Homework 6 Released Tonight: Due April 23 at 11:59 PM on Gradescope

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph $G = (V, E)$, a vertex cover is a set $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph $G = (V, E)$ with vertex weights $w_i \geq 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

- Model inclusion of each vertex i using a 0/1 variable x_i.

$$
\begin{align*}
\text{Model} & \quad \text{of each vertex } i \text{ using a 0/1 variable } x_i, \\
\text{Vertex covers in 1-1 correspondence with 0/1 assignments:} & \quad S = \{i \in V : x_i = 1\}
\end{align*}
$$

- Objective function: minimize $\sum w_i x_i$.

- Must take either i or j: $x_i + x_j \geq 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

$$(ILP) \min \quad \sum w_i x_i$$

s.t. \quad $x_i + x_j \geq 1 \quad \forall (i, j) \in E$

$x_i \in \{0, 1\} \quad \forall i \in V$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.
Integer Programming

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

\[
\begin{align*}
\text{max} & \quad c'x \\
\text{s.t.} & \quad \sum_{j} a_{ij} x_j \geq b_i \\
& \quad x_j \geq 0 & 1 \leq i \leq m \\
& \quad x_j \text{ integral} & 1 \leq j \leq n
\end{align*}
\]

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers \(c_j, b_i, a_{ij} \).
- Output: real numbers \(x_j \).

Weighted Vertex Cover

Theorem. If \(x^* \) is optimal solution to (LP), then \(S = \{ i \in V : x^*_i \geq \frac{1}{2} \} \) is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
- Consider an edge \(\{i, j\} \in E \).
- Since \(x^*_i + x^*_j \geq 1 \), either \(x^*_i \geq \frac{1}{2} \) or \(x^*_j \geq \frac{1}{2} \) \(\Rightarrow \) \(\{i, j\} \) covered.

Pf. [S has desired cost]
- Let \(S^* \) be optimal vertex cover. Then
 \[
 \sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x^*_i \geq \frac{1}{2} \sum_{i \in S} w_i
 \]
- LP is a relaxation \(x^*_i \geq \frac{1}{2} \)

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If \(P \neq \text{NP} \), then no \(\rho \)-approximation for \(\rho < 1.3607 \), even with unit weights.

Open research problem. Close the gap.

Theorem. [Khot-Regev 2003] No polynomial time \(\rho \)-approximation for any constant \(\rho < 2 \) under a stronger conjecture called the "Unique Games Conjecture."
12.1 Landscape of an Optimization Problem

Vertex Cover

Given a graph $G = (V, E)$, find a subset of nodes S of minimal cardinality such that for each $u-v$ in E, either u or v (or both) are in S.

Neighbor relation. If $S \sim S'$, then S' can be obtained from S by adding or deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with $S = V$. If there is a neighbor S' that is a vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-approx alg for Vertex-Cover $S = S_{apx}$ to obtain $Gradient$ Descent with to improve the solution.

Remark. Algorithm terminates after at most n steps since each update decreases the size of the cover by one.

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node

Local Search

Local search. Algorithm that explores the space of possible solutions in sequential fashion, moving from a current solution to a “nearby” one.

Neighbor relation. Let $S \sim S'$ be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S' of S with strictly lower cost, replace S with the neighbor whose cost is as small as possible. Otherwise, terminate the algorithm.

A funnel
A jagged funnel

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. $(1 + \epsilon)$-approximation algorithm for any constant $\epsilon > 0$.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.
Knapsack Problem

Given \(n \) objects and a "knapsack." Item \(i \) has value \(v_i > 0 \) and weighs \(w_i > 0 \). Knapsack can carry weight up to \(W \). Goal: fill knapsack so as to maximize total value.

Ex: \(\{ 3, 4 \} \) has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)

Knapsack Problem: Dynamic Programming I

Def. \(\text{OPT}(i, w) \) = max value subset of items \(1, \ldots, i \) with weight limit \(w \).

