CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Homework 6 Released Tonight: Due April 23 at 11:59 PM on Gradescope

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

© @

O © @

weight=2+2+4 weight = 11

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

10 (A 9

16 (B 10

23 33

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)
with vertex weights w; > 0, find a minimum weight subset of
nodes S such that every edge is incident to at least one
vertex in S.

Integer programming formulation.
. Model inclusion of each vertex i using a 0/1 variable x;.

X

0 if vertex I is not in vertex cover
1 if vertex I 1s in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
SZ{ieV:XiZI}

. Objective function: minimize Z; w; Xx;.

- Must take eitherior j: x;+x;, > 1,

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming
formulation.

Observation. If x* is optimal solution to (ILP), then
S={i e V:x* =1} is a min weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers a;; and b;, find integers x; that
satisfy:

n
max C'X Z:aijxj > b I<sism
j=1
s.t. Ax > b % > 0 1<j<n
X integral : ,
et X| integral 1< J<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

\

even if all coefficients are 0/1 and
at most fwo variables per inequality

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
- Input: integers c;, b;, a;j .
- Output: real numbers x;.
n
(P) max 2 C;X;
(P) max c'X =1
s.t. AX
X

AV \V/
>
(\Y
()
[E—
IA
IA
-

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

X1 = 0
The region satisfying the inequalities
X1 2 0, X9 >0
6 X1 + 2JC2 > 06
2x1 + Xy > 6
5 —
4 —
\3
2 -
1 —
| | | | X2=0
1 2 ;\ AN
X1+ 2X,=6

2X1+X2=6

10

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min D>, w; X
eV
s.t. X +X; > 1 (,)eE

X > 0 1€V

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

1
2

Note. LP is not equivalent to vertex cover.

1
2

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

1
2

1

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), thenS={ieV :x* >3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [Sis a vertex cover]

. Consider an edge (i, j) € E.

. Since x*; + x*J- > 1, either x*,> 3 or x*J- >3 = (i, j) covered.
Pf. [S has desired cost]

. Let S* be optimal vertex cover. Then
2w XWX = L 2w
| € S* eSS I

T T

LP is a relaxation x*. >

12

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation

for p < 1.3607, even with unit weights.
\

105 - 21

Open research problem. Close the gap.

Theorem. [Khot-Regev 2003] No polynomial time p-approximation
for any constant p < 2 under a stronger conjecture called the
" " Unique Games Conjecture."

12.1 Landscape of an Optimization Problem

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of
minimal cardinality such that for each u-v in E, either u or v (or
both) are in S.

Neighbor relation. S~ S"if S’ can be obtained from S by adding or
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S’ that is a
vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-appx alg for Vertex-Cover S=S,, to obtain run
Gradient Descent with to improve the solution.

Remark. Algorithm terminates after at most n steps since each update
decreases the size of the cover by one.

14

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

N
A\

O

optimum = center node only optimum = all nodes on left side
local optimum = all other nodes local optimum = all nodes on right side
O O O O O O O O O

optimum = even nodes
local optimum = omit every third node

15

Local Search

Local search. Algorithm that explores the space of possible solutions in
sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S~ S’ be a neighbor relation for the problem.
Gradient descent. Let S denote current solution. If there is a nheighbor

S’ of S with strictly lower cost, replace S with the neighbor whose
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel

16

11.8 Knapsack Problem

18

Polynomial Time Approximation Scheme

PTAS. (1 + ¢)-approximation algorithm for any constant ¢ > O.
. Load balancing. [Hochbaum-Shmoys 1987]
. Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i has value v; > 0 and weighs w;> 0. «— we'llassume w;<W
. Knapsack can carry weight up to W.
. Goal: fill knapsack so as to maximize total value.

Ex: (3,4} has value 40.

1 1 1
2 6 2
w=il 3 18 5
4 22 6
5 28 7

20

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w;, honnegative
values v;, a weight limit W, and a target value V, is there a subset S

X such that:

>w < W

|
ieS
v, =2V
ieS

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S < X whose elements sum to exactly U?

Claim. SUBSET-SUM < » KNAPSACK.
Pf. Given instance (uq, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:
i =W =U; 2u < U
ieS
V=W=U Yu > U

ieS

21

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 using up to weight limit w
. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if i=0
OPT(i,w)=9 OPT(i—1,w) if w.>w
| max{OPT(i-1,w), v;+ OPT(i—-L,w—w;)} otherwise

Running time. O(n W).
- W = weight limit.
. Not polynomial in input sizel

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item .
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0
: ') if 1=0,v>0
OPT(i, V)= _ .
OPT(1—1,V) if v,>Vv
| min{OPT(i-1,v), w;+ OPT(i-1,v—Vv;)} otherwise

*x
V* <N v

v
Running time. O(n V*) = O(N? v, 4).
* = optimal value = maximum v such that OPT(n, v) < W.
. Not polynomial in input sizel

22

Knapsack: FPTAS

Intuition for approximation algorithm.
. Round all values up to lie in smaller range.
. Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

1 934,221 1 1 1 1

2 5,956,342 2 2 6 2

3 17,810,013 5) 3 18 5

4 21,217,800 6 4 22 6

5 27,343,199 7 5 28 7
W= 11 W= 11

original instance rounded instance

Knapsack: FPTAS

— Vi A Vi
Knapsack FPTAS. Round up all values: U; = [Eﬂ 0 ;= [Eﬂ
- Vpx = largest value in original instance
- ¢ = precision parameter
-0 = scaling factor =g v, /n

Observation. Optimal solution to problems with V or \ are equivalent,

Intuition. U close to v so optimal solution using U is nearly optimal;
U small and integral so dynamic programming algorithm is fast.

