Reminders: Homework 6 due in 1 week (April 23 at 11:59PM).

Course Evaluation: Due April 28th at 11:59PM
http://www.purdue.edu/idp/courseevaluations/CE_Students.html
Chapter 13

Randomized Algorithms
Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
13.1 Contention Resolution
Contestation Resolution in a Distributed System

Contestation resolution. Given \(n \) processes \(P_1, ..., P_n \), each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t] = \text{event that process } i \text{ succeeds in accessing the database at time } t$. Then $1/(e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n)$.

Pf. By independence, $\Pr[S(i, t)] = p(1-p)^{n-1}$.

- Setting $p = 1/n$, we have $\Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$. □

Useful facts from calculus. As n increases from 2, the function:

- $(1 - 1/n)^n$ converges monotonically from $1/4$ up to $1/e$
- $(1 - 1/n)^{n-1}$ converges monotonically from $1/2$ down to $1/e$.
Contestion Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1/e$. After $t = [e \cdot n] \cdot [c \ln n]$ rounds, the probability is at most n^{-c}.

Pf. Let $F[i, t] = \text{event that process } i \text{ fails to access database in rounds } 1 \text{ through } t$. By independence and previous claim, we have

$$\Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^t$$

- Choose $t = [e \cdot n]$:
 $$\Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^{[e \cdot n]} \leq \frac{1}{e}$$

- Choose $t = [e \cdot n] \cdot [c \ln n]$:
 $$\Pr[F(i, t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$$
Contestation Resolution: Randomized Protocol

Claim. The probability that all processes succeed within \(2 \lfloor e \cdot n \rfloor \cdot \lceil \ln n \rceil\) rounds is at least \(1 - \frac{1}{n}\).

Pf. Let \(F[t]\) = event that at least one of the \(n\) processes fails to access database in any of the rounds 1 through \(t\).

\[
\Pr[F[t]] = \Pr[\bigcup_{i=1}^{n} F[i, t]] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n\left(1 - \frac{1}{en}\right)^t
\]

Choosing \(t = 2 \lfloor e\ln n \rfloor\) yields \(\Pr[F[t]] \leq n \cdot n^{-2} = 1/n\). □

Union bound. Given events \(E_1, ..., E_n\),

\[
\Pr\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} \Pr[E_i]
\]
Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $3 \lfloor e \cdot n \rfloor \cdot \lfloor \ln n \rfloor$ rounds is at least $1 - 1/n^2$.

Pf. Let $F[t]$ = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$
\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t] \right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t
$$

Choosing $t = 3 \lfloor en \rfloor \lfloor \ln n \rfloor$ yields $\Pr[F[t]] \leq n \cdot n^{-3} = 1/n^2$. •

Union bound. Given events $E_1, ..., E_n$,

$$
\Pr\left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} \Pr[E_i]
$$
13.2 Global Minimum Cut
Global Minimum Cut

Global min cut. Given a connected, undirected graph $G = (V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.
Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2.
- Return the cut (all nodes that were contracted to form v_1).
Claim. The contraction algorithm returns a min cut with prob \(\geq \frac{2}{n^2} \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G\). Let \(F^*\) be edges with one endpoint in \(A^*\) and the other in \(B^*\). Let \(k = |F^*| = \) size of min cut.
- In first step, algorithm contracts an edge in \(F^*\) probability \(k / |E|\).
- Every node has degree \(\geq k\) since otherwise \((A^*, B^*)\) would not be min-cut. \(\Rightarrow |E| \geq \frac{1}{2}kn\).
- Thus, algorithm contracts an edge in \(F^*\) with probability \(\leq \frac{2}{n}\) during the first step.
Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^*. Let $k = |F^*| = \text{size of min cut}.$

- Let G' be graph after j iterations. There are $n' = n-j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \geq \frac{1}{2}kn'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.

Let $E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j$.

$$
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\
\geq (1 - \frac{2}{n}) (1 - \frac{2}{n-1}) \cdots (1 - \frac{2}{4}) (1 - \frac{2}{3}) \\
= \left(\frac{n-2}{n} \right) \left(\frac{n-3}{n-1} \right) \cdots \left(\frac{2}{4} \right) \left(\frac{1}{3} \right) \\
= \frac{2}{n(n-1)} \\
\geq \frac{2}{n^2}
$$
Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm \(n^2 \ln n \) times with independent random choices, the probability of failing to find the global min-cut is at most \(1/n^2 \).