Case 1: \(\text{OPT} \) does not select item \(i \).
- \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) using up to weight limit \(w \)

Case 2: \(\text{OPT} \) selects item \(i \).
- new weight limit = \(w - w_i \)
- \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) using up to weight limit \(w - w_i \)

\(\text{OPT}(i, w) = \begin{cases}
\text{OPT}(i-1, w) & \text{if } i = 0 \text{ or } w_i > w \\
\max (\text{OPT}(i-1, w), v_i + \text{OPT}(i-1, w - w_i)) & \text{otherwise}
\end{cases} \)

Running time: \(O(nW) \)

\(W \) is weight limit.
- Not polynomial in input size.

Knapsack: FPTAS

Intuition for approximation algorithm.
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)

Knapsack Problem: Dynamic Programming II

Def. \(\text{OPT}(v) \) = min weight subset of items \(1, \ldots, i \) that yields value exactly \(v \).

Case 1: \(\text{OPT} \) does not select item \(i \).
- \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) that achieves exactly value \(v \)

Case 2: \(\text{OPT} \) selects item \(i \).
- consumes weight \(w_i \), new value needed = \(v - v_i \)
- \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) that achieves exactly value \(v \)

\(\text{OPT}(v) = \begin{cases}
\infty & \text{if } v = 0 \\
\text{OPT}(v-1, v) & \text{if } v > 0 \\
\min (\text{OPT}(v-1, v), w_i + \text{OPT}(v-1, v-v_i)) & \text{otherwise}
\end{cases} \)

Running time: \(O(nV^*) = O(n^2v_{max}) \)

\(V^* \) = optimal value = maximum \(v \) such that \(\text{OPT}(n, v) \leq W \).
- Not polynomial in input size.

Knapsack is NP-Complete

\text{KNAPSACK}: Given a finite set \(X \), nonnegative weights \(w_i \), nonnegative values \(v_i \), a weight limit \(W \), and a target value \(V \), is there a subset \(S \subseteq X \) such that:

\[\sum_{i \in S} w_i \leq W \]

\[\sum_{i \in S} v_i \geq V \]

\text{SUBSET-SUM}: Given a finite set \(X \), nonnegative values \(u_i \), and an integer \(U \), is there a subset \(S \subseteq X \) whose elements sum to exactly \(U \)?

Claim. \(\text{SUBSET-SUM} \leq \text{P KNAPSACK} \).

Pf. Given instance \(\{u_1, \ldots, u_n, U\} \) of \(\text{SUBSET-SUM} \), create \(\text{KNAPSACK} \) instance:

\[v_i = w_i = u_i \]

\[V = W = U \]

\[\sum_{i \in S} u_i \leq U \]

\[\sum_{i \in S} v_i \geq U \]

Knapsack FPTAS

Round up all values: \(\bar{v}_i = \left\lceil \frac{v_i}{\delta} \right\rceil \) \(\bar{\theta} = \left\lceil \frac{\theta}{\delta} \right\rceil \)

- \(v_{\text{max}} \) = largest value in original instance
- \(\delta \) = precision parameter
- \(\theta \) = scaling factor = \(v_{\text{max}} / n \)

Observe. Optimal solution to problems with \(\bar{v} \) or \(\bar{\theta} \) are equivalent.

Intuition. \(\bar{v} \) close to \(v \) so optimal solution using \(\bar{v} \) is nearly optimal; \(\bar{\theta} \) small and integral so dynamic programming algorithm is fast.

