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11.6  LP Rounding: Vertex Cover
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Weighted Vertex Cover

Definition.  Given a graph G = (V, E), a vertex cover is a set S  V such 
that each edge in E has at least one end in S.

Weighted vertex cover.  Given a graph G with vertex weights, find a 
vertex cover of minimum weight.
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Weighted Vertex Cover

Weighted vertex cover.  Given an undirected graph G = (V, E) with 
vertex weights wi  0, find a minimum weight subset of nodes S such 
that every edge is incident to at least one vertex in S.
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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Given an undirected graph G = (V, E) 
with vertex weights wi  0, find a minimum weight subset of 
nodes S such that every edge is incident to at least one 
vertex in S.

Integer programming formulation.
 Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:
S = {i  V : xi = 1} 

 Objective function:  minimize i wi xi.

 Must take either i or j:  xi + xj  1.

xi    
 0 if vertex i is not in vertex cover
 1 if vertex i is in vertex cover



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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Integer programming 
formulation.

Observation.  If x* is optimal solution to (ILP), then 
S = {i  V : x*i = 1} is a min weight vertex cover.

( ILP) min  wi xi
i    V


s. t. xi  x j  1 (i, j) E
xi  {0,1} i V
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Integer Programming

INTEGER-PROGRAMMING. Given integers aij and bi, find integers xj that 
satisfy:

Observation.  Vertex cover formulation proves that integer 
programming is NP-hard search problem.

aij x j
j1

n
  bi          1 i  m

x j  0           1 j  n
x j integral 1 j  n

even if all coefficients are 0/1 and
at most two variables per inequality

max ct x
s. t. Ax  b         

x integral
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Linear Programming

Linear programming.  Max/min linear objective function subject to 
linear inequalities.

 Input:  integers cj, bi, aij .
 Output:  real numbers xj.

Linear.  No x2,  xy,  arccos(x),  x(1-x), etc.

Simplex algorithm.  [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm.  [Khachian 1979] Can solve LP in poly-time.

(P) max cj x j
j1

n


s. t. aij x j
j1

n
  bi 1 i  m

xj  0 1 j  n

(P) max ct x
s. t. Ax  b

x  0
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LP Feasible Region

LP geometry in 2D.

x1 + 2x2 = 6
2x1 + x2 = 6

x2 = 0

x1 = 0



10

Weighted Vertex Cover:  LP Relaxation

Weighted vertex cover.  Linear programming formulation.

Observation.  Optimal value of (LP) is   optimal value of (ILP).
Pf.  LP has fewer constraints. 

Note.  LP is not equivalent to vertex cover. 

Q.  How can solving LP help us find a small vertex cover?
A.  Solve LP and round fractional values.

  

(LP) min  wi xi
i    V


s. t. xi  x j  1 (i, j) E
xi  0 i V

½½

½
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Weighted Vertex Cover

Theorem.  If x* is optimal solution to (LP), then S = {i  V : x*i  ½} is a 
vertex cover whose weight is at most twice the min possible weight.

Pf.  [S is a vertex cover]
 Consider an edge (i, j)  E.
 Since x*i + x*j  1, either x*i  ½ or  x*j  ½  (i, j) covered.

Pf.  [S has desired cost]
 Let S* be optimal vertex cover. Then

wi
i  S*
     wi xi

*

i  S
      1

2 wi
i  S


LP is a relaxation x*i  ½
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Weighted Vertex Cover

Theorem.  2-approximation algorithm for weighted vertex cover.

Theorem.  [Dinur-Safra 2001]  If P  NP, then no -approximation
for  < 1.3607, even with unit weights.   

Open research problem.   Close the gap.

Theorem. [Khot-Regev 2003] No polynomial time -approximation
for any constant  < 2 under a stronger conjecture called the 
``Unique Games Conjecture.”  

10 5  - 21



12.1  Landscape of an Optimization Problem
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Gradient Descent:  Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of 
minimal cardinality such that for each u-v in E, either u or v (or 
both) are in S.

Neighbor relation. S  S' if S' can be obtained from S by adding or 
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V.  If there is a neighbor S' that is a 
vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-appx alg for Vertex-Cover S=Sapx to obtain run 
Gradient Descent with to improve the solution. 

Remark. Algorithm terminates after at most n steps since each update 
decreases the size of the cover by one.
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Gradient Descent:  Vertex Cover

Local optimum.  No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node
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Local Search

Local search. Algorithm that explores the space of possible solutions in 
sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S  S' be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor 
S' of S with strictly lower cost, replace S with the neighbor whose 
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel



11.8  Knapsack Problem
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Polynomial Time Approximation Scheme

PTAS.  (1 + )-approximation algorithm for any constant  > 0. 
 Load balancing.  [Hochbaum-Shmoys 1987]
 Euclidean TSP.  [Arora 1996]

Consequence.  PTAS produces arbitrarily high quality solution, but trades 
off accuracy for time. 

