CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Reminders: Homework 6 due April 23 at 11:59 PM

Course Evaluation: Your feedback
is valued! Live until April 28™ at 11:59PM
http://www.purdue.edu/idp/courseevaluations/CE Students.html

134 MAX 3-SAT

Maximum 3-Satisfiability

exactly 3 distinct literals per clause

<
MAX-3SAT. Given 3-SAT formula, find a truth assignment

that satisfies as many clauses as possible.

C, = X VX3V X
C, = X, VX3V X,
C, = X VX VX,
C, = X VX V X
Cs = X VX VX,

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with
probability %, independently for each variable.

Maximum 3-Satisfiability: Analysis
Claim. Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k/8.

- . I ifclause C. is satisfied
Pf. Consider random variable Z :{ 1hclause Lj 15 satishe

0 otherwise.

. Let Z =3}, Z; be the weight of clauses satisfied by assignment.

linearity of expectation

.

E[Z] = z E|Z]

=1

7
= Z Pr[Clause Cj is satisfied] = §k
j=1

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth
assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the
time. =

Probabilistic method. We showed the existence of a non-
obvious property of 3-SAT by showing that a random
construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies > 7k/8
clauses is at least 1/(8k).

Pf. Let p; be probability that exactly j clauses are satisfied: let p
be probability that > 7k/8 clauses are satisfied.

Jj20 j<%k]Z%R
7k 1 2 +k2 - 7k 1 14k
=\8 8 7pf 7pf— 8 8 P
]<§k]ng

Rearranging terms yields p > 1/ (8k).

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies > 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at

least 1/(8k). By the waiting-time bound, the expected number of trials
to find the satisfying assignment is at most 8k.

Maximum Satisfiability

Extensions.
. Allow one, two, or more literals per clause.
. Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There
exists a 7/8-approximation algorithm for version of MAX-3SAT
where each clause has at most 3 literals.

Theorem. [Hastad 1997] Unless P = NP, no p-approximation
algorithm for MAX-3SAT (and hence MAX-SAT) for any p > 7/8.

|

very unlikely to improve over simple
randomized algorithm for MAX-3SAT

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely
to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer,
likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm after a certain point

l

Remark. Can always convert a Las Vegas algorithm into Monte
Carlo, but no known method to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided
error in poly-time.
Can decrease probability of false negative
One-sided error. to 2-190 by 100 independent repetitions
. If the correct answer is no, always return no. |
. If the correct answer is yes, return yes with probability > 3.

ZPP. [Las Vegas] Decision problems solvable in expected poly-

time. I
running time can be unbounded, but
on average it is fast

Theorem. P < ZPP —c RP < NP.

Fundamental open questions. To what extent does
randomization help? Does P = ZPP? Does ZPP = RP? Does RP =
NP?

10

1

Polynomial Identity Testing

Given a polynomial p(x, ..., x,) we want to know if p(x4,...,x,) =0
Example 1: p(x,y) = (x + y)(x — y) — x? + y?
Answer: YES! After expanding and canceling...
Example 2: p(x,y) = (x + y)(x + y) — x% — y?
Answer: NO! After expanding we get p(x,y) = 2xy
Example 3: p(x,y,2) = (x + 2y)(3y — z) — 3xy — 6y + xz + 2yz
Answer: YES! But checking is getting more complicated
Approach 1: Expand and cancel
Takes up to (") steps for degree d polynomial (exponential in d)

Approach 2: Randomize!

Theorem [Schwartz-Zippel]: Suppose p(x4, ..., x,) is not identically
zero and has degree d. Then given any finite set S € R picking

Vi, - Yn~S uniformly at random we have

d
Prip(y1, ... yn) = 0] < m

Polynomial Identity Testing

Approach 1: Expand and cancel
Takes up to (") steps for degree d polynomial (exponential in d)

Approach 2: Randomizel!

Theorem [Schwartz-Zippel]: Suppose p(xy, ..., x,,) # 0 is not identically
zero and has degree d. Then given any finite set S € R picking y4, ..., y,~S

uniformly at random we have)
Prip@q, .. yn) = 0] < =

N
Example: if S = {1,....,2d} then Pr[p(y;, ..., yn) = 0]
- Repeat k times if p(xy, ..., x,) # 0 > Pr[Output 0]
- One Sided Error: Polynomial Identity testing in RP
- No known deterministic/polynomial time algorithm!
Remark: Schwartz-Zippel also holds for other fields F

12

Polynomial Identity Testing and Perfect Matchings

Example 4: Given a bipartite graph G with nodes (V,U) and let

y |0 otherwise
[wol=1x,, ifuv)€EQG)
Be the Edmonds Matrix then det(4) is a polynomial of degree n

det(A4) = z c(m) HA [u, T(u) |

T ueu

Theorem: G has a perfect matching if and only if det(A) is identically O.