Pf. By independence, the probability of failure is at most

\[
\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2} n^2}\right]^{2 \ln n} \leq \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}
\]

\[
(1 - 1/x)^x \leq 1/e
\]
Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm *twice* on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

- faster than best known max flow algorithm or deterministic global min cut algorithm
13.3 Linearity of Expectation
Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^j = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$$

\uparrow \uparrow

$j-1$ tails 1 head
Expectation: Two Properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf.

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Decouples a complex calculation into simpler pieces.
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = \frac{1}{n}$.
- $E[X] = E[X_1] + \ldots + E[X_n] = \frac{1}{n} + \ldots + \frac{1}{n} = 1$.

 linearity of expectation
Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n - i + 1)$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n)$.
- \[\ln(n+1) < H(n) < 1 + \ln n \]
 \[\text{linearity of expectation} \]

\[\text{linearity of expectation} \]

\[\ln(n+1) < H(n) < 1 + \ln n \]
Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

Pf.
- Phase \(j \) = time between \(j \) and \(j+1 \) distinct coupons.
- Let \(X_j \) = number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \cdots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

\[\uparrow\]

prob of success = \((n-j)/n \)

\[\Rightarrow\] expected waiting time = \(n/(n-j) \)
13.4 MAX 3-SAT
Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\begin{align*}
C_1 &= x_2 \lor \overline{x_3} \lor \overline{x_4} \\
C_2 &= x_2 \lor x_3 \lor \overline{x_4} \\
C_3 &= \overline{x_1} \lor x_2 \lor x_4 \\
C_4 &= \overline{x_1} \lor \overline{x_2} \lor x_3 \\
C_5 &= x_1 \lor x_2 \lor x_4
\end{align*}

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2}\), independently for each variable.
Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(7k/8 \).

Pf. Consider random variable \(Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \)

- Let \(Z = \text{weight of clauses satisfied by assignment } Z_j \).

\[
E[Z] = \sum_{j=1}^{k} E[Z_j] \quad \text{linearity of expectation}
\]

\[
= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]
\]

\[
= \frac{7}{8}k
\]
The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7/8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!
Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least $1/(8k)$.

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\frac{7}{8}k = E[Z] = \sum_{j \geq 0} j p_j$$

$$= \sum_{j < 7k/8} j p_j + \sum_{j \geq 7k/8} j p_j$$

$$\leq (\frac{7}{8}k - \frac{1}{8}) \sum_{j < 7k/8} p_j + k \sum_{j \geq 7k/8} p_j$$

$$\leq (\frac{7}{8}k - \frac{1}{8}) \cdot 1 + k p$$

Rearranging terms yields $p \geq 1 / (8k)$. \[\blacklozenge\]
Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq \frac{7k}{8} \) clauses.

Theorem. Johnson's algorithm is a \(\frac{7}{8} \)-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least \(\frac{1}{8k} \).

(Otherwise, expected number of clauses satisfied would be at most

\[
E[Z] < \left(\frac{7k}{8} - 1 \right) \left(1 - \frac{1}{8k} \right) + \frac{1}{8k} = \frac{7k}{8} - 1 - \frac{7}{64} + \frac{2}{8k} < \frac{7k}{8}
\]

By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most \(8k \). \qed
Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless \(P = NP \), no \(\rho \)-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any \(\rho > 7/8 \).

very unlikely to improve over simple randomized algorithm for MAX-3SAT
Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.
RP and ZPP

RP. [Monte Carlo] Decision problems solvable with **one-sided error** in poly-time.

One-sided error.
- If the correct answer is **no**, always return **no**.
- If the correct answer is **yes**, return **yes** with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in **expected** poly-time.

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help? Does $P = ZPP$? Does $ZPP = RP$? Does $RP = NP$?

Can decrease probability of false negative to 2^{-100} by 100 independent repetitions \\
running time can be unbounded, but on average it is fast
Polynomial Identity Testing

Given a polynomial $p(x_1, ..., x_n)$ we want to know if $p(x_1, ..., x_n) = 0$

- Example 1: $p(x, y) = (x + y)(x - y) - x^2 + y^2$
 - Answer: YES! After expanding and canceling...