This section.  PTAS for knapsack problem via rounding and scaling.
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Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i has value vi  > 0 and weighs wi > 0.
 Knapsack can carry weight up to W.
 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
W = 11

we'll assume wi  W 
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Knapsack is NP-Complete

KNAPSACK:  Given a finite set X, nonnegative weights wi, nonnegative 
values vi, a weight limit W, and a target value V, is there a subset S 
X such that:

SUBSET-SUM:  Given a finite set X, nonnegative values ui, and an integer 
U, is there a subset S  X whose elements sum to exactly U?

Claim.  SUBSET-SUM  P KNAPSACK.
Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK

instance:

  

wi
iS
  W

vi
iS
  V

vi  wi  ui   ui
iS
  U

V W U ui
iS
  U
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Knapsack Problem:  Dynamic Programming 1

Def.  OPT(i, w) = max value subset of items  1,..., i with weight limit w.
 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w
 Case 2:  OPT selects item i.

– new weight limit = w – wi
– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time.  O(n W).
 W = weight limit.
 Not polynomial in input size!

  

OPT(i, w) 
0 if  i  0

OPT(i 1, w) if  wi  w
max OPT(i 1, w), vi  OPT(i 1, wwi )  otherwise







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Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value 
exactly v.

 Case 1:  OPT does not select item i.
– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2:  OPT selects item i.
– consumes weight wi, new value needed = v – vi
– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time.  O(n V*) = O(n2 vmax).
 V* = optimal value = maximum v such that OPT(n, v)  W.
 Not polynomial in input size!

OPT (i, v) 

0 if  v  0
 if  i  0, v > 0
OPT (i 1, v) if  vi  v
min OPT (i 1, v), wi  OPT (i 1, v vi )  otherwise










V*  n vmax
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Knapsack:  FPTAS

Intuition for approximation algorithm.
 Round all values up to lie in smaller range.
 Run dynamic programming algorithm on rounded instance.
 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
934,221

Value

17,810,013
21,217,800
27,343,199

1

Weight

5
6

5,956,342 2

7

Item

1

3
4
5

2
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  𝑣௜ ൌ
௩೔
ఏ
𝜃 𝑣ො௜ ൌ

௩೔
ఏ

– vmax = largest value in original instance
–  = precision parameter
–  =  scaling factor =  vmax / n

Observation.  Optimal solution to problems with     or     are equivalent.

Intuition. 𝑣 close to v so optimal solution using 𝑣 is nearly optimal;
𝑣ො small and integral so dynamic programming algorithm is fast.

Running time. O 𝑛ଷ/𝜀
 Dynamic program II running time is  O 𝑛ଶ𝑣ො௠௔௫ ,  where

𝑣ො௠௔௫ ൌ
𝑣௠௔௫
𝜃 ൌ

𝑛
𝜀

ˆ v v 
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:   𝑣௜ ൌ
௩೔
ఏ
𝜃

Theorem.  If S is solution found by our algorithm and S* is any other 
feasible solution then

Pf.  Let S* be any feasible solution satisfying weight constraint. 

vi
i  S*
  v i

i  S*


 v i
i  S


 (vi
i  S
  )

 vi
i S
   n

 (1) vi
i S


always round up

solve rounded instance optimally

never round up by more than 

  
(1) vi    vi

i  S*


i S


|S|  n

n  =  vmax,  vmax  iS vi

DP alg can take vmax



* 11.7  Load Balancing Reloaded
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Generalized Load Balancing

Input.  Set of m machines M; set of n jobs J.
 Job j must run contiguously on an authorized machine in 

Mj  M.
 Job j has processing time tj.
 Each machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine 

Def. The load of machine i is Li = j  J(i) tj. 

Def. The makespan is the maximum load on any machine = 
maxi Li.

Generalized load balancing.  Assign each job to an 
authorized machine to minimize makespan.
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Generalized Load Balancing:  Integer Linear Program and Relaxation

ILP formulation.  xij = time machine i spends processing job j.

LP relaxation.  

(IP) min L
s. t. xi j

i
  t j for all j  J

xi j
j
  L for all i  M

xi j  {0, t j } for all j  J and i  M j

xi j  0 for all j  J and i  M j

(LP) min L
s. t. xi j

i
  t j for all j  J

xi j
j
  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j
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Generalized Load Balancing:  Lower Bounds

Lemma 1.  Let L be the optimal value to the LP. Then, the optimal 
makespan  L*  L.

Pf.  LP has fewer constraints than IP formulation.

Lemma 2.  The optimal makespan L*  maxj tj.
Pf.  Some machine must process the most time-consuming job.  ▪
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Generalized Load Balancing:  Structure of LP Solution

Lemma 3.  Let x be solution to LP.  Let G(x) be the graph with an edge 
from machine i to job j if xij > 0.  Then G(x) is acyclic.

Pf.  (deferred)

G(x) acyclic job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0
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Generalized Load Balancing:  Rounding

Rounded solution.  Find LP solution x where G(x) is a forest.  Root 
forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.
 If job j is not a leaf node, assign j to one of its children.

