4/11/2019

CS 580: Algorithm Design and Analysis

11.6 LP Rounding: Vertex Cover

Jeremiah Blocki
Purdue University
Spring 2019

Homework 6 Released Tonight: Due April 23 at 11:59 PM on Gradescope

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4 weight = 11

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident fo at least one vertex in S.

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)
with vertex weights w; > 0, find a minimum weight subset of
nodes S such that every edge is incident to at least one
vertex in S.

Integer programming formulation.
- Model inclusion of each vertex i using a 0/1 variable x;.

{ 0 if vertex i is not in vertex cover
X =
i

1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieVix=1}

. Objective function: minimize %, w; x;.

- Must take eitherior j: x;+x; > 1.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming
formulation.

(ILP) min > w;X;
iev
St X +X; > 1 (,j)e E
Xi e {01} ieV

Observation. If x* is optimal solution to (ILP), then
S={i e V:x* =1} is a min weight vertex cover.

Copyright 2000, Kevin Wayne

Integer Programming

INTEGER-PROGRAMMING. Given integers ajj and b;, find integers X; that

satisfy:
n .
max cix Sax; = by 1<i<m
=t
s.t. AX 2 F) X 2 0 1<j<n
X integral X integral 1<j<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

even if all coefficients are 0/1 and
at most two variables per inequality

4/11/2019

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
« Input: infegers ¢, b;, aj.
+ Output: real numbers x;.

®) max Ycx
(P) max c'x J:‘
s.t. AX >
X =

b st Yax, = b 1<ism
0 it

X 2

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

(The region satisfying the inequalities |
\ 020,020
& X+ lnzée
P

X +2%,=6

2x,+%,= 6

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min > w; X
iev
st X +X; > 1 (i,j)eE
X; > 0 ieV

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints. 1 1

2 z
Note. LP is not equivalent to vertex cover.

EY
z

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x* is optimal solution o (LP), then S={ie V : x*>3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [Sis a vertex cover]
. Consider an edge (i, j) € E.
- Since x*;+ x*; 2 1, either x*; > 3or x*jz % = (i, j) covered.

Pf. [S has desired cost]
. Let S* be optimal vertex cover. Then

.
Two> Twx > 1 Xw
ieS* ieS ieS

LP is a relaxation Xz %

Copyright 2000, Kevin Wayne

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3607, even with unit weights.
\

105 - 21
Open research problem. Close the gap.
Theorem. [Khot-Regev 2003] No polynomial time p-approximation

for any constant p < 2 under a stronger conjecture called the
** Unique Games Conjecture.”

4/11/2019

12.1 Landscape of an Optimization Problem

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of
minimal cardinality such that for each u-v in E, either u or v (or
both) are in S.

Neighbor relation. S~S'if S' can be obtained from S by adding or
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a
vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-appx alg for Vertex-Cover S=S,, fo obtain run
Gradient Descent with to improve the solution.

Remark. Algorithm terminates after at most n steps since each update
decreases the size of the cover by one.

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

o o
optimum = center node only optimum = all nodes on left side
local optimum = all other nodes local optimum = all nodes on right side

O——O0—"0—O0—O0C—"0C—0C—"0——=0

optimum = even nodes
local optimum = omit every third node

Local Search

Local search. Algorithm that explores the space of possible solutions in
sequential fashion, moving from a current solution fo a "nearby" one.

Neighbor relation. Let S~ S' be a neighbor relation for the problem.
Gradient descent. Let S denote current solution. If there is a neighbor

S' of S with strictly lower cost, replace S with the neighbor whose
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant &> 0.
« Load balancing. [Hochbaum-Shmoys 1987]
. Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
of f accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Copyright 2000, Kevin Wayne

Knapsack Problem

Knapsack problem.

. Givennobjects and a "knapsack."

. Item i has value v; > 0 and weighs w;> 0. «~— we'llassumew;<W
- Knapsack can carry weight up to W.

- Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1 1
2 6 2
/e 3 18 5
4 22 6
5 28 7

4/11/2019

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
values v;, a weight limit W, and a target value V, is there a subset S

X such that:
W< W
ies

>V o=V

ies

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S ¢ X whose elements sum to exactly U?

Claim. SUBSET-SUM < » KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:
Vi =W = Xu < U
ieS
V=W=U Yy 2 U
ieS

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
. Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 using up to weight limit w
. Case 2: OPT selects item i.

- new weight limit = w - w;

- OPT selects best of 1, .., i-1 using up to weight limit w - w;

0 if i=0
OPT(i,w)=1 OPT(i—1,w) if wi>w
max {OPT(i—1,w), v;+ OPT(i—L,w—w;)} otherwise
Running time. O(h W).
- W = weight limit.
- Not polynomial in input size!

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0

e if i=0,v>0
* | OPT(i-1,v) if v, >V

min{OPT(i-1,v), w;+ OPT(i—1,v—Vv;)} otherwise

VX <N Vg
Running time. O(h V*) = O(? Vya,)-
. V* = optimal value = maximum v such that OPT(n, v) < W.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.

- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

1 934,221 1 1 1 1

2 5,956,342 2 2 6 2

3 1781003 5 g 3 18 5

4 21,217,800 6 4 22 6

9 27,343,199 7 5 28 7
w=11 w=11

original instance rounded instance

Copyright 2000, Kevin Wayne

Knapsack: FPTAS
_ v o~ v
Knapsack FPTAS. Round up all values: 7; = [5] 6 U= [3]
- Vmax = largest value in original instance
-& = precision parameter
-6 = scaling factor = € Vpe / n

Observation. Optimal solution to problems with V or \) are equivalent.

Intuition. U close to v so optimal solution using ¥ is nearly optimal;
¥ small and integral so dynamic programming algorithm is fast.

