# CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

Homework 6 Released Tonight: Due April 23 at 11:59 PM on Gradescope

# 11.6 LP Rounding: Vertex Cover

#### Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set  $S \subseteq V$  such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.



weight = 2 + 2 + 4

weight = 11

#### Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.



total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)with vertex weights  $w_i \ge 0$ , find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

#### Integer programming formulation.

• Model inclusion of each vertex i using a 0/1 variable  $x_i$ .

 $x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$ 

Vertex covers in 1-1 correspondence with 0/1 assignments: S = {i  $\in$  V :  $x_i$  = 1}

- Objective function: minimize  $\Sigma_i w_i x_i$ .
- Must take either i or j:  $x_i + x_j \ge 1$ .

#### Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(*ILP*) min  $\sum_{i \in V} w_i x_i$ s. t.  $x_i + x_j \ge 1$   $(i, j) \in E$  $x_i \in \{0,1\}$   $i \in V$ 

Observation. If  $x^*$  is optimal solution to (ILP), then S = { $i \in V : x^*_i = 1$ } is a min weight vertex cover.

# Integer Programming

INTEGER-PROGRAMMING. Given integers  $a_{ij}$  and  $b_i,$  find integers  $x_j$  that satisfy:



Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers  $c_j$ ,  $b_i$ ,  $a_{ij}$ .
- Output: real numbers x<sub>j</sub>.



Linear. No  $x^2$ , xy,  $\arccos(x)$ , x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

# LP Feasible Region

LP geometry in 2D.



## Weighted Vertex Cover: LP Relaxation

12

Weighted vertex cover. Linear programming formulation.



Observation. Optimal value of (LP) is  $\leq$  optimal value of (ILP).

Pf. LP has fewer constraints. Note. LP is not equivalent to vertex cover.  $\frac{1}{2}$ 

Q. How can solving LP help us find a small vertex cover?A. Solve LP and round fractional values.

#### Weighted Vertex Cover

Theorem. If x\* is optimal solution to (LP), then S = { $i \in V : x_i^* \ge \frac{1}{2}$ } is a vertex cover whose weight is at most twice the min possible weight.

- Pf. [S is a vertex cover]
- Consider an edge (i, j)  $\in$  E.
- Since  $x_i^* + x_j^* \ge 1$ , either  $x_i^* \ge \frac{1}{2}$  or  $x_j^* \ge \frac{1}{2} \implies (i, j)$  covered.

#### Pf. [S has desired cost]

Let S\* be optimal vertex cover. Then

$$\sum_{i \in S^{*}} w_{i} \geq \sum_{i \in S} w_{i} x_{i}^{*} \geq \frac{1}{2} \sum_{i \in S} w_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
LP is a relaxation  $x^{*}_{i} \geq \frac{1}{2}$ 

Theorem. 2-approximation algorithm for weighted vertex cover.

```
Theorem. [Dinur-Safra 2001] If P \neq NP, then no \rho-approximation
for \rho < 1.3607, even with unit weights.
```

Open research problem. Close the gap.

Theorem. [Khot-Regev 2003] No polynomial time ρ-approximation for any constant ρ < 2 under a stronger conjecture called the ``Unique Games Conjecture."

# 12.1 Landscape of an Optimization Problem

#### Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of minimal cardinality such that for each u-v in E, either u or v (or both) are in S.

Neighbor relation.  $S \sim S'$  if S' can be obtained from S by adding or deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a vertex cover and has lower cardinality, replace S with S'.

Alternative. Run 2-appx alg for Vertex-Cover  $S=S_{apx}$  to obtain run Gradient Descent with to improve the solution.

Remark. Algorithm terminates after at most n steps since each update decreases the size of the cover by one.

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.





optimum = center node only local optimum = all other nodes

optimum = all nodes on left side local optimum = all nodes on right side



optimum = even nodes local optimum = omit every third node

# Local Search

Local search. Algorithm that explores the space of possible solutions in sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let  $S \sim S'$  be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S' of S with strictly lower cost, replace S with the neighbor whose cost is as small as possible. Otherwise, terminate the algorithm.

A jagged funnel A funnel

# 11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 +  $\varepsilon$ )-approximation algorithm for any constant  $\varepsilon$  > 0.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

## Knapsack Problem

#### Knapsack problem.

- Given n objects and a "knapsack."
- Item i has value  $v_i > 0$  and weighs  $w_i > 0$ .  $\leftarrow$  we'll assume  $w_i \le W$
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

#### Ex: { 3, 4 } has value 40.

| W | = | 11 |  |
|---|---|----|--|

| Item | Value | Weight |
|------|-------|--------|
| 1    | 1     | 1      |
| 2    | 6     | 2      |
| 3    | 18    | 5      |
| 4    | 22    | 6      |
| 5    | 28    | 7      |

KNAPSACK: Given a finite set X, nonnegative weights  $w_i$ , nonnegative values  $v_i$ , a weight limit W, and a target value V, is there a subset S  $\subseteq$  X such that:

$$\sum_{i \in S} w_i \leq W$$
$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values  $u_i$ , and an integer U, is there a subset  $S \subseteq X$  whose elements sum to exactly U?

