homework 6 due tonight at 11:59 PM

Practice Final Exam Released on Piazza

Course Evaluation Survey: Live until 4/28/2019 at 11:59PM. Your feedback 
is valued! (Current Response Rate: 25%) 



13.9  Chernoff Bounds
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Chernoff Bounds (above mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. Let 
X = X1 + … + Xn. Then for any   E[X] and for any  > 0, we have

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൏
𝑒ఋ

1 ൅ 𝛿 ଵାఋ

ఓ

Pf.  We apply a number of simple transformations.
 For any t > 0, Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൌ Pr 𝑒௧௑ ൐ 𝑒௧ሺଵାఋሻఓ

 Let Y ൌ 𝑒௧௑ be a random variable 

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൌ Pr 𝑌 ൐ 𝑒௧ሺଵାఋሻఓ ൑
𝐄 𝑌

𝑒௧ ଵାఋ ఓ ൌ 𝑒ି௧ ଵାఋ ఓ ൈ 𝐄 𝑒௧௑

sum of independent 0-1 random variables
is tightly centered on the mean

f(x) = etX is monotone in x

Markov's inequality: Pr 𝑌 ൐ 𝑎 ൑ 𝐄ሾ𝑌ሿ/𝑎
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Chernoff Bounds (above mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. Let 
X = X1 + … + Xn. Then for any   E[X] and for any  > 0, we have

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൏
𝑒ఋ

1 ൅ 𝛿 ଵାఋ

ఓ

Pf.  We apply a number of simple transformations.
 For any t > 0,

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൑ 𝑒ି௧ ଵାఋ ఓ ൈ 𝐄 𝑒௧௑

 Now
E 𝑒௧௑ ൌ E 𝑒௧ ∑ ௫೔೔ ൌ ෑ E 𝑒௧௫೔

୧

definition of X
independence

sum of independent 0-1 random variables
is tightly centered on the mean

ൌ 𝑒ି௧ ଵାఋ ఓ ෑ E 𝑒௧௫೔

୧
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Chernoff Bounds (above mean)

Pf.  (cont)
 Let p୧ ൌ Pr 𝑥௜ ൌ 1 . Then, 

E 𝑒௧௫೔ ൌ p୧ ൈ 𝑒௧ ൅ 1 െ p୧ 𝑒଴ ൌ 1 ൅ p୧ 𝑒௧ െ 1 ൑ 𝑒୮౟ ௘೟ିଵ

 Combining everything:

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൑ 𝑒ି௧ ଵାఋ ఓ ෑ E 𝑒௧௫೔

୧
                            

                                      ൑ 𝑒ି௧ ଵାఋ ఓ ෑ 𝑒୮౟ ௘೟ିଵ

୧

                                     ൌ 𝑒ି௧ ଵାఋ ఓ ൈ 𝑒 ௘೟ିଵ ∑ ୮౟೔

                                      ൑ 𝑒ି௧ ଵାఋ ఓ ൈ 𝑒 ௘೟ିଵ ఓ       

 Finally, choose t = ln(1 + ).   

for any 𝛼 ൒ 0, 1 ൅ 𝛼 ൑  𝑒ఈ

previous slide

inequality above

∑ p୧௜ ൌ 𝐸 𝑋 ൑ 𝜇
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Chernoff Bounds (above mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. Let 
X = X1 + … + Xn. Then for any   E[X] and for any  > 0, we have

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൏
𝑒ఋ

1 ൅ 𝛿 ଵାఋ

ఓ

Pf.  (cont) We had derived for any t>0

ି௧ ଵାఋ ఓ ௘೟ିଵ ఓ

Plugging in t = ln(1 + ). We have 

𝑒ି௧ ଵାఋ ఓ ൈ 𝑒 ௘೟ିଵ ఓ ൌ
𝑒ఋ

1 ൅ 𝛿 ଵାఋ

ఓ

sum of independent 0-1 random variables
is tightly centered on the mean
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Chernoff Bounds (below mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. 
Let X = X1 + … + Xn. Then for any   E[X] and for any 0 <  < 1, we have

Pf idea.  Similar.

Remark.  Not quite symmetric since only makes sense to 
consider  < 1.

2/2
])1(Pr[   eX



13.10  Load Balancing
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Load Balancing

Load balancing.  System in which m jobs arrive in a stream and need to 
be processed immediately on n identical processors.  Find an assignment 
that balances the workload across processors.