Running time. 0(n3/¢)
. Dynamic program IT running time is O(n?D,,,,), where

o = 2] =]

24

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v; = [%} 6

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then (1+&)> v. > > v

i € S*

Pf. Let S* be any feasible solution satisfying weight constraint.

2V <
ieS*
<
<
<
<

25

always round up

solve rounded instance optimally

never round up by more than 6

|S| <n

DP alg can take v,

l

<3

no=ev Vmax— leSvi

max«

*11.7 Load Balancing Reloaded

27

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
. Job j must run contiguously on an authorized machine in
M;c M.
- Job j has processing fime t;.
. Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine

Def. The load of machine iisL; =%, 4 t;

Def. The makespan is the maximum load on any machine =
max; L.

Generalized load balancing. Assign each job to an
authorized machine to minimize makespan.

28

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

LP relaxation.

29

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* > L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* > max; t;.
Pf. Some machine must process the most time-consuming job. =

30

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
from machine i to job jif x;;>0. Then G(x) is acyclic.

T

can transform x into another LP solution where
Pf (defer'r'ed) 6(x) is acyclic if LP solver doesn't return such an x

5 o ol

OO0 O OO0 O

G(x) acyclic O job G(x) cyclic

machine

31

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.
. If job jis aleaf node, assign j to its parent machine i.
. If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job jis assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. -

.-
’ N
~
,
; N
5
s ~

g . . .

‘ Each internal job node is

\assigned to an arbitrary child.
.y

O job
Cfg machine

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then x;; = t;.
Pf. Sinceiis aleaf, x;; = O for all j = parent(i). LP constraint

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). -

D\
P
.
‘.
. ~
.
’ ~

Each internal job node is
Lassigned to an arbitrary child.

O Job
machine
(o Yot i i
Each leaf is assigned
\m its parent.

32

33

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
. Let J(i) be the jobs assigned to machine i.
By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP Lemma 1 (LP is a relaxation)
j € J() j € @) jeld T
J 1s a leaf j is a leaf

optimal value of LP
Lemma 2

l

B par.enT(i) 1:parent(i) < L*

. Thus, the overall load L, < 2L*. =

34

Generalized Load Balancing: Flow Formulation

Jobs
Flow formulation of LP.

9 Machines

Supply = ¢ (Jj L
[
zxij < L forallieM i L v)Demand = ;¢
]
Xij > 0 foralljeJandie M; ;

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

35

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution
(x', L) such that 6(x") is acyclic.

Pf. Let C be a cycle in G(x).
. Augment flow along the cycle C. «—— flow conservation maintained
. At least one edge from C is removed (and none are added).
- Repeat until 6(x") is acyclic.

3Q_3 30_3
6 6
' OK, >3 s OK, >:>
1 5 5

augment along C

G(x) R 6(x")

36

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
. Job j takes t;; time if processed on machine i.
. 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.

114 The Pricing Method: Vertex Cover

38

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

© @

O © @

weight=2+2+4 weight = 11

39

Pricing Method

Pricing method. Each edge must be covered by some
vertex.
Edge e = (i, j) pays price p, >0 to use vertex i and j.

Fairness. Edges incident to vertex i should pay < w; in

total. @ @

for each vertexi: 2 p, < W,
e=(i.])

@ ®
Lemma. For any vertex cover S and any fair prices p,:
2, Pe < W(S).

Pf. :
Z pe < Z Z pe < Z Wi = W(S)
eck ieS e=(i,j) ieS
each edge e covered by sum fairness inequalities

at least one node in S for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

40

Pricing Method

price of edge a-b

vertex weight

Figure 11.8

41

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

. Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is

tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

W)= 2w, = 2 2P < 2 2P =22p < 2wW(S*). =

icS icS e=(ij) icV e=(ij) ecE I
T T fairness lemma
all nodes in S are tight ScvV each edge counted fwice

prices > 0

42

Extra Slides

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING <, LOAD-BALANCE.

\

NP-complete by Exercise 8.26

a b C d
e f g
- /
length of job f
machine 1 a d f
yes
machine 2 b C e g

0 Time L

v

44

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - €) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let 6=(V, E), k be an instance of DOMINATING-SET. «— see Exercise 8.29
. Construct instance G’ of k-center with sites V and distances
-d(u,v)=2if (u,v) e E
-d(u,v)=1if (u,v) ¢ E
. Note that G' satisfies the triangle inequality.
. Claim: 6 has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
. Thus, if 6 has a dominating set of size k, a (2 - €)-approximation
algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

45