- Example 2: $p(x, y) = (x + y)(x + y) - x^2 - y^2$
 - Answer: NO! After expanding we get $p(x, y) = 2xy$

- Example 3: $p(x, y, z) = (x + 2y)(3y - z) - 3xy - 6y^2 + xz + 2yz$
 - Answer: YES! But checking is getting more complicated

Approach 1: Expand and cancel

- Takes up to $\binom{n+d}{d}$ steps for degree d polynomial (exponential in d)

Approach 2: Randomize!

Theorem [Schwartz-Zippel]: Suppose $p(x_1, ..., x_n)$ is not identically zero. Then given any finite set $S \subseteq \mathbb{R}$ picking $y_1, ..., y_n \sim S$ uniformly at random then

$$Pr[p(y_1, ..., y_n) = 0] \leq \frac{d}{|S|}$$
Polynomial Identity Testing

Approach 1: Expand and cancel
- Takes up to \(\binom{n+d}{d}\) steps for degree \(d\) polynomial (exponential in \(d\))

Approach 2: Randomize!

Theorem [Schwartz-Zippel]: Suppose \(p(x_1, \ldots, x_n) \neq 0\) is not identically zero. Then given any finite set \(S \subseteq \mathbb{R}\) picking \(y_1, \ldots, y_n \sim S\) uniformly at random then

\[
Pr[p(y_1, \ldots, y_n) = 0] \leq \frac{d}{|S|}
\]

Example: if \(S = \{1, \ldots, 2d\}\) then \(\Pr[p(y_1, \ldots, y_n) = 0] \leq \frac{1}{2}\)
- Repeat above \(k\) times then if \(p(x_1, \ldots, x_n) \neq 0\) \(\Pr[p(y_1, \ldots, y_n) = 0] \leq \frac{1}{2^k}\)
- One Sided Error: Polynomial Identity testing in \(\text{RP}\)
- No known deterministic/polynomial time algorithm!

Remark: Schwartz-Zippel also holds for other fields \(\mathbb{F}\)
Polynomial Identity Testing and Perfect Matchings

Example 4: Given a bipartite graph G with nodes (V,U) and let

$$A[u, v] = \begin{cases} 0 & \text{otherwise} \\ x_{u,v} & \text{if } (u, v) \in E(G) \end{cases}$$

then the following polynomial has degree n

$$\det(A) = \sum_{\pi} c(\pi) \prod_{u \in U} A[u, \pi(u)]$$

Theorem: G has a perfect matching if and only if $\det(A)$ is identically 0.

Implication: Randomized algorithm to test if G has a perfect matching (and find one if it exists) in time $O(n^\omega)$

- Remark 1: Similar Approach works for Non-Bipartite Graphs
- Remark 2: Improves on best known deterministic algorithm for dense graphs

Recall: $\omega \leq 2.373$ for fastest matrix multiplication algorithms
Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE

Theorem: If n is a prime then \(x^{n-1} \mod n = 1 \) for any \(x \).

Example: \(n=5, x=2 \rightarrow [2^4 \mod 5] = [16 \mod 5] = 1 \)

Attempt 1: Pick random \(x < n \) and check if \(x^{n-1} \mod n = 1 \)

Carmichael Number: Non-prime numbers that satisfy \(x^{n-1} \mod n = 1 \) for any \(x \).
Randomized Primality Test

Input: n

Output: PRIME or COMPOSITE

Theorem: If n is a prime then $[x^{n-1} \mod n] = 1$ for any x.

Example: $n=5, x=2 \rightarrow [2^4 \mod 5] = [16 \mod 5] = 1$

Attempt 1: Pick random $x < n$ and check if $[x^{n-1} \mod n] = 1$

Carmichael Number: Non-prime numbers that satisfy $[x^{n-1} \mod n] = 1$ for any x.

Theorem: If $n \geq 3$ is a prime then $n - 1$ is even and can be written as $n - 1 = 2^s d$ for any x it holds that either
- $[x^d \mod n] = 1$, or
- $[x^d \mod n] = n - 1$ for some $0 \leq r < s$
Randomized Primality Test

Input: n
Output: PRIME or COMPOSITE

Theorem: If n is a prime then \([x^{n-1} \mod n] = 1\) for any \(x\).