Centralized controller.  Assign jobs in round-robin manner. Each 
processor receives at most m/n jobs.

Decentralized controller.  Assign jobs to processors uniformly at 
random. How likely is it that some processor is assigned "too many" 
jobs?
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Load Balancing

Analysis. (m=n jobs)
 Let Xi = number of jobs assigned to processor i.
 Let Yij = 1 if job j assigned to processor i, and 0 otherwise.
 We have E[Yij] = 1/n 
 Thus, Xi =  j Yi j, and  = E[Xi] = 1.
 Applying Chernoff bounds with  = c - 1 yields c

c

i c
ecX

1
]Pr[





Theorem.  Suppose X1, …, Xn are independent 0-1 random 
variables. Let X = X1 + … + Xn. Then for any   E[X] and for any 
> 0, we have

Pr 𝑋 ൐ ሺ1 ൅ 𝛿ሻ𝜇 ൏
𝑒ఋ

1 ൅ 𝛿 ଵାఋ

ఓ
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Load Balancing

Analysis. (m=n jobs)
 Let Xi = number of jobs assigned to processor i.
 Let Yij = 1 if job j assigned to processor i, and 0 otherwise.
 We have E[Yij] = 1/n 
 Thus, Xi =  j Yi j, and  = E[Xi] = 1.
 Applying Chernoff bounds with  = c - 1 yields

 Let (n) be number x such that xx = n, and choose c = e (n).

 Union bound  with probability  1 - 1/n no processor receives 
more than e (n) = (logn / log log n) jobs.

c

c

i c
ecX

1
]Pr[





2

)(2)(1 1
)(

1
)(

1]Pr[
nnnc

e
c

ecX
nnec

c

c

i 

























 



Fact:  this bound is asymptotically tight:  with high
probability, some processor receives (logn / log log n) 
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Load Balancing:  Many Jobs

Theorem.  Suppose the number of jobs m = 16n ln n. Then on 
average, each of the n processors handles  = 16 ln n jobs. With 
high probability every processor will have between half and twice 
the average load.

Pf.
 Let Xi , Yij be as before. 
 Applying Chernoff bounds with  = 1 yields

 Pr 𝑋௜ ൐ 2𝜇 ൏ ௘
ସ

ଵ଺ ୪୬ ௡
≪ ଵ

௘

ଶ ୪୬ ௡
ൌ ଵ

௡మ

 Pr 𝑋௜ ൏ ఓ
ଶ

൏ 𝑒
భ
మ

మభల ౢ౤ ೙
మ ൌ ଵ

௘

ଶ ୪୬ ௡
ൌ ଵ

௡మ

 Union bound  every processor has load between half and 
twice the average with probability  1 - 2/n. ▪



Load Balancing with Asymmetry

Centralized controller.  Assign jobs in round-robin manner. Each 
processor receives at most m/n jobs.
• Suppose each job has cost between 1 and 4
• Round-Robin assignment may be highly unbalanced
• E.g., (n=4 processors): 1,2,3,4,1,2,3,4,…

• Processor 1 total cost: m/4
• Processor 2 total cost: m/2
• Processor 3 total cost: 3m/4
• Processor 4 total cost: m
• Fair: 2.5m/4 per processor

Decentralized controller.  Assign jobs to processors uniformly at 
random. How likely is it that some processor is assigned "too many" 
jobs?
• Still works well in the above scenario (bounded costs)
• Workload on each processor would be ൎ 2.5𝑚/4 (whp) in above 

example

13



12.4  Maximum Cut



15

Maximum Cut

Maximum cut.  Given an undirected graph G = (V, E) with positive 
integer edge weights we, find a node partition (A, B) such that the total 
weight of edges crossing the cut is maximized.

𝑤 𝐴, 𝐵 ∶ൌ ෍ 𝑤௨௩
௨∈஺,௩∈஻

Toy application.
 n activities, m people.
 Each person wants to participate in two of the activities.
 Schedule each activity in the morning or afternoon to maximize 

number of people that can enjoy both activities.
– Nodes: Activities
– Edge Weights: 𝑤௨௩ ൌ #people who want to participate in both 

activities

Real applications.  Circuit layout, statistical physics.
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Maximum Cut

Single-flip neighborhood.  Given a partition (A, B), move one node from 
A to B, or one from B to A if it improves the solution.

