Chapter 13
Randomized Algorithms

13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes P₁, ..., Pₙ, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then Pr[S(i, t)] ≤ 1/(2n).

Proof. By independence, Pr[S[i, t]] = p(1-p)ⁿ⁻¹.

- Setting p = 1/n, we have Pr[S(i, t)] = 1/n (1 - 1/n)ⁿ⁻¹ ≤ 1/(2n).

Useful facts from calculus. As n increases from 2, the function:
- \((1 - 1/n)^n\) converges monotonically from 1/4 up to 1/e.
- \((1 - 1/n)^{-1}\) converges monotonically from 1/2 down to 1/e.

Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1/e$. After $t = \frac{e \cdot n}{c \ln n}$ rounds, the probability is at most $\frac{n}{n+1}$.

Pf. Let $F[i, t] = \text{event that process } i \text{ fails to access database in rounds 1 through } t$. By independence and previous claim, we have

$$\Pr[F[i, t]] \leq \left(1 - \frac{1}{e}\right)^t.$$

- Choose $t = \frac{e}{c \ln n}$:
 $$\Pr[F[i, t]] \leq \left(1 - \frac{1}{e}\right)^{\frac{e}{c \ln n}} \leq \frac{1}{e}.$$
- Choose $t = \frac{e}{n}$:
 $$\Pr[F[i, t]] \leq \left(1 - \frac{1}{e}\right)^{\frac{e}{n}}.$$

Union bound. Given events E_1, \ldots, E_n,

$$\Pr[\bigcup_{i=1}^n E_i] \leq \sum_{i=1}^n \Pr[E_i].$$

13.2 Global Minimum Cut

Global Minimum Cut

Global min cut. Given a connected, undirected graph $G = (V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min $s-v$ cut separating s from each other vertex $v \neq s$.

False intuition. Global min-cut is harder than min $s-t$ cut.

Contraction Algorithm [Karger 1995]

1. Pick an edge $e = (u, v)$ uniformly at random.
2. **Contract** edge e.
 - Label the new super-node w.
 - Replace u and v by w.
 - Keep parallel edges at w. Delete self-loops.
3. Repeat until graph has just two nodes.
4. **Return** the cut (all nodes that were contracted to form w).
Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob \(\geq 2/n^2 \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G\). Let \(F^*\) be edges with one endpoint in \(A^*\) and the other in \(B^*\). Let \(k = |F^*| = \text{size of min cut}\).

- In first step, algorithm contracts an edge in \(F^*\) probability \(k / |E| \).
- Every node has degree \(\geq k \) since otherwise \((A^*, B^*)\) would not be min-cut. \(\Rightarrow |E| \geq \frac{1}{2}kn \).
- Thus, algorithm contracts an edge in \(F^*\) with probability \(\leq \frac{2}{n} \) during the first step.

\[\begin{array}{c}
A^* \\
\vdots \\
B^* \\
f^*
\end{array} \]

Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm \(n^2 \log n\) times with independent random choices, the probability of failing to find the global min-cut is at most \(1/n^2\).

Pf. By independence, the probability of failure is at most

\[
\left(1 - \frac{2}{n}\right)^{n^2 \log n} \leq \left(1 - \frac{2}{e}\right)^{n^2} = \frac{1}{n^2} \quad \text{for } 1/e < 1/n.
\]

Global Min Cut: Context

Remark. Overall running time is slow since we perform \(\Theta(n^2 \log n)\) iterations and each takes \(\Theta(m)\) time.

Improvement. (Karger-Stein 1996) \(O(n \log^3 n)\).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when \(n / \sqrt{2}\) nodes remain.
- Run contraction algorithm until \(n / \sqrt{2}\) nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. (Karger 2000) \(O(m \log^3 n)\) faster than best known max flow algorithm or deterministic global min cut algorithm.

13.3 Linearity of Expectation

Expectation. Given a discrete random variables \(X\), its expectation \(E[X]\) is defined by

\[
E[X] = \sum_{x} x \cdot P[X = x].
\]

Waiting for a first success. Coin is heads with probability \(p\) and tails with probability \(1-p\). How many independent flips \(X\) until first heads?

\[
E[X] = \sum_{j=0}^{\infty} j \cdot P[X = j] = \sum_{j=0}^{\infty} j \cdot (1-p)^j p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^j = \frac{p}{1-p} \cdot \frac{1-p}{p} = \frac{1}{p}
\]
Expectation: Two Properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf. $E[X] = \sum_{j=0}^\infty j \cdot \Pr[X = j] = \sum_{j=0}^\infty j \cdot \Pr[X = j] = \Pr[X = 1]$.