Theorem: If \(n \geq 3\) is a prime then \(n - 1\) is even and can be written as \(n - 1 = 2^s d\) for any \(x\) it holds that either

\[
\begin{align*}
\cdot & \quad [x^d \mod n] = 1, \text{ or} \\
\cdot & \quad [x^d \mod n] = n - 1 \text{ for some } 0 \leq r < s
\end{align*}
\]

Witness of Non-Primality: \(x < n\) such that \([x^d \mod n] \neq 1\) and \([x^d \mod n] \neq n - 1\) for all \(0 \leq r < s\) (Strong Liar for \(n\): if \(x < n\) is not a witness, but \(n \geq 3\) is a prime)

Theorem: If \(n \geq 3\) is not a prime and \(x < n\) is randomly picked then

\[
\Pr[x \text{ is strong liar for } n] \leq \frac{1}{4}
\]
Miller-Rabin Primality Test

Witness of Non-Primality: $x < n$ such that $[x^d \mod n] \neq 1$ and $[x^d \mod n] \neq n - 1$ for all $0 \leq r < s$ (**Strong Liar for n:** if $x < n$ is not a witness, but $n \geq 3$ is a prime)

Theorem: If $n \geq 3$ is not a prime and $x < n$ is randomly picked then

$$\Pr[x \text{ is strong liar for } n] \leq \frac{1}{4}$$

Miller-Rabin test runs in time $O(kn^3)$ and mistakenly identifies a composite as prime with probability at most 4^{-k}

FFT-Multiplication: Reduces running time to $\tilde{O}(kn^2)$

There is a polynomial time algorithm to test if a n-bit number is prime...

...but the running time is $O(n^8)$

Miller-Rabin is used in practice in crypto libraries
13.5 Randomized Divide-and-Conquer
QuickSort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```plaintext
RandomizedQuickSort(S) {
    if $|S| = 0$ return