Greedy algorithm.  

Max-Cut-Local (G, w) {
Pick a random node partition (A, B)

while ( improving node v) {
if (v is in A) move v to B
else move v to A

}

return (A, B)
}
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Maximum Cut:  Local Search Analysis

Theorem.  Let (A, B) be a locally optimal partition and let (A*, B*) be 
optimal partition.  Then w(A, B)  ½ e we  ½ w(A*, B*).

Pf.  
 Local optimality implies that for all u  A : ∑ 𝑤௨௩௩∈஺ ൑ ∑ 𝑤௨௩௩∈஻

Adding up all these inequalities yields:

2 ෍ 𝑤௨௩
ሼ௨,௩ሽ⊆஺

൑ ෍ 𝑤௨௩
௨∈஺,௩∈஻

ൌ 𝑤ሺ𝐴, 𝐵ሻ

 Similarly     2 ∑ 𝑤௨௩ሼ௨,௩ሽ⊆஻ ൑ ∑ 𝑤௨௩௨∈஺,௩∈஻ ൌ 𝑤ሺ𝐴, 𝐵ሻ

 Now,

෍ 𝑤௘
௘∈ா

ൌ ෍ 𝑤௨௩
ሼ௨,௩ሽ⊆஺

ஸଵ
ଶ௪ሺ஺,஻ሻ

൅ ෍ 𝑤௨௩
௨∈஺,௩∈஻

௪ሺ஺,஻ሻ

൅ ෍ 𝑤௨௩
ሼ௨,௩ሽ⊆஻

ஸଵ
ଶ௪ሺ஺,஻ሻ

൑ 2𝑤ሺ𝐴, 𝐵ሻ

each edge counted once

weights are nonnegative
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Maximum Cut:  Big Improvement Flips

Local search.  Within a factor of 2 for MAX-CUT, but not poly-time!

Big-improvement-flip algorithm.  Only choose a node which, when 
flipped, increases the cut value by at least ଶఌ

௡
𝑤 𝐴, 𝐵

Claim.  Upon termination, big-improvement-flip algorithm returns a cut 
(A, B) with (2 +) w(A, B)  w(A*, B*).

Pf idea. Add ଶఌ
௡

𝑤 𝐴, 𝐵 to each inequality in original proof.

Claim.  Big-improvement-flip algorithm terminates after O(-1 n log W) 
flips, where W = e we.
 Each flip improves cut value by at least a factor of (1 + /n).
 After n/ iterations the cut value improves by a factor of 2.
 Cut value can be doubled at most log W times.

if x  1, (1 + 1/x)x   2
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Maximum Cut:  Context

Theorem.  [Sahni-Gonzales 1976]  There exists a ½-approximation 
algorithm for MAX-CUT. 

• In fact a random cut will cut ½ of all edges in expectation!

Theorem.  [Goemans-Williamson 1995] There exists an 0.878567-
approximation algorithm for MAX-CUT.

Theorem.  [Håstad 1997] Unless P = NP, no 16/17 approximation 
algorithm for MAX-CUT.

0.941176

min
0

  2


 
1 cos



12.5  Neighbor Relations
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Neighbor Relations for Max Cut

1-flip neighborhood.  (A, B) and (A', B') differ in exactly one node.

k-flip neighborhood.  (A, B) and (A', B') differ in at most k nodes.
 (nk) neighbors.

KL-neighborhood.  [Kernighan-Lin 1970]
 To form neighborhood of (A, B):

– Iteration 1: flip node from (A, B) that results in best cut 
value (A1, B1), and mark that node.

– Iteration i: flip node from (Ai-1, Bi-1) that results in best cut 
value (Ai, Bi) among all nodes not yet marked.

 Neighborhood of (A, B) = (A1, B1), …, (An-1, Bn-1).
 Neighborhood includes some very long sequences of flips, but 

without the computational overhead of a k-flip neighborhood.
 Practice:  powerful and useful framework.
 Theory:  explain and understand its success in practice.

cut value of (A1, B1) may be
worse than (A, B)



12.3  Hopfield Neural Networks
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Hopfield Neural Networks

Hopfield networks.  Simple model of an associative memory, in which a 
large collection of units are connected by an underlying network, and 
neighboring units try to correlate their states.