Implication: Randomized algorithm to test if G has a perfect
matching (and find one if it exists) in fime 0(n®)
Remark 1: Similar Approach works for Non-Bipartite Graphs [using
determinant of Tutte Matrix]
Remark 2: Improves on best known deterministic algorithm for
dense graphs

Recall: w < 2.373 for fastest matrix multiplication algorithms

13

14

Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE

Theorem[Fermat]: If nis a prime then [x"~' mod n] =1 for any x.
Example: n=5, x=2 2> [2* mod 5] = [16 mod 5] = 1
Attempt 1: Pick random x < n and check if [x" * mod n] = 1

Carmichael Number: Non-prime numbers that satisfy [x"~* mod n] = 1
for any x.

Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE

Theorem[Fermat]: If nis a prime then [x"~' mod n] =1 for any x.
Example: n=5, x=2 > [2* mod 5] = [16 mod 5] = 1
Attempt 1: Pick random x < n and check if [x""* mod n] =1

Carmichael Number: Non-prime numbers that satisfy [x"~! mod n] = 1
for any x.

Theorem: If n > 3 isaprime thenn — 1 is even and can be written as
n —1 = 25d for any x it holds that either

[x* modn] =1, or

[x?@modn] =n—1forsome0<r<s

15

16

Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE
Theorem[Fermat]: If nis a prime then [x"~' modn] =1 for any x.

Theorem: If n > 3 is a prime then n — 1 is even and can be written as
n —1 = 25d for any x it holds that either

[x* modn] =1, or

[x*®modn] =n—1forsome0<r<s

Witness of Non-Primality: x < n such that [x% mod n] # 1 and
[x?"¥modn] #n—1 forall0<r<s
Theorem: If n > 3 is not a prime and x < n is randomly picked then

S w

Pr[x is witness of non — primality for n] >

17

Miller-Rabin Primality Test

Witness of Non-Primality: x < n such that [x? mod n] # 1 and
[x*modn]#n—1 forall0<r<s

Theorem: If n > 3 is not a prime and x < n is randomly picked then

Pr[x is witness of non — primality for n] >

W

Miller-Rabin test runs in time 0(kn®) and mistakenly identifies a
composite as prime with probability at most 47*

FFT-Multiplication: Reduces running time to 0(kn?)

There is a polynomial time algorithm to test if a n-bit number is prime...
..but the running time is 0(n®)

Miller-Rabin is used in practice in crypto libraries

13.5 Randomized Divide-and-Conquer

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

T

O(log n) extra space

19

20

Quicksort
n

T(n) = 2T (2

Running time.
. [Best case.] Select the median element as the splitter:
quicksort makes ®(n log n) comparisons.
. [Worst case.] Select the smallest element as the splitter:
quicksort makes ®(n?) comparisons. ~—— T(n) = T(n—1) +n

Randomize. Protect against worst case by choosing splitter at
random.

Intuition. If we always select an element that is bigger than 25%

of the elements and smaller than 25% of the elements, then
quicksort makes ®(n log n) comparisons.

Notation. Label elements so that x;< x, < ... < x,..

)+n

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

e X X X X X X X X xRl e % xe %
|

first splitter, chosen uniformly at random

21

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and
descendants.

. X, and X5 are compared if their Ica = x, or x.

. X, and x5 are hot compared if their lca = x5 or x, or x5 or X,

Claim. Pr[x; and x; are compared] = pareTh

22

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and
descendants.

. X, and X5 are compared if their Ica = x, or x.

. X, and x5 are hot compared if their lca = x5 or x, or x5 or X,

Claim. Pr[x; and x; are compared] = pareTh

Random Variable.

B {1 ifx; and x; are compared
Yij = .
0 otherwise

2
|j—i+1]

Expected Value E|y;;| =

23

Quicksort: BST Representation of Splitters

Random Variable.

_ {1 if x; and x; are compared
Yij = .
0 otherwise

2
|j—i+1]|

n-1 n
r=2, 2, v

i=1 j=i+1

Expected Value: E[yi,j] =

Total Comparisons:

24

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).
Pf.

=1 j=i+1
n-1 n
_ z 2
i=1j=i+1]_l+1
n
<2 21
<2n) -
] In(n+1) < H(n) <1+Inn
=2an(n)/

<2n+2nlnn

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).

Theorem. [Knuth 1973] Stddev of number of comparisons
is ~ 0.65N.

Ex. If n=1million, the probability that randomized
quicksort takes less than 4n In n comparisons is at least

99.94%.