Claim. SUBSET-SUM  $\leq_{P}$  KNAPSACK. Pf. Given instance (u<sub>1</sub>, ..., u<sub>n</sub>, U) of SUBSET-SUM, create KNAPSACK instance:

$$v_i = w_i = u_i \qquad \sum_{i \in S} u_i \leq U$$
$$V = W = U \qquad \sum_{i \in S} u_i \geq U$$

Knapsack Problem: Dynamic Programming 1

**Def**. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

- Case 1: OPT does not select item i.
  - OPT selects best of 1, ..., i-1 using up to weight limit w
- . Case 2: OPT selects item i.
  - new weight limit = w w<sub>i</sub>
  - OPT selects best of 1, ..., i-1 using up to weight limit w  $w_i$

$$OPT(i,w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1,w) & \text{if } w_i > w\\ \max\{OPT(i-1,w), v_i + OPT(i-1,w-w_i)\} & \text{otherwise} \end{cases}$$

Running time. O(n W).

- W = weight limit.
- Not polynomial in input size!

Knapsack Problem: Dynamic Programming II

- Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value
   exactly v.
  - . Case 1: OPT does not select item i.
    - OPT selects best of 1, ..., i-1 that achieves exactly value v
- Case 2: OPT selects item i.
  - consumes weight  $w_i$ , new value needed =  $v v_i$
  - OPT selects best of 1, ..., i-1 that achieves exactly value v

$$OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i-1, v) & \text{if } v_i > v \\ \min\{OPT(i-1, v), w_i + OPT(i-1, v-v_i)\} & \text{otherwise} \end{cases}$$

$$\mathbf{V^{\star}} \le \mathbf{n} \ \mathbf{v}_{\max}$$

Running time.  $O(n V^*) = O(n^2 v_{max})$ .

- V\* = optimal value = maximum v such that  $OPT(n, v) \le W$ .
- Not polynomial in input size!

# Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.

W = 11

Return optimal items in rounded instance.

| Item | Value      | Weight |
|------|------------|--------|
| 1    | 934,221    | 1      |
| 2    | 5,956,342  | 2      |
| 3    | 17,810,013 | 5      |
| 4    | 21,217,800 | 6      |
| 5    | 27,343,199 | 7      |

Weight Item Value 1 1 1 2 6 2 3 18 5 4 22 6 7 5 28

W = 11



rounded instance

#### Knapsack: FPTAS

Knapsack FPTAS. Round up all values:  $\bar{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta \quad \hat{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix}$ 

- $v_{max}$  = largest value in original instance
- $\varepsilon$  = precision parameter
- $\theta$  = scaling factor =  $\epsilon v_{max}$  / n

Observation. Optimal solution to problems with  $\overline{v}$  or  $\hat{v}$  are equivalent.

Intuition.  $\overline{v}$  close to v so optimal solution using  $\overline{v}$  is nearly optimal;  $\hat{v}$  small and integral so dynamic programming algorithm is fast.

Running time.  $O(n^3/\varepsilon)$ 

- Dynamic program II running time is  $O(n^2 \hat{v}_{max})$ , where

$$\hat{v}_{max} = \left[\frac{v_{max}}{\theta}\right] = \left[\frac{n}{\varepsilon}\right]$$

#### Knapsack: FPTAS

Knapsack FPTAS. Round up all values:  $\bar{v}_i = \left[\frac{v_i}{\theta}\right] \theta$ 

Theorem. If S is solution found by our algorithm and S\* is any other feasible solution then  $(1+\varepsilon)\sum_{i \in S} v_i \ge \sum_{i \in S^*} v_i$ 

Pf. Let S\* be any feasible solution satisfying weight constraint.

$$\begin{split} \sum_{i \in S^*} v_i &\leq \sum_{i \in S^*} \overline{v_i} & \text{always round up} \\ &\leq \sum_{i \in S} \overline{v_i} & \text{solve rounded instance optimally} \\ &\leq \sum_{i \in S} (v_i + \theta) & \text{never round up by more than } \theta \\ &\leq \sum_{i \in S} v_i + n\theta & |S| \leq n \\ &\leq (1 + \varepsilon) \sum_{i \in S} v_i & n\theta = \varepsilon v_{\max}, v_{\max} \leq \Sigma_{i \in S} v_i \end{split}$$

# \* 11.7 Load Balancing Reloaded

# Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

- Job j must run contiguously on an authorized machine in  $M_{j} \subseteq M.$
- Job j has processing time t<sub>j</sub>.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine

Def. The load of machine i is  $L_i = \sum_{j \in J(i)} t_j$ .