Input:  Graph G = (V, E) with integer edge weights w.

Configuration.  Node assignment su = ± 1.

Intuition.  If wuv < 0, then u and v want to have the same state;
if wuv > 0 then u and v want different states.

Note.  In general, no configuration respects all constraints.

5

7

6

positive or negative
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Hopfield Neural Networks

Def.  With respect to a configuration S, edge e = (u, v) is good if
we su sv < 0. That is, if we < 0 then su = sv; if we > 0, su  sv.

Def.  With respect to a configuration S, a node u is satisfied if the 
weight of incident good edges  weight of incident bad edges.

Def.  A configuration is stable if all nodes are satisfied.

Goal.  Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge

 we su sv
v: e(u,v) E

    0

satisfied node:  5 - 4 - 1 - 1 < 0
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Hopfield Neural Networks

Goal.  Find a stable configuration, if such a configuration exists.

State-flipping algorithm.  Repeated flip state of an unsatisfied node.

Hopfield-Flip(G, w) {
S  arbitrary configuration

while (current configuration is not stable) {
u  unsatisfied node
su = -su

}

return S
}
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State Flipping Algorithm

unsatisfied node
10 - 8  >  0

unsatisfied node
8 - 4 - 1 - 1  >  0

stable
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Hopfield Neural Networks

Claim.  State-flipping algorithm terminates with a stable configuration 
after at most W = e|we| iterations.

Pf attempt.  Consider measure of progress (S) = # satisfied nodes.

Conclusion: Some local flips actually decrease # satisfied nodes.

One unsatisfied node
8 - 4 - 1 - 1  >  0

Two unsatisfied node
8 - 4 - 1 - 1  >  0
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Hopfield Neural Networks

Claim.  State-flipping algorithm terminates with a stable configuration 
after at most W = e|we| iterations.

Pf.  Consider measure of progress (S) = e good  |we|.
 Clearly  0  (S)  W.
 We show (S) increases by at least 1 after each flip.

When u flips state:
– all good edges incident to u become bad
– all bad edges incident to u become good
– all other edges remain the same

(S ' )    (S)    | we |
e: e  (u,v) E
   e is bad

    | we |
e: e  (u,v) E
   e is good

        (S)    1

u is unsatisfied
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Complexity of Hopfield Neural Network

Hopfield network search problem.  Given a weighted graph, find a 
stable configuration if one exists.

Hopfield network decision problem.  Given a weighted graph, does there 
exist a stable configuration?

Remark.  The decision problem is trivially solvable (always yes), but 
there is no known poly-time algorithm for the search problem.

polynomial in n and log W



13.6  Universal Hashing
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Dictionary Data Type

Dictionary.  Given a universe U of possible elements, maintain a 
subset S  U so that inserting, deleting, and searching in S is 
efficient.

Dictionary interface.
 Create(): Initialize a dictionary with S = .
 Insert(u): Add element u  U to S.
 Delete(u): Delete u from S, if u is currently in S.
 Lookup(u): Determine whether u is in S.

Challenge.  Universe U can be extremely large so defining an array 
of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums 
P2P networks, associative arrays, cryptography, web caching, etc.
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Hashing

Hash function.  h : U  { 0, 1, …, n-1 }.

Hashing.  Create an array H of size n. When processing 
element u, access array element H[h(u)].

Collision.  When h(u) = h(v) but u  v.
 A collision is expected after (n) random insertions. This 

phenomenon is known as the "birthday paradox."
 Separate chaining:  H[i] stores linked list of elements u 

with h(u) = i.

jocularly seriously

browsing

H[1]

H[2]

H[n]

suburban untravelledH[3] considerating

null
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Ad Hoc Hash Function

Ad hoc hash function.

Deterministic hashing.  If |U|  n2, then for any fixed hash 
function h, there is a subset S  U of n elements that all 
hash to same slot. Thus, (n) time per search in worst-case.

Q.  But isn't ad hoc hash function good enough in practice?

int h(String s, int n) {
int hash = 0;
for (int i = 0; i < s.length(); i++)

hash = (31 * hash) + s[i];
return hash % n;

} hash function ala Java string library
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Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
 Obvious situations:  aircraft control, nuclear reactors.
 Surprising situations:  denial-of-service attacks.

