
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Homework 6 Released Tonight: Due April 23 at 11:59 PM on Gradescope

11.6 LP Rounding: Vertex Cover

3

Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set S  V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 11

4

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights wi  0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

3

6

10

7

A

E

H

B

D I

C

F

J

G

6

16

10

7

23

9

10

9

33

total weight = 55

32

5

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)
with vertex weights wi  0, find a minimum weight subset of
nodes S such that every edge is incident to at least one
vertex in S.

Integer programming formulation.
 Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:
S = {i  V : xi = 1}

 Objective function: minimize i wi xi.

 Must take either i or j: xi + xj  1.

xi 
 0 if vertex i is not in vertex cover
 1 if vertex i is in vertex cover




6

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming
formulation.

Observation. If x* is optimal solution to (ILP), then
S = {i  V : x*i = 1} is a min weight vertex cover.

(ILP) min wi xi
i  V


s. t. xi  x j  1 (i, j) E
xi  {0,1} i V

7

Integer Programming

INTEGER-PROGRAMMING. Given integers aij and bi, find integers xj that
satisfy:

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

aij x j
j1

n
  bi 1 i  m

x j  0 1 j  n
x j integral 1 j  n

even if all coefficients are 0/1 and
at most two variables per inequality

max ct x
s. t. Ax  b

x integral

8

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.

 Input: integers cj, bi, aij .
 Output: real numbers xj.

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

(P) max cj x j
j1

n


s. t. aij x j
j1

n
  bi 1 i  m

xj  0 1 j  n

(P) max ct x
s. t. Ax  b

x  0

9

LP Feasible Region

LP geometry in 2D.

x1 + 2x2 = 6
2x1 + x2 = 6

x2 = 0

x1 = 0

10

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

Observation. Optimal value of (LP) is  optimal value of (ILP).
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

(LP) min wi xi
i  V


s. t. xi  x j  1 (i, j) E
xi  0 i V

½½

½

11

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S = {i  V : x*i  ½} is a
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
 Consider an edge (i, j)  E.
 Since x*i + x*j  1, either x*i  ½ or x*j  ½  (i, j) covered.

Pf. [S has desired cost]
 Let S* be optimal vertex cover. Then

wi
i  S*
  wi xi

*

i  S
  1

2 wi
i  S


LP is a relaxation x*i  ½

12

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P  NP, then no -approximation
for  < 1.3607, even with unit weights.

Open research problem. Close the gap.

Theorem. [Khot-Regev 2003] No polynomial time -approximation
for any constant  < 2 under a stronger conjecture called the
``Unique Games Conjecture.”

10 5 - 21

12.1 Landscape of an Optimization Problem

14

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of
minimal cardinality such that for each u-v in E, either u or v (or
both) are in S.

Neighbor relation. S  S' if S' can be obtained from S by adding or
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a
vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-appx alg for Vertex-Cover S=Sapx to obtain run
Gradient Descent with to improve the solution.

Remark. Algorithm terminates after at most n steps since each update
decreases the size of the cover by one.

15

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node

16

Local Search

Local search. Algorithm that explores the space of possible solutions in
sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S  S' be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor
S' of S with strictly lower cost, replace S with the neighbor whose
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel

11.8 Knapsack Problem

18

Polynomial Time Approximation Scheme

PTAS. (1 + )-approximation algorithm for any constant  > 0.
 Load balancing. [Hochbaum-Shmoys 1987]
 Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

19

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i has value vi > 0 and weighs wi > 0.
 Knapsack can carry weight up to W.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
W = 11

we'll assume wi  W

20

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights wi, nonnegative
values vi, a weight limit W, and a target value V, is there a subset S 
X such that:

SUBSET-SUM: Given a finite set X, nonnegative values ui, and an integer
U, is there a subset S  X whose elements sum to exactly U?

Claim. SUBSET-SUM  P KNAPSACK.
Pf. Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK

instance:

wi
iS
  W

vi
iS
  V

vi  wi  ui ui
iS
  U

V W U ui
iS
  U

21

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
 Case 1: OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w
 Case 2: OPT selects item i.

– new weight limit = w – wi
– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time. O(n W).
 W = weight limit.
 Not polynomial in input size!

OPT(i, w) 
0 if i  0

OPT(i 1, w) if wi  w
max OPT(i 1, w), vi  OPT(i 1, wwi)  otherwise








22

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, …, i that yields value
exactly v.

 Case 1: OPT does not select item i.
– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2: OPT selects item i.
– consumes weight wi, new value needed = v – vi
– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time. O(n V*) = O(n2 vmax).
 V* = optimal value = maximum v such that OPT(n, v)  W.
 Not polynomial in input size!

OPT (i, v) 

0 if v  0
 if i  0, v > 0
OPT (i 1, v) if vi  v
min OPT (i 1, v), wi  OPT (i 1, v vi)  otherwise










V*  n vmax

23

Knapsack: FPTAS

Intuition for approximation algorithm.
 Round all values up to lie in smaller range.
 Run dynamic programming algorithm on rounded instance.
 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
934,221

Value

17,810,013
21,217,800
27,343,199

1

Weight

5
6

5,956,342 2

7

Item

1

3
4
5

2

24

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: 𝑣௜ ൌ
௩೔
ఏ
𝜃 𝑣ො௜ ൌ

௩೔
ఏ

– vmax = largest value in original instance
–  = precision parameter
–  = scaling factor =  vmax / n

Observation. Optimal solution to problems with or are equivalent.