Running time. 0(n3/¢)
. Dynamic program II running time is O(n%Dpqy), where

Omax = [We;ax] = E]

4/11/2019

Knapsack: FPTAS

_ v;
k X s P = |2 .
Knapsack FPTAS. Round up all values: ¥; [9] o *11.7 Load BG|GnCIng Reloaded

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then (1+9Y v, > Y v,
ies ies*

Pf. Let S* be any feasible solution satisfying weight constraint.

Sv < S always round up
i < {
ies* ies*
< sy solve rounded instance optimally
< i
ies

< X (vi+6) never round up by more than 6
ies

< v+ nd Isl<n
ies DP alg can take Vo,
S I+9ZVi no=ovm Voo slxw v
ieS
=
Generalized Load Balancing Generalized Load Balancing: Integer Linear Program and Relaxation

Input. Set of m machines M: set of n jobs J.
. Job j must run contiguously on an authorized machine in
MJ oM.

ILP formulation. x;; = time machine i spends processing job j.

IP) mi L
+ Job j has processing time t;. (1 mlsnt Sxi =t endliiad
- Each machine can process at most one job at a time. gl 1€
Tx; < L forallie M
. .) . i
Def. Let J(i) be the subset of jobs assigned to machine Xy € {04} foralljeJandieM,
Xji = 0 forallj e Jandig M;

Def. The load of machine i isL; = ;. 5 t;. &

LP relaxation.
Def. The makespan is the maximum load on any machine = '

max; L. (LP) min L
st XX = forallj el

i
forallie M

XX <
Generalized load balancing. Assign each job to an i

© o r

authorized machine to minimize makespan. My o = forallj e Jandie M;
Xij = forallj e Jandig M;
a8
2
Generalized Load Balancing: Lower Bounds Generalized Load Balancing: Structure of LP Solution
Lemma 1. Let L be the optimal value to the LP. Then, the optimal Lemma 3. Let x be solution to LP. Let 6(x) be the graph with an edge
P P grap 9
makespan L* > L. from machine i to job j if x;; > 0. Then 6(x) is acyclic.
Pf. LP has fewer constraints than IP formulation. !
Pf. (deferred) SO el L8 S dnsan's rernn i x
Lemma 2. The optimal makespan L* > max; ;.
Pf. Some machine must process the most time-consuming job. = 0
6(x) acyclic O b 6(x) cyclic
[] machine
))

Copyright 2000, Kevin Wayne 5

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where 6(x) is a forest. Root
forest 6(x) at some arbitrary machine node r.
« If job jis aleaf node, assign j to its parent machine i.
. If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

O job
[] machine

4/11/2019

Generalized Load Balancing: Analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x;; = t;.
Pf. Since i is a leaf, x; = O for all j # parent(i). LP constraint
guarantees %; x;; = 1;. =

Lemma 6. At most one non-leaf job is assighed to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

O b
[] machine

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L; on machine i has two components:

- leaf nodes

Lemma 5 LP Lemma1l(LP is a relaxation)
Xtp= XX < Xx <L <L*
jed je jeld
jisaleaf jisaleaf

optimal value of LP
Lemma 2

- parent(i) bareneiy < LF

. Thus, the overall load L; < 2L*. =

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

X = g foralljeJ

i N\

Tx; < L forallieM L) emand - 31
i Yl

Xjj 2 0 foralljeJandie M; /

ij = 0 foralljeJandigM;

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution
(x', L) such that 6(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. Augment flow along the cycle C. «— flow conservation maintained
. At least one edge from C is removed (and none are added).
. Repeat until 6(x") is acyclic.

303 303
6 ; 6
X >3 T >
1 5 5
AO[3 4O N

augment along ¢

6(x) - 6(x")

Copyright 2000, Kevin Wayne

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t; fime if processed on machine i.
. 2-approximation algorithm via LP rounding.
« No 3/2-approximation algorithm unless P = NP.

4/11/2019

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph 6 with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4 weight = 11

Pricing Method

Pricing method. Each edge must be covered by some
verfex.
Edge e = (i, j) pays price p, > 0 to use vertex iand j.

Fairness. Edges incident to vertex i should pay <w; in
total.

for each vertex i: X p, < W
e=G.j)

Lemma. For any vertex cover S and any fair prices p,:

e Pe < W(S).

Pf. .
TP Y Xp< Two=wEs).
ecE ieS e=(i.j) ieS

each edge e covered by sum fairness inequalities
at least one node in S for each node in S

Pricing Method
Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
foreach e in E
P =0 2 pe=w
& e=(.h
while (3edge i-j such that neither i nor j are tight)

select such an edge e
increase p, as much as possible until i or j tight

S « set of all tight nodes
return S

Pricing Method

AN

price of edge a-b

) -
N s
vertex weight
N

Figure 11.8

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

. Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

WS=Xw =3 Xp < % Xp=2%p € 2wS). .
ies ies e=(ij) eV e(ij) ecE i
fairness lemma
all nodes in S are tight scv each edge counted twice
prices > 0

Copyright 2000, Kevin Wayne

4/11/2019

Extra Slides

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.

Pf. NUMBER-PARTITIONING < » LOAD-BALANCE.

NP-complete by Exercise 8.26

e f 9
~
length of job f

machine 1 a d £

machine 2 b c e 9

yes

o
—

Time

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - &) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let 6= (V,E), k be an instance of DOMINATING-SET. «— see Exercise 8.29
. Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (uv)eE
-d(u,v)=1if(u,v) e E
. Note that 6' satisfies the triangle inequality.
- Claim: 6 has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
. Thus, if 6 has a dominating set of size k, a (2 - ¢)-approximation
algorithm on 6" must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

Copyright 2000, Kevin Wayne