Real world exploits.  [Crosby-Wallach 2003]
 Bro server:  send carefully chosen packets to DOS the 

server, using less bandwidth than a dial-up modem
 Perl 5.8.0:  insert carefully chosen strings into 

associative array.
 Linux 2.4.20 kernel:  save files with carefully chosen 

names.

malicious adversary learns your ad hoc hash function 
(e.g., by reading Java API) and causes a big pile-up in 
a single slot that grinds performance to a halt
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Hashing Performance

Idealistic hash function.  Maps m elements uniformly at random
to n hash slots.
 Running time depends on length of chains.
 Average length of chain =  = m / n.
 Choose n  m   on average O(1) per insert, lookup, or delete.

Challenge.  Achieve idealized randomized guarantees, but with a 
hash function where you can easily find items where you put 
them.

Approach.  Use randomization in the choice of h.

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes
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Universal Hashing

Universal class of hash functions.  [Carter-Wegman 1980s]
 For any pair of elements u, v  U,
 Can select random h efficiently.
 Can compute h(u) efficiently.

Ex.  U = { a, b, c, d, e, f }, n = 2.

  Prh H h(u)  h(v)  1/n

chosen uniformly at random

a b c d e f
0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

H = {h1, h2}
Pr h  H [h(a) = h(b)]  =  1/2
Pr h  H [h(a) = h(c)]  =  1
Pr h  H [h(a) = h(d)]  =  0
. . .

a b c d e f

0 0 1 0 1 1
1 0 0 1 1 0

h3(x)
h4(x)

H = {h1, h2 , h3 , h4}
Pr h  H [h(a) = h(b)]  =  1/2
Pr h  H [h(a) = h(c)]  =  1/2
Pr h  H [h(a) = h(d)]  =  1/2
Pr h  H [h(a) = h(e)]  =  1/2
Pr h  H [h(a) = h(f)]  =  0
. . .

0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

not universal

universal
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Universal Hashing

Universal hashing property.  Let H be a universal class of hash 
functions; let h  H be chosen uniformly at random from H; and let
u  U.  For any subset S  U of size at most n, the expected number of 
items in S that collide with u is at most 1.

Pf. For any element s  S, define indicator random variable Xs = 1 if 
h(s) = h(u)  and 0 otherwise. Let X be a random variable counting the 
total number of collisions with u.

EhH [X ]   E[ Xs ]sS    E[Xs]sS    Pr[Xs 1]sS    1
nsS      | S | 1

n    1

linearity of expectation Xs is a 0-1 random variable universal
(assumes u  S)
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Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus.  Choose a prime number p  n.  

Integer encoding.  Identify each element u  U with a base-p integer 
of r digits:  x = (x1, x2, …, xr).

Hash function.  Let A = set of all r-digit, base-p integers. For each
a = (a1, a2, …, ar) where 0  ai < p, define

Hash function family.  H = { ha : a  A }.

ha(x)    ai xi
i1

r







  mod p

no need for randomness here
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Designing a Universal Class of Hash Functions

Theorem.  H = { ha : a  A } is a universal class of hash functions.

Pf.  Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of 
U.  We need to show that Pr[ha(x) = ha(y)]  1/n.
 Since x  y, there exists an integer j such that xj  yj.
 We have ha(x) = ha(y) iff

  

a j ( y j  x j )
z

 
   ai (xi  yi )

i j


m
  

 mod p

see lemma on next slide

 Can assume a was chosen uniformly at random by first selecting 
all coordinates ai where i  j, then selecting aj at random. Thus, 
we can assume ai is fixed for all coordinates i  j.

 Since p is prime, aj z = m mod p has at most one solution among p 
possibilities.

 Thus Pr[ha(x) = ha(y)] = 1/p  1/n.  ▪
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Number Theory Facts

Fact.  Let p be prime, and let z  0 mod p. Then 
z = m mod p has at most one solution 0   < p.

Pf.  
 Suppose  and  are two different solutions.
 Then ( - )z = 0 mod p; hence ( - )z is divisible by p.
 Since z  0 mod p, we know that z is not divisible by p;

it follows that ( - ) is divisible by p.
 This implies  = .  ▪

Bonus fact.  Can replace "at most one" with "exactly one" 
in above fact.
Pf idea.  Euclid's algorithm.
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