    choose a splitter $a_i \in S$ uniformly at random
    foreach ($a \in S$) {
        if $(a < a_i)$ put $a$ in $S^-$
        else if $(a > a_i)$ put $a$ in $S^+$
    }
    RandomizedQuickSort($S^-$)
    output $a_i$
    RandomizedQuickSort($S^+$)
}
```

Remark. Can implement in-place.

$O(\log n)$ extra space
QuickSort

Running time.
- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_1 < x_2 < \ldots < x_n$.
Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

\[x_7 \quad x_6 \quad x_{12} \quad x_3 \quad x_{11} \quad x_8 \quad x_7 \quad x_1 \quad x_{15} \quad x_{13} \quad x_{17} \quad x_{10} \quad x_{16} \quad x_{14} \quad x_9 \quad x_4 \quad x_5 \]

first splitter, chosen uniformly at random
Observation. Element only compared with its ancestors and descendants.
 - \(x_2\) and \(x_7\) are compared if their LCA = \(x_2\) or \(x_7\).
 - \(x_2\) and \(x_7\) are not compared if their LCA = \(x_3\) or \(x_4\) or \(x_5\) or \(x_6\).

Claim. \(\Pr[x_i \text{ and } x_j \text{ are compared}] = \frac{2}{|j - i + 1|}\).

Intuition: Consider first time splitter selected from interval \(x_i, \ldots, x_j\)
QuickSort: Expected Number of Comparisons

Theorem. Expected # of comparisons is $O(n \log n)$.

Pf.

\[
\sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \approx 2n \int_{x=1}^{n} \frac{1}{x} \, dx = 2n \ln n
\]

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65N$.

Ex. If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality. $\Pr[|X - \mu| \geq k\delta] \leq \frac{1}{k^2}$.
13.6 Universal Hashing
Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- Create(): Initialize a dictionary with $S = \emptyset$.
- Insert(u): Add element $u \in U$ to S.
- Delete(u): Delete u from S, if u is currently in S.
- Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.
Hashing

Hash function. \(h : U \rightarrow \{ 0, 1, \ldots, n-1 \} \).

Hashing. Create an array \(H \) of size \(n \). When processing element \(u \), access array element \(H[h(u)] \).

Collision. When \(h(u) = h(v) \) but \(u \neq v \).
- A collision is expected after \(\Theta(\sqrt{n}) \) random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: \(H[i] \) stores linked list of elements \(u \) with \(h(u) = i \).
Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?
When can't we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.
Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.
- Running time depends on length of chains.
- Average length of chain = $\alpha = \frac{m}{n}$.
- Choose $n \approx m \Rightarrow$ on average $O(1)$ per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

↑

adversary knows the randomized algorithm you're using, but doesn't know random choices that the algorithm makes
Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]

- For any pair of elements \(u, v \in U \), \(\Pr_{h \in H} [h(u) = h(v)] \leq 1/n \)
 - chosen uniformly at random
- Can select random \(h \) efficiently.
- Can compute \(h(u) \) efficiently.

Ex. \(U = \{ a, b, c, d, e, f \} \), \(n = 2 \).

\[
\begin{array}{cccccc}
 a & b & c & d & e & f \\
 h_1(x) & 0 & 1 & 0 & 1 & 0 & 1 \\
 h_2(x) & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\]

\(H = \{ h_1, h_2 \} \)
\(\Pr_{h \in H} [h(a) = h(b)] = 1/2 \)
\(\Pr_{h \in H} [h(a) = h(c)] = 1 \) not universal
\(\Pr_{h \in H} [h(a) = h(d)] = 0 \)
\(\ldots \)

\[
\begin{array}{cccccc}
 a & b & c & d & e & f \\
 h_1(x) & 0 & 1 & 0 & 1 & 0 & 1 \\
 h_2(x) & 0 & 0 & 0 & 1 & 1 & 1 \\
 h_3(x) & 0 & 0 & 1 & 0 & 1 & 1 \\
 h_4(x) & 1 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\(H = \{ h_1, h_2, h_3, h_4 \} \)
\(\Pr_{h \in H} [h(a) = h(b)] = 1/2 \)
\(\Pr_{h \in H} [h(a) = h(c)] = 1/2 \)
\(\Pr_{h \in H} [h(a) = h(d)] = 1/2 \)
\(\Pr_{h \in H} [h(a) = h(e)] = 1/2 \)
\(\Pr_{h \in H} [h(a) = h(f)] = 0 \)
\(\ldots \)

universal
Universal Hashing

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if $h(s) = h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

\[
E_{h \in H}[X] = E[E_{s \in S}[X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1
\]

- Linearity of expectation
- X_s is a 0-1 random variable
- Universal (assumes $u \notin S$)
Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between \(n \) and 2\(n \).

Modulus. Choose a prime number \(p \approx n \). \(\text{no need for randomness here} \)

Integer encoding. Identify each element \(u \in U \) with a base-\(p \) integer of \(r \) digits: \(x = (x_1, x_2, ..., x_r) \).

Hash function. Let \(A = \) set of all \(r \)-digit, base-\(p \) integers. For each \(a = (a_1, a_2, ..., a_r) \) where \(0 \leq a_i < p \), define