Running time: \(O(n^2/\delta^2) \)

- Dynamic program II running time is \(O(n^2v_{\text{max}}) \), where

\[\bar{v}_{\text{max}} = \left\lceil \frac{v_{\text{max}}}{\theta} \right\rceil = \left\lceil \frac{v_{\text{max}}}{\delta} \right\rceil \]

\[\bar{v}_{\text{max}} = \left\lceil \frac{v_{\text{max}}}{\theta} \right\rceil = \left\lceil \frac{v_{\text{max}}}{\delta} \right\rceil \]
Knapsack: FPTAS

Knapsack FPTAS. Round up all values: \(\theta = \left\lceil \frac{W}{w} \right\rceil \)

Theorem. If S is solution found by our algorithm and \(S^* \) is any other feasible solution then
\[
\sum_{i \in S} v_i \leq \sum_{i \in S^*} v_i \\
\sum_{i \in S^*} v_i \leq \sum_{i \in S} v_i + \left(1 + \frac{\theta}{1 + \theta} \right) \sum_{i \in S \setminus S^*} v_i \\
\]

Pf. Let \(S^* \) be any feasible solution satisfying weight constraint.
\[
\sum_{i \in S} v_i \leq \sum_{i \in S^*} v_i \\
\sum_{i \in S^*} v_i \leq \sum_{i \in S} v_i + \left(1 + \frac{\theta}{1 + \theta} \right) \sum_{i \in S \setminus S^*} v_i \\
\]

* 11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of \(m \) machines \(M \); set of \(n \) jobs \(J \).
- Job \(j \) must run contiguously on an authorized machine in \(M_j \subseteq M \).
- Each machine can process at most one job at a time.

Def. Let \(J(i) \) be the subset of jobs assigned to machine \(i \).

Def. The makespan is the maximum load on any machine: \(\max_i L_i = \max_i \sum_{j \in J(i)} t_j \).

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. \(x_{ij} = \) time machine \(i \) spends processing job \(j \).

\[
\begin{align*}
\text{(LP)} \min & \quad L \\
\text{s.t.} & \quad \sum_{j} x_{ij} = t_j \quad \text{for all } j \in J \\
& \quad \sum_{i} x_{ij} \leq L \quad \text{for all } i \in M \\
& \quad x_{ij} \in \{0, t_j\} \quad \text{for all } j \in J \text{ and } i \in M_j \\
& \quad x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_j
\end{align*}
\]

LP relaxation.

\[
\begin{align*}
\text{(LP)} \min & \quad L \\
\text{s.t.} & \quad \sum_{j} x_{ij} = t_j \quad \text{for all } j \in J \\
& \quad \sum_{i} x_{ij} \leq L \quad \text{for all } i \in M \\
& \quad x_{ij} \geq 0 \quad \text{for all } j \in J \text{ and } i \in M_j \\
& \quad x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_j
\end{align*}
\]

Generalized Load Balancing: Lower Bounds

Lemma 1. Let \(L \) be the optimal value to the LP. Then, the optimal makespan \(L^* \geq \max_j t_j \).

Pf. LP has fewer constraints than 2P formulation.

Lemma 2. The optimal makespan \(L^* \geq \max_i L_i \).

Pf. Some machine must process the most time-consuming job.

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let \(x \) be solution to LP. Let \(G(x) \) be the graph with an edge from machine \(i \) to job \(j \) if \(x_{ij} > 0 \). Then \(G(x) \) is acyclic.

Pf. (deferred)

Generalized Load Balancing: Lower Bounds

Lemma 1. Let \(L \) be the optimal value to the LP. Then, the optimal makespan \(L^* \geq \max_j t_j \).

Pf. LP has fewer constraints than 2P formulation.

Lemma 2. The optimal makespan \(L^* \geq \max_i L_i \).

Pf. Some machine must process the most time-consuming job.
Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where $G(x)$ is a forest. Root forest $G(x)$ at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.

Proof. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines.

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine $i = \text{parent}(j)$, then $x_{ij} = t_j$.

Proof. Since i is a leaf, $x_{ij} = 0$ for all $j \neq \text{parent}(i)$. LP constraint guarantees $\sum_j x_{ij} = t_j$.

Lemma 6. At most one non-leaf job is assigned to a machine.

Proof. The only possible non-leaf job assigned to machine i is parent(i).

Theorem. Rounded solution is a 2-approximation.

Proof. Let $J(i)$ be the jobs assigned to machine i.

- By Lemma 6, the load L_i on machine i has two components:
 - leaf nodes
 - parent(i)

- Thus, the overall load $L_i \leq 2L^*$.