Chebyshev's inequality. Pr[|X - u| > k8] < 1/ k2.

26

13.9 Chernoff Bounds

28

Chernoff Bounds (above mean)

Theorem. Suppose Xy, ..., X, are independent O-1 random variables. Let
X = X;+ ..+ X,. Then for any n > E[X] and for any & > O, we have

e/ [
Pr[X >(1+5)/,l] < {W}

T

sum of independent 0-1 random variables
is tightly centered on the mean

Example Quick Sort Comparisons: p = 2n+ 2n Inn > E[Y] set 5=1

242nlnn

Pr[Y > 2] < E] < e

What is the flaw in the above argument?

Answer: the random variable y; ; are not all independent!

29

Chernoff Bounds (above mean)

Theorem. Suppose Xy, ..., X, are independent O-1 random variables. Let
X = X;+ ..+ X,. Then for any pn > E[X] and for any 5 > O, we have

)

e H
Pr[X > (1+9)u] ? {W}

sum of independent 0-1 random variables
is tightly centered on the mean

Pf. We apply a number of simple transformations.
. Forany >0,
Pr[X >(1+8)u] = Pr [etx > gt+om] < g t+m Ere™]
! T

f(x) = e is monotone in x Markov's inequality: Pr[X>a]<E[X]/a

. Now E[etx]T: Ele'>%] = TI,E[e"]
I

definition of X independence

30

Chernoff Bounds (above mean)

Pf. (cont)
. Let p; = Pr[X; = 1]. Then,

E[e™1] = pe+(-pe’ = 1+p(e 1) < el
I
forany a >0, l+a<e“

. Combining everything:

Pr{X >(1+8)u] < e ML E[et™] < e WM gPEh < otk guee'D

T T T

previous slide inequality above 2ipi=EX] <

. Finally, choose t = In(1 +35). -

Chernoff Bounds (above mean)

Theorem. Suppose Xy, ..., X, are independent O-1 random variables. Let
X = X;+ ..+ X,. Then for any pn > E[X] and for any & > O, we have

e’ .
Pr[X >(11+5)ﬂ] < {(1+5)1+5}

sum of independent 0-1 random variables
is tightly centered on the mean

Pf. (cont) We had derived for any >0

Pr[X > (1+8)u] <e '+4e (et 1)

Plugging in t = In(1 + 8). We have _ _
e [

(1+5)1+§

e_t(1+§)ﬂ e,u(et -1) —

32

Chernoff Bounds (below mean)

Theorem. Suppose Xi, ..., X, are independent O-1 random variables.
Let X = X;+ .. + X,. Then for any p < E[X] and for any O < 8 < 1, we have

PiX < (1-8)u] < e #/2
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to
consider 6 < 1.

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment
that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at

random. How likely is it that some processor is assigned "too many"
jobs?

34

Load Balancing

Analysis.

35

. Let X; = number of jobs assigned to processor i.

. Let¥;;=1if job j assigned to processor i, and O otherwise.
- We have E[Y;]=1/n

- Thus, X; =2,V
. Applying Chernoff bounds with 8 = ¢ - 1yields Pr[X;>c] <

j’ and W= E[X'] = 1 c—1

CC

. Let y(n) be number x such that x* = n, and choose ¢ = e y(n).

c—1 c ey(n) 2y(n)
Pr[X; >c] < ° — < (Ej = (Lj < (Lj _ Lz
C C y(n) y(n) n

. Union bound = with probability > 1 - 1/n no processor receives

more than e y(n) = ©(logn / log log n) jobs.

N
Fact: this bound is asymptotically tight: with high
probability, some processor receives ©(logn / log log n)

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n In n. Then on
average, each of the n processors handles = 16 In n jobs. With
high probability every processor will have between half and twice
the average load.

Pf.

- Let X;, Y, be as before.
. Applying Chernoff bounds with & = 1 yields

16nlnn Inn

e 1 1
Pr[X. >2u] <| — < | = =
[Xi>2u] (4) [ej .

Pr[X, < 1] <e ()00 _ 1
n

. Union bound = every processor has load between half and

36

twice the average with probability >1-2/n. =

13.6 Universal Hashing

38

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a
subset S c U so that inserting, deleting, and searching in S is
efficient.

Dictionary interface.
. Create(): Initialize a dictionary with S = ¢.
Insert(u): AddelementueUtoS.
. Delete(u): Deleteufrom S, if uis currently in S.
. Lookup(u): Determine whether uisinS.

Challenge. Universe U can be extremely large so defining an array
of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. h: U —>{0,1, .., n-1}.