Not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Decouples a complex calculation into simpler pieces.

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)

\[E[X] = \sum_{i=1}^{n} \Pr[X_i = 1] = \frac{1}{n} + \ldots + \frac{1}{n} = 1. \]

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.

\[E[X] = \sum_{i=1}^{n} \Pr[X_i = 1] = \frac{1}{n} + \ldots + \frac{1}{2} + \frac{1}{1} = H(n). \]

\[\ln(n+1) < H(n) < 1 + \ln n \]

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.

Pf.

\[E[X] = \sum_{i=0}^{n} \Pr[X_i = 1] = \sum_{i=0}^{n} \frac{1}{i+1} = \sum_{i=1}^{n+1} \frac{1}{i} = H(n+1). \]

\[\ln(n+1) < H(n+1) < 1 + \ln n+1 \]

\[\text{expected waiting time} = n/(n-1) \]

13.4 MAX 3-SAT

Maximum 3-Satisfiability

exactly 3 distinct literals per clause

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[C_1 = x_1 \lor \overline{x}_2 \lor \overline{x}_3 \]
\[C_2 = x_2 \lor \overline{x}_3 \lor \overline{x}_4 \]
\[C_3 = \overline{x}_1 \lor x_2 \lor \overline{x}_3 \]
\[C_4 = \overline{x}_1 \lor x_2 \lor \overline{x}_4 \]
\[C_5 = x_1 \lor \overline{x}_2 \lor \overline{x}_3 \]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.
Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(\frac{7k}{8} \).

\[\text{Pf.} \quad \text{Consider random variable } Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \]

Let \(Z = \text{weight of clauses satisfied by assignment } Z_j \).

\[
\begin{align*}
\mathbb{E}[Z] &= \sum_{j=1}^{k} \mathbb{E}[Z_j] \\
&= \sum_{j=1}^{k} \mathbb{P}[\text{clause } C_j \text{ is satisfied}] \\
&= \frac{7k}{8}.
\end{align*}
\]

Maximum 3-Satisfiability: Analysis

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a \(\frac{7}{8} \) fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq \frac{7k}{8} \) clauses.

Theorem. Johnson’s algorithm is a \(\frac{7}{8} \)-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least \(\frac{1}{8k} \).

\[
\mathbb{E}[Z] < \left(\frac{7k}{8} - 1 \right) \left(1 - \frac{1}{8k} \right)^{1 + \frac{7k}{8} - 1} \left(1 - \frac{1}{8k} \right)^{1 - \frac{7k}{8}} \leq \frac{7}{8}
\]

By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most \(8k \).

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex. Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex. Randomized quicksort, Johnson’s MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.
RP and ZPP

RP (Monte Carlo) Decision problems solvable with one-sided error in poly-time.

One-sided error:
- If the correct answer is \textit{no}, always return \textit{no}.
- If the correct answer is \textit{yes}, return \textit{yes} with probability \(\geq \frac{1}{2}\).

ZPP (Las Vegas) Decision problems solvable in expected poly-time.

Theorem: \(P \subseteq ZPP \subseteq RP \subseteq NP\).

Fundamental open questions. To what extent does randomization help? Does \(P = ZPP\)? Does \(ZPP = RP\)? Does \(RP = NP\)?

Polynomial Identity Testing

Given a polynomial \(p(x_1, \ldots, x_n)\) we want to know if \(p(x_1, \ldots, x_n) = 0\).

Example 1: \(p(x, y) = (x + y)(x - y) - x^2 + y^2\)
- Answer: \textit{YES!} After expanding and canceling...

Example 2: \(p(x, y) = (x + y)(3y - 3x) - 3xy - 6y^2 + x^2 + 2yz\)
- Answer: \textit{YES!} But checking is getting more complicated

Approach 1: Expand and cancel
- Takes up to \(\sum_{d} \binom{n}{d}\) steps for degree \(d\) polynomial (exponential in \(d\))

Approach 2: Randomize!

Theorem [Schwartz-Zippel]:
- Suppose \(p(x_1, \ldots, x_n) \neq 0\) is not identically zero. Then given any finite set \(S \subseteq \mathbb{R}\) picking \(y_1, \ldots, y_n \sim S\) uniformly at random then
 \[Pr[p(y_1, \ldots, y_n) = 0] \leq \frac{2}{|S|} \]

Example: if \(S = \{1, \ldots, 2d\}\) then \(Pr[p(y_1, \ldots, y_n) = 0] \leq \frac{1}{2d}\)

One Sided Error: Polynomial Identity testing in RP

Remark: Schwartz-Zippel also holds for other fields \(\mathbb{F}\)

Randomized Primality Test

Input: \(n\)
Output: PRIME or COMPOSITE

Theorem: If \(n\) is a prime then \([x^{n-1} \mod n] = 1\) for any \(x\).