\[
h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

Hash function family. \(H = \{ h_a : a \in A \} \).
Designing a Universal Class of Hash Functions

Theorem. \(H = \{ h_a : a \in A \} \) is a universal class of hash functions.

Pf. Let \(x = (x_1, x_2, \ldots, x_r) \) and \(y = (y_1, y_2, \ldots, y_r) \) be two distinct elements of \(U \). We need to show that \(\Pr[h_a(x) = h_a(y)] \leq 1/n \).

- Since \(x \neq y \), there exists an integer \(j \) such that \(x_j \neq y_j \).
- We have \(h_a(x) = h_a(y) \) iff
 \[
 a_j \left(y_j - x_j \right) \equiv \sum_{i \neq j} a_i \left(x_i - y_i \right) \pmod{p}
 \]
 Can assume \(a \) was chosen uniformly at random by first selecting all coordinates \(a_i \) where \(i \neq j \), then selecting \(a_j \) at random. Thus, we can assume \(a_i \) is fixed for all coordinates \(i \neq j \).
- Since \(p \) is prime, \(a_j z = m \pmod{p} \) has at most one solution among \(p \) possibilities. \(\leftarrow \) see lemma on next slide
- Thus \(\Pr[h_a(x) = h_a(y)] = 1/p \leq 1/n \). \(\blacksquare \)
Fact. Let \(p \) be prime, and let \(z \neq 0 \mod p \). Then \(\alpha z = m \mod p \) has at most one solution \(0 \leq \alpha < p \).

Pf.
- Suppose \(\alpha \) and \(\beta \) are two different solutions.
- Then \((\alpha - \beta)z = 0 \mod p\); hence \((\alpha - \beta)z\) is divisible by \(p \).
- Since \(z \neq 0 \mod p \), we know that \(z \) is not divisible by \(p \); it follows that \((\alpha - \beta)\) is divisible by \(p \).
- This implies \(\alpha = \beta \). □

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid's algorithm.
13.9 Chernoff Bounds
Chernoff Bounds (above mean)

Theorem. Suppose \(X_1, \ldots, X_n\) are independent 0-1 random variables. Let \(X = X_1 + \ldots + X_n\). Then for any \(\mu \geq E[X]\) and for any \(\delta > 0\), we have

\[
\Pr[X > (1 + \delta)\mu] < \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^\mu
\]

sum of independent 0-1 random variables
is tightly centered on the mean

Pf. We apply a number of simple transformations.

- For any \(t > 0\),
 \[
 \Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]
 \]
 \(f(x) = e^{tx}\) is monotone in \(x\)
 Markov's inequality: \(\Pr[X > a] \leq E[X] / a\)

- Now
 \[
 E[e^{tX}] = E[e^{t \sum_i X_i}] = \prod_i E[e^{tX_i}]
 \]
 definition of \(X\)
 independence
Chernoff Bounds (above mean)

Pf. (cont)

- Let $p_i = \Pr[X_i = 1]$. Then,

$E[e^{tX_i}] = pe^t + (1-p)e^0 = 1 + p(e^t - 1) \leq e^{p_i(e^t - 1)}$

for any $\alpha \geq 0, 1 + \alpha \leq e^\alpha$

- Combining everything:

$\Pr[X > (1+\delta)\mu] \leq e^{-t(1+\delta)\mu} \prod_i E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} \prod_i e^{p_i(e^t - 1)} \leq e^{-t(1+\delta)\mu} e^{\mu(e^t - 1)}$

Previous slide
Inequality above
$\sum_i p_i = E[X] \leq \mu$

- Finally, choose $t = \ln(1 + \delta)$. □
Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing
Load Balancing

Load balancing. System in which \(m \) jobs arrive in a stream and need to be processed immediately on \(n \) identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\left\lceil m/n \right\rceil \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?
Load Balancing

Analysis.

- Let \(X_i \) = number of jobs assigned to processor \(i \).
- Let \(Y_{ij} = 1 \) if job \(j \) assigned to processor \(i \), and 0 otherwise.
- We have \(E[Y_{ij}] = 1/n \)
- Thus, \(X_i = \sum_j Y_{ij} \), and \(\mu = E[X_i] = 1 \).
- Applying Chernoff bounds with \(\delta = c - 1 \) yields \(\Pr[X_i > c] < \frac{e^{c-1}}{c^c} \)

- Let \(\gamma(n) \) be number \(x \) such that \(x^x = n \), and choose \(c = e \gamma(n) \).

\[
\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c} \right)^c = \left(\frac{1}{\gamma(n)} \right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)} \right)^{2\gamma(n)} = \frac{1}{n^2}
\]

- Union bound \(\Rightarrow \) with probability \(\geq 1 - 1/n \) no processor receives more than \(e \gamma(n) = \Theta(\log n / \log \log n) \) jobs.

Fact: this bound is asymptotically tight: with high probability, some processor receives \(\Theta(\log n / \log \log n) \) jobs.
Load Balancing: Many Jobs

Theorem. Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Pf.

- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

\[
\Pr[X_i > 2\mu] < \left(\frac{e}{4} \right)^{16n \ln n} < \left(\frac{1}{e} \right)^{\ln n} = \frac{1}{n^2}
\]

\[
\Pr[X_i < \frac{1}{2} \mu] < e^{-\frac{1}{2}(\frac{1}{2})^2(16n \ln n)} = \frac{1}{n^2}
\]

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$. ·
Extra Slides