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

\[
\begin{align*}
\sum_{j} x_{ij} &= t_j \quad \text{for all } j \in J \\
\sum_{j} x_{ij} &\leq L \quad \text{for all } i \in M \\
x_{ij} &\geq 0 \quad \text{for all } j \in J \text{ and } i \in M \\
x_{ij} &= 0 \quad \text{for all } j \in J \text{ and } i \not\in M \\
\end{align*}
\]

Observation. Solution to feasible flow problem with value L are in one-to-one correspondence with LP solutions of value L.

Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with $mn + 1$ variables.

Remark. Can solve LP using flow techniques on a graph with $m+n+1$ nodes: given L, find feasible flow if it exists. Binary search to find L^*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_j time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.
11.4 The Pricing Method: Vertex Cover

Definition. Given a graph \(G = (V, E) \), a vertex cover is a set \(S \subseteq V \) such that each edge in \(E \) has at least one end in \(S \).

Weighted vertex cover. Given a graph \(G \) with vertex weights, find a vertex cover of minimum weight.

Pricing Method

Pricing method. Each edge must be covered by some vertex. Edge \(e = (i, j) \) pays price \(p_e \geq 0 \) to use vertex \(i \) and \(j \).

Fairness. Edges incident to vertex \(i \) should pay \(\leq w_i \) in total.

Lemma. For any vertex cover \(S \) and any fair prices \(p_e \):

\[
\sum_{e \in E} p_e \leq \sum_{i \in S} w_i = w(S).
\]

Pf. For each node in \(S \):

\[
\sum_{e \in E} p_e \leq \sum_{i \in S} w_i \leq \sum_{i \in S} p_i = w(S).
\]

Weighted-Vertex-Cover-Approx(G, w) {
 foreach e in E
 \(p_e = 0 \)
 while (\exists \text{ edge i-j such that neither i nor j are tight})
 select such an edge \(e \)
 increase \(p_e \) as much as possible until i or j tight
 \(S \leftarrow \text{set of all tight nodes} \)
 return \(S \)
}

Theorem. Pricing method is a 2-approximation.

Pf.

1. Algorithm terminates since at least one new node becomes tight after each iteration of while loop.

2. Let \(S \) = set of all tight nodes upon termination of algorithm. \(S \) is a vertex cover. If some edge \(i-j \) is uncovered, then neither \(i \) nor \(j \) is tight. But then while loop would not terminate.

3. Let \(S^* \) be optimal vertex cover. We show \(w(S) \leq 2w(S^*) \).

\[
w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{j \in \text{adj}(i)} p_{ij} \leq \sum_{i \in S} \sum_{j \in \text{adj}(i)} p_{ij} = 2 \sum_{e \in E} p_e \leq 2w(S^*).
\]
Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING \leq_p LOAD-BALANCE.

NP-complete by Exercise 8.26

Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING \leq_p LOAD-BALANCE.

NP-complete by Exercise 8.26

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no \(\rho \)-approximation algorithm for metric k-center problem for any \(\rho < 2 \).

Pf. We show how we could use a \((2 - \varepsilon)\)-approximation algorithm for k-center to solve DOMINATING-SET in poly-time.

Let \(G = (V, E) \), \(k \) be an instance of DOMINATING-SET.

Construct instance \(G' \) of k-center with sites \(V \) and distances
- \(d(u, v) = 2 \) if \((u, v) \in E \)
- \(d(u, v) = 1 \) if \((u, v) \notin E \)

Note that \(G' \) satisfies the triangle inequality.

Claim: \(G \) has dominating set of size \(k \) if and only if there exists \(k \) centers \(C^* \) with \(r(C^*) = 1 \).

Thus, if \(G \) has a dominating set of size \(k \), a \((2 - \varepsilon)\)-approximation algorithm on \(G' \) must find a solution \(C^* \) with \(r(C^*) = 1 \) since it cannot use any edge of distance 2.

see Exercise 8.29