Example: \(n=5, x=2 \rightarrow [2^4 \mod 5] = [16 \mod 5] = 1\)

Attempt 1: Pick random \(x < n\) and check if \([x^{n-1} \mod n] = 1\)

Carmichael Number: Non-prime numbers that satisfy \([x^{n-1} \mod n] = 1\) for any \(x\).

Theorem: If \(n \geq 3\) is a prime then \([x^{n-1} \mod n] = 1\) for any \(x\).

Example: \(n=3, x=2 \rightarrow [2^4 \mod 3] = [16 \mod 3] = 1\)

Attempt 1: Pick random \(x < n\) and check if \([x^{n-1} \mod n] = 1\)

Carmichael Number: Non-prime numbers that satisfy \([x^{n-1} \mod n] = 1\) for any \(x\).

Theorem: If \(n \geq 3\) is a prime then \(n - 1\) is even and can be written as \(n - 1 = 2d\) for any \(x\) if \(d\) holds that either
- \([x^d \mod n] = 1\), or
- \([x^d \mod n] = n - 1\) for some \(0 \leq d < n\)
Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE

Theorem: If n is a prime then \(x^{n-1} \mod n = 1 \) for any x.

Theorem: If \(n \geq 3 \) is a prime then \(n-1 \) is even and can be written as \(n-1 = 2d \) for any \(d \) it holds that either
- \(x^d \mod n = 1 \), or
- \(x^d \mod n = n-1 \) for some \(0 \leq r < s \)

Witness of Non-Primality: \(x < n \) such that \(x^d \mod n = 1 \) and \(x^d \mod n = n-1 \) for all \(0 \leq r < s \) (Strong Liar for n: if \(x < n \) is not a witness, but \(n \geq 3 \) is a prime)

Theorem: If \(n \geq 3 \) is not a prime and \(x < n \) is randomly picked then
\[\Pr[x \text{ is strong liar for } n] \leq \frac{1}{4} \]

Miller-Rabin Primality Test

Witness of Non-Primality: \(x < n \) such that \(x^d \mod n = 1 \) and \(x^d \mod n = n-1 \) for all \(0 \leq r < s \) (Strong Liar for n: if \(x < n \) is not a witness, but \(n \geq 3 \) is a prime)

Theorem: If \(n \geq 3 \) is not a prime and \(x < n \) is randomly picked then
\[\Pr[x \text{ is strong liar for } n] \leq \frac{1}{4} \]

Miller-Rabin test runs in time \(O(kn\log n) \) and mistakenly identifies a composite as prime with probability at most \(4^{-k} \)

FFT-Multiplication: Reduces running time to \(O(kn\log n) \)

There is a polynomial time algorithm to test if a n-bit number is prime.

Miller-Rabin is used in practice in crypto libraries

13.5 Randomized Divide-and-Conquer

QuickSort

Running time.
- [Best case.] Select the median element as the splitter:
 quicksort makes \(\Theta(n \log n) \) comparisons.
- [Worst case.] Select the smallest element as the splitter:
 quicksort makes \(\Theta(n^2) \) comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes \(\Theta(n \log n) \) comparisons.

Notation. Label elements so that \(x_1 < x_2 < ... < x_n \).

QuickSort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.
Quick Sort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.
- \(x_2 \) and \(x_7 \) are compared if their LCA = \(x_2 \) or \(x_7 \).
- \(x_2 \) and \(x_7 \) are not compared if their LCA = \(x_3 \) or \(x_4 \) or \(x_5 \) or \(x_6 \).

Claim. \(P(\text{\(x_i \) and \(x_j \) are compared}) = \frac{2}{|j - i + 1|} \).

Intuition: Consider first time splitter selected from interval \(x_i \ldots x_j \).

Theorem. Expected number of comparisons is \(O(n \log n) \).

Proof. Theorem. [Knuth 1973] Stddev of number of comparisons is \(\sim 0.65N \).

Ex. If \(n = 1 \) million, the probability that randomized quicksort takes less than \(4n \ln n \) comparisons is at least 99.94%.

Chebyshev's inequality. \(\Pr[|X - \mu| \geq k\delta] \leq \frac{1}{k^2} \).

13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe \(U \) of possible elements, maintain a subset \(S \subseteq U \) so that inserting, deleting, and searching in \(S \) is efficient.