Hashing. Create an array H of size n. When processing
element u, access array element H[h(u)].

Collision. When h(u) = h(v) but u = v.
. A collision is expected after ®(¥n) random insertions. This
phenomenon is known as the "birthday paradox."
. Separate chaining: H[i] stores linked list of elements u
with h(u) = i.

H[1] Jjocularly —— seriously
H[2] null

H[3] suburban — untravelled — considerating
HINn] browsing

39

40

Ad Hoc Hash Function

Ad hoc hash function.

int h(String s, Int n) {
int hash = 0;
for (int 1 = 0; 1 < s.length(); 1++)
hash = (31 * hash) + s[i];
return hash % n;
ks hash function ala Java string library

Deterministic hashing. If |U| > n?, then for any fixed hash
function h, there is a subset S — U of n elements that all
hash to same slot. Thus, ®(n) time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
. Obvious situations: aircraft control, nuclear reactors.

. Surprising situations: denial-of-service attacks.
N

malicious adversary learns your ad hoc hash function
(e.g., by reading Java API) and causes a big pile-up in
a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
. Bro server: send carefully chosen packets to DOS the
server, using less bandwidth than a dial-up modem
. Per| 5.8.0: insert carefully chosen strings into
associative array.
- Linux 2.4.20 kernel: save files with carefully chosen
hames.

41

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random
to n hash slots.

. Running time depends on length of chains.

. Average length of chain=a=m/n.

. Choose n~m = on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a
hash function where you can easily find items where you put
them.

Approach. Use randomization in the choice of h.

1

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

42

43

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
. For any pair of elements u,v € U, Pr,_ [h(u)=h(v)]< 1/n
. Can select random h efficiently. ™\ thosen uniformly at random
. Can compute h(u) efficiently.

Ex. U={a,b,c,d, e, f}, n=2.

o bcld]e | f IEUN N
ENo 1001001 i)

MW 0 0 0 1 1 1 Pry c v [h(a) = h(d)]

—

not universal

oi—\

BOEEBAE F:thhhshy
O 1 0 1

Pr. .. [h(a) = h(b)] = 1/2
0 1 Pr, 1 [h(a) = h(Q)] = 1/2
ha(x) Be

0 1/2 universal
hs(x) RORNC
0

1/2
1

11 Pry, . [h(a) = h(d)]
1 1 Pry. . [h(a) = h(e)]
110 Pry, . [h(a) = h(f)]

QO -

0
1

0
0

44

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h € H be chosen uniformly at random from H; and let

u € U. For any subset S c U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s € S, define indicator random variable X, = 1 if
h(s) = h(u) and O otherwise. Let X be a random variable counting the
total number of collisions with wu.

Epen[X] = E[ZsEsXs] = ZSGSE[XS] = ZsEsPr[stl] < ZSES% = |S|%
I I I

linearity of expectation X, is a 0-1 random variable universal
(assumes u ¢ S)

<

1

Designhing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.
N\OdUIUS. Choose a pr‘ime number' p~n. «— no need for randomness here

Integer encoding. Identify each element u € U with a base-p integer
of r digits: x = (Xq, X5, ..., X,.).

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(aq, @y, ..., a.) where O < q; < p, define

ha(X) = (i a xij mod p
=1

Hash function family. H={ h,:ae A }.

45

46

Designing a Universal Class of Hash Functions

Theorem. H={h_,:a € A}is auniversal class of hash functions.

Pf. Let x = (X1, X5, ..., X,) and y = (Y1, Y2, .., Y,.) be two distinct elements of
U. We need to show that Pr[h (x) = h(y)] < 1/n.

. Since x =y, there exists an integer j such that x; = y;.

. We have h(x) = h,(y) iff

a; (Y;—X;) = 2&(X—Yy;) modp
— \iij)

. Can assume a was chosen uniformly at random by first selecting

all coordinates g; where i # j, then selecting a; at random. Thus,
we can assume q; is fixed for all coordinates i # j.

. Since p is prime, a; z = m mod p has at most one solution among p

pOSSibiliTi@S. «— see lemma on next slide

. Thus Pr[h,(x) = h,(y)]=1/p<1/n. =

47

Number Theory Facts

Fact. Let p be prime, and let z = O mod p. Then
az = m mod p has at most one solution O < a < p.

Pf.
. Suppose o and B are two different solutions.
. Then (a - B)z = 0 mod p; hence (o - B)z is divisible by p.
. Since z # 0 mod p, we know that z is not divisible by p;
it follows that (o - B) is divisible by p.
. This implies a. = . =

Bonus fact. Can replace "at most one" with "exactly one"
in above fact.
Pf idea. Euclid's algorithm.

Extra Slides