Lemma 4.  Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then xij > 0.  LP solution can only 

assign positive value to authorized machines.   ▪

job

machine
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Generalized Load Balancing:  Analysis

Lemma 5.  If job j is a leaf node and machine i = parent(j), then xij = tj.
Pf. Since i is a leaf, xij = 0 for all j  parent(i).   LP constraint 

guarantees i xij = tj.   ▪

Lemma 6.  At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i).  ▪

job

machine
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Generalized Load Balancing:  Analysis

Theorem.  Rounded solution is a 2-approximation.
Pf.
 Let J(i) be the jobs assigned to machine i.
 By Lemma 6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li  2L*.   ▪

t j
  j    J(i)
j is a leaf

   xij
  j    J(i)
j is a leaf

    xij
j    J
    L    L *

Lemma 5 Lemma 1 (LP is a relaxation)

tparent(i)    L *

LP

Lemma 2
optimal value of LP
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Flow formulation of LP.

Observation.  Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.  

Generalized Load Balancing:  Flow Formulation



xi j
i
  t j for all j  J

xi j
j
  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j
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Lemma 3.  Let (x, L) be solution to LP.  Let G(x) be the graph with an 
edge from machine i to job j if xij > 0.  We can find another solution 
(x', L) such that G(x') is acyclic.

Pf.  Let C be a cycle in G(x).
 Augment flow along the cycle C. 
 At least one edge from C is removed (and none are added).
 Repeat until G(x') is acyclic.

Generalized Load Balancing:  Structure of Solution

3
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3
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2
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G(x)

3

4

4

3

3 

4

1

6
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G(x')
augment along C

flow conservation maintained
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Conclusions

Running time.  The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables. 

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: 
given L, find feasible flow if it exists.  Binary search to find L*.

Extensions:  unrelated parallel machines.  [Lenstra-Shmoys-Tardos 1990]
 Job j takes tij time if processed on machine i.
 2-approximation algorithm via LP rounding.
 No 3/2-approximation algorithm unless P = NP.



11.4  The Pricing Method:  Vertex Cover
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Weighted Vertex Cover

Definition.  Given a graph G = (V, E), a vertex cover is a set S  V such 
that each edge in E has at least one end in S.

Weighted vertex cover.  Given a graph G with vertex weights, find a 
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 11
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Pricing Method

Pricing method.  Each edge must be covered by some 
vertex. 
Edge e = (i, j)  pays price pe  0 to use vertex i and j.

Fairness.  Edges incident to vertex i should pay  wi in 
total.

Lemma.  For any vertex cover S and any fair prices pe:  
e pe  w(S). 

Pf.  ▪

4

9

2

2

for each vertex i : pe
e(i , j)
  wi

).(
),(

Swwpp
Si

i
jie

e
SiEe

e  


sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S
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Pricing Method

Pricing method.  Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
foreach e in E

pe = 0

while ( edge i-j such that neither i nor j are tight)
select such an edge e
increase pe as much as possible until i or j tight

}

S  set of all tight nodes
return S

}

i
jie

e wp 
 ),(
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Pricing Method

vertex weight

Figure 11.8

price of edge a-b
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Pricing Method:  Analysis

Theorem.  Pricing method is a 2-approximation.
Pf.  
 Algorithm terminates since at least one new node becomes tight 

after each iteration of while loop.

 Let S = set of all tight nodes upon termination of algorithm. S is a 
vertex cover:  if some edge i-j is uncovered, then neither i nor j is 
tight. But then while loop would not terminate.

 Let S* be optimal vertex cover. We show w(S)  2w(S*).

w(S)  wi
i S
 

i S
 pe

e(i, j)
 

iV
 pe

e(i, j)
  2 pe

e E
  2w(S*).

all nodes in S are tight S  V,
prices  0

fairness lemma
each edge counted twice



Extra Slides
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Machine 2

Machine 1a d f

b c e g

yes

Load Balancing on 2 Machines

Claim.  Load balancing is hard even if only 2 machines.
Pf.  NUMBER-PARTITIONING  P LOAD-BALANCE.

a d

f

b c

ge

length of job f

Time L0

machine 1

machine 2

NP-complete by Exercise 8.26
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Center Selection:  Hardness of Approximation

Theorem.  Unless P = NP, there is no -approximation algorithm for
metric k-center problem for any  < 2.

Pf.  We show how we could use a (2 - ) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.

 Let G = (V, E), k be an instance of DOMINATING-SET.
 Construct instance G' of k-center with sites V and distances

– d(u, v) = 2 if (u, v)  E
– d(u, v) = 1 if (u, v)  E

 Note that G' satisfies the triangle inequality.
 Claim:  G has dominating set of size k iff there exists k centers C* 

with r(C*) = 1.
 Thus, if G has a dominating set of size k, a (2 - )-approximation 

algorithm on G' must find a solution C* with r(C*) = 1 since it cannot 
use any edge of distance 2.

see Exercise 8.29