Intuition. 𝑣 close to v so optimal solution using 𝑣 is nearly optimal;
𝑣ො small and integral so dynamic programming algorithm is fast.

Running time. O 𝑛ଷ/𝜀
 Dynamic program II running time is O 𝑛ଶ𝑣ො௠௔௫ , where

𝑣ො௠௔௫ ൌ
𝑣௠௔௫
𝜃 ൌ

𝑛
𝜀

ˆ v v

25

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: 𝑣௜ ൌ
௩೔
ఏ
𝜃

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then

Pf. Let S* be any feasible solution satisfying weight constraint.

vi
i  S*
  v i

i  S*


 v i
i  S


 (vi
i  S
  )

 vi
i S
  n

 (1) vi
i S


always round up

solve rounded instance optimally

never round up by more than 

(1) vi  vi

i  S*


i S


|S|  n

n  =  vmax, vmax  iS vi

DP alg can take vmax

* 11.7 Load Balancing Reloaded

27

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
 Job j must run contiguously on an authorized machine in

Mj  M.
 Job j has processing time tj.
 Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine

Def. The load of machine i is Li = j  J(i) tj.

Def. The makespan is the maximum load on any machine =
maxi Li.

Generalized load balancing. Assign each job to an
authorized machine to minimize makespan.

28

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. xij = time machine i spends processing job j.

LP relaxation.

(IP) min L
s. t. xi j

i
  t j for all j  J

xi j
j
  L for all i  M

xi j  {0, t j } for all j  J and i  M j

xi j  0 for all j  J and i  M j

(LP) min L
s. t. xi j

i
  t j for all j  J

xi j
j
  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j

29

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L*  L.

Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L*  maxj tj.
Pf. Some machine must process the most time-consuming job. ▪

30

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
from machine i to job j if xij > 0. Then G(x) is acyclic.

Pf. (deferred)

G(x) acyclic job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0

31

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.
 If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then xij > 0. LP solution can only

assign positive value to authorized machines. ▪

job

machine

32

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then xij = tj.
Pf. Since i is a leaf, xij = 0 for all j  parent(i). LP constraint

guarantees i xij = tj. ▪

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). ▪

job

machine

33

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
 Let J(i) be the jobs assigned to machine i.
 By Lemma 6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li  2L*. ▪

t j
 j  J(i)
j is a leaf

  xij
 j  J(i)
j is a leaf

  xij
j  J
  L  L *

Lemma 5 Lemma 1 (LP is a relaxation)

tparent(i)  L *

LP

Lemma 2
optimal value of LP

34

Flow formulation of LP.

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Flow Formulation



xi j
i
  t j for all j  J

xi j
j
  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j

35

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if xij > 0. We can find another solution
(x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).
 Augment flow along the cycle C.
 At least one edge from C is removed (and none are added).
 Repeat until G(x') is acyclic.

Generalized Load Balancing: Structure of Solution

3

4

4

3

2

3

1

2

6

5

G(x)

3

4

4

3

3

4

1

6

5

G(x')
augment along C

flow conservation maintained

36

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
 Job j takes tij time if processed on machine i.
 2-approximation algorithm via LP rounding.
 No 3/2-approximation algorithm unless P = NP.

11.4 The Pricing Method: Vertex Cover

38

Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set S  V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 11

39

Pricing Method

Pricing method. Each edge must be covered by some
vertex.
Edge e = (i, j) pays price pe  0 to use vertex i and j.

Fairness. Edges incident to vertex i should pay  wi in
total.

Lemma. For any vertex cover S and any fair prices pe:
e pe  w(S).

Pf. ▪

4

9

2

2

for each vertex i : pe
e(i , j)
  wi

).(
),(

Swwpp
Si

i
jie

e
SiEe

e  


sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S

40

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
foreach e in E

pe = 0

while ( edge i-j such that neither i nor j are tight)
select such an edge e
increase pe as much as possible until i or j tight

}

S  set of all tight nodes
return S

}

i
jie

e wp 
),(

41

Pricing Method

vertex weight

Figure 11.8

price of edge a-b

42

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
 Algorithm terminates since at least one new node becomes tight

after each iteration of while loop.

 Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

 Let S* be optimal vertex cover. We show w(S)  2w(S*).

w(S)  wi
i S
 

i S
 pe

e(i, j)
 

iV
 pe

e(i, j)
  2 pe

e E
  2w(S*).

all nodes in S are tight S  V,
prices  0

fairness lemma
each edge counted twice

Extra Slides

44

Machine 2

Machine 1a d f

b c e g

yes

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING  P LOAD-BALANCE.

a d

f

b c

ge

length of job f

Time L0

machine 1

machine 2

NP-complete by Exercise 8.26

45

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no -approximation algorithm for
metric k-center problem for any  < 2.

Pf. We show how we could use a (2 - ) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.

 Let G = (V, E), k be an instance of DOMINATING-SET.
 Construct instance G' of k-center with sites V and distances

– d(u, v) = 2 if (u, v)  E
– d(u, v) = 1 if (u, v)  E

 Note that G' satisfies the triangle inequality.
 Claim: G has dominating set of size k iff there exists k centers C*

with r(C*) = 1.
 Thus, if G has a dominating set of size k, a (2 - )-approximation

algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

see Exercise 8.29