Dictionary interface.
- Create(): Initialize a dictionary with \(S = \emptyset \).
- Insert(u): Add element \(u \in U \) to \(S \).
- Delete(u): Delete \(u \) from \(S \), if \(u \) is currently in \(S \).
- Lookup(u): Determine whether \(u \) is in \(S \).

Challenge. Universe \(U \) can be extremely large so defining an array of size \(|U| \) is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. \(h: U \rightarrow \{0, 1, \ldots, n-1\} \).

Hashing. Create an array \(H \) of size \(n \). When processing element \(u \), access array element \(H[h(u)] \).

Collision. When \(h(u) = h(v) \) but \(u \neq v \).
- A collision is expected after \(\Theta(n^2) \) random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: \(H[i] \) stores linked list of elements \(u \) with \(h(u) = i \).

Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

Deterministic hashing. If \(|U| > n^2 \), then for any fixed hash function \(h \), there is a subset \(S \subseteq U \) of \(n \) elements that all hash to same slot. Thus, \(h(n) \) time per search in worst-case.

Q. But isn’t ad hoc hash function good enough in practice?
Algorithmic Complexity Attacks

When can’t we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.

- Linux 2.4.20 kernel: save files with carefully chosen names.

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]

- For any pair of elements x, y \in U, Pr_{h \in H} [h(x) = h(y)] \leq 1/n
- Can select random h efficiently.
- Can compute h(u) efficiently.

Ex. U = \{a, b, c, d, e, f\}, n = 2.

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus. Choose a prime number p = \alpha n. – no need for randomness here.

Integer encoding. Identify each element u \in U with a base-p integer of r digits: x = (x_1, x_2, \ldots, x_r).

Hash function. Let A be a set of all r-digit base-p integers. For each \alpha \in A, define

\[h_\alpha(x) = \sum_{i=1}^r a_i x_i \mod p \]

Hash function family. H = \{h_\alpha : \alpha \in A\}.

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain \leq m / n.
- Choose n = m \implies average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

- adversary learns the randomized algorithm you're using, but doesn’t know random choices that the algorithm makes.
Number Theory Facts

Fact. Let p be prime, and let $z \equiv 0 \pmod{p}$. Then $uz \equiv m \pmod{p}$ has at most one solution $0 \leq u < p$.

Proof.
- Suppose u and β are two different solutions.
- Then $(u - \beta)z \equiv 0 \pmod{p}$; hence $(u - \beta)z$ is divisible by p.
- Since $z \equiv 0 \pmod{p}$, we know that z is not divisible by p.
- It follows that $(u - \beta)$ is divisible by p.
- This implies $u = \beta$.

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Proof idea. Euclid's algorithm.

Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$
P(X > (1 + \delta)\mu) < \left(1 - \frac{\delta}{\mu + \delta}\right)^\mu.
$$

Proof. We apply a number of simple transformations.
- For any $\delta > 0$,
 $$
P(X > (1 + \delta)\mu) = \Pr\left[\sum_{i=1}^n \epsilon_i > (1+\delta)\mu\right] < \epsilon^{(1+\delta)\mu} E[\epsilon^\mu]
 \quad \text{Markov's inequality: } E[\epsilon^\mu] = \sum_{i=1}^n \Pr[\epsilon_i = 1] E[\epsilon^\mu].$$
- We use the independence of X_i.
- Now
 $$
 E[\epsilon^\mu] = E\left[\sum_{i=1}^n \epsilon_i^\mu\right] = \sum_{i=1}^n E[\epsilon_i^\mu].
 \quad \text{definition of } X_i
 \quad \text{independence}.
 $$

Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$
P(X < (1 - \delta)\mu) < e^{-\delta^2\mu/2}.
$$

Proof idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta > 1$.

13.9 Chernoff Bounds

13.10 Load Balancing
Load Balancing

System in which \(m\) jobs arrive in a stream and need to be processed immediately on \(n\) identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\left\lfloor \frac{m}{n} \right\rfloor\) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs \(m = 16n \ln n\). Then on average, each of the \(n\) processors handles \(\mu = 16 \ln n\) jobs. With high probability every processor will have between half and twice the average load.

Proof.

Let \(X_i, Y_{ij}\) be as before. Applying Chernoff bounds with \(\delta = 1\) yields

\[
\Pr[X_i > 2\mu] < \left(\frac{1}{2}\right)^{2\mu} = \frac{1}{n}
\]

\[
\Pr[X_i < \frac{\mu}{2}] < \frac{1}{n}
\]

Union bound \(\Rightarrow\) every processor has load between half and twice the average with probability \(\geq 1 - 2/n\).