Def. The makespan is the maximum load on any machine = max<sub>i</sub> L<sub>i</sub>.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation.  $x_{ij}$  = time machine i spends processing job j.

(*IP*) min 
$$L$$
  
s. t.  $\sum_{i} x_{ij} = t_j$  for all  $j \in J$   
 $\sum_{i} x_{ij} \leq L$  for all  $i \in M$   
 $x_{ij} \in \{0, t_j\}$  for all  $j \in J$  and  $i \in M_j$   
 $x_{ij} = 0$  for all  $j \in J$  and  $i \notin M_j$ 

#### LP relaxation.

$$\begin{array}{rcl} (LP) \mbox{ min } & L \\ {\rm s. t. } & \sum\limits_{i} x_{ij} & = & t_j & \mbox{ for all } j \in J \\ & \sum\limits_{i} x_{ij} & \leq & L & \mbox{ for all } i \in M \\ & x_{ij} & \geq & 0 & \mbox{ for all } j \in J \mbox{ and } i \in M_j \\ & x_{ij} & = & 0 & \mbox{ for all } j \in J \mbox{ and } i \notin M_j \end{array}$$

## Generalized Load Balancing: Lower Bounds

- Lemma 1. Let L be the optimal value to the LP. Then, the optimal makespan  $L^* \ge L$ .
- Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan  $L^* \ge \max_j t_j$ . Pf. Some machine must process the most time-consuming job. • Generalized Load Balancing: Structure of LP Solution

- Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if  $x_{ij} > 0$ . Then G(x) is acyclic.
- Pf. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x



Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then  $x_{ij} > 0$ . LP solution can only assign positive value to authorized machines.



## Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then  $x_{ij} = t_j$ . Pf. Since i is a leaf,  $x_{ij} = 0$  for all  $j \neq parent(i)$ . LP constraint guarantees  $\Sigma_i x_{ij} = t_j$ .

Lemma 6. At most one non-leaf job is assigned to a machine. Pf. The only possible non-leaf job assigned to machine i is parent(i).



Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L<sub>i</sub> on machine i has two components:



. Thus, the overall load  $L_i \leq 2L^{\star}.$ 

# Generalized Load Balancing: Flow Formulation



Observation. Solution to feasible flow problem with value L are in oneto-one correspondence with LP solutions of value L. Generalized Load Balancing: Structure of Solution

- Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if  $x_{ij} > 0$ . We can find another solution (x', L) such that G(x') is acyclic.
- Pf. Let C be a cycle in G(x).
  - Augment flow along the cycle C. ← flow conservation maintained
  - . At least one edge from C is removed (and none are added).
  - Repeat until G(x') is acyclic.



## Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L\*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t<sub>ij</sub> time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.

# 11.4 The Pricing Method: Vertex Cover

#### Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set  $S \subseteq V$  such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.



weight = 2 + 2 + 4

weight = 11

Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price  $p_e \ge 0$  to use vertex i and j.

Fairness. Edges incident to vertex i should pay  $\leq w_i$  in total. for each vertex i:  $\sum_{e=(i,j)} p_e \leq w_i$ 2

Lemma. For any vertex cover S and any fair prices  $p_e$ :  $\sum_e p_e \le w(S)$ .

Pf.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by sum fairness inequalities at least one node in S for each node in S Pricing method. Set prices and find vertex cover simultaneously.

# Pricing Method



Figure 11.8

## Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S\* be optimal vertex cover. We show  $w(S) \leq 2w(S^*)$ .

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$
all nodes in S are tight
$$\int_{\text{prices } \geq 0} \int_{\text{prices } \geq 0} e_{e=(i,j)} e_{e=(i,j)} = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$

# Extra Slides

Load Balancing on 2 Machines



Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no  $\rho$ -approximation algorithm for metric k-center problem for any  $\rho$  < 2.

- Pf. We show how we could use a (2  $\epsilon$ ) approximation algorithm for k-center to solve DOMINATING-SET in poly-time.
  - Let G = (V, E), k be an instance of DOMINATING-SET.  $\leftarrow$  see Exercise 8.29
  - Construct instance G' of k-center with sites V and distances
    - $d(u, v) = 2 \text{ if } (u, v) \in E$
    - d(u, v) = 1 if (u, v) ∉ E
  - Note that G' satisfies the triangle inequality.
  - Claim: G has dominating set of size k iff there exists k centers C\* with r(C\*) = 1.
  - Thus, if G has a dominating set of size k, a  $(2 \varepsilon)$ -approximation algorithm on G' must find a solution C\* with  $r(C^*) = 1$  since it cannot use any edge of distance 2.