CS 580: Algorithm Design and Analysis

4/16/2019

Jeremiah Blocki
Purdue University
Spring 2019

Upcoming Workshops at Purdue

fleail,) Sl Foandalois ol
it Selanes and Apphsiions
April 12-13, 2019

Algyuritnmls, |

https://datafoundations.cs.purdue.edu/index.html

= B B
6oth Midwest Tl

https://sites.google.com/view/midwesttheoryday2019/home

2

Midterm Exam 2

Minimum Value 54.5
Maximum Value 1335
Average 90.5
Median 91.33

Standard Deviation 18.83

Re-grade Requests: You can submit re-grade requests directly on
GradeScope (Standard Caveat: Your grade may go up or down)

Competitive Facility Location

Input. Graph with positive node weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to
select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units
of profit? (Player one might play vindictively to minimize B's profit)

10 1 5 15 5 1 5 1 15 10

Yes if B = 20; no if B = 25.

Competitive Facility Location

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

Known PSPACE Iio‘mplete Problem

- To solve in poly-space, use recursion like QSAT, but at each

step there are up to n choices instead of 2.

. To show that it's complete, we show that QSAT polynomial

reduces o it. Given an instance of QSAT, we construct an
instance of COMPETITIVE-FACILITY such that player 2 can
force a win iff QSAT formula is false.

Copyright

2000, Kevin Wayne

Competitive Facility Location
assume nis odd__
Construction. Given instance ®(x;, ..., X,) = 3x,Vxp_q ... 3%, (C; A €y A .ACK)
of QSAT.
. Include a node for each literal and its negation and connect them.
- at most one of x; and its negation can be chosen
. Choose ¢ > k+2, and put weight ¢ on literal x' and its negation;
set B=chl+ 3+ | +ct+ 2+ 1.
- ensures variables are selected in order x,, X1, ..., X;.
. Asis, player 2 will lose by 1 unit: ¢!+ cm3+ |+ c4+c2
0on o

100 : 100
®&—®

10 10

4/16/2019

Competitive Facility Location

Construction. Given instance ®(x;, ..., X,) =3x,¥xp_1 ... 3%, (C; A €y A .ACy) Of
QSAT.
. Give player 2 one last move on which she can try to win.
. For each clause Cj, add node with value 1 and an edge to each of its
literals.

- Player 2 can make last move iff truth assignment defined alternately by
the players failed to satisfy some clause. =
10 10

XV X VX

JOM KLEINBERG - EVA TARDOS

Technical Detail:
Eliminate pointless clauses

XV Xy VX

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T
do?
A. Theory says you're unlikely to find a poly-time algorithm.

11.1 Load Balancing

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

p-approximation algorithm.
. Guaranteed fo run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
. Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum,
without even knowing what optimum value is!

s

Load Balancing Load Balancing: List Scheduling
Input. m identical machines; n jobs, job j has List-scheduling algorithm.
processi'ng time t;.)) . Consider n jobs in some fixed order. IE|
« Job j must run contiguously on one machine. - Assign job j to machine whose load is smallest so far. play

- A machine can process at most one job at a time.

. .) List-Scheduling(m, n, t;,t,,...,t;) {
Def. Let J(i) be the subset of jobs assigned to for i =1 Jf, m { T
machine i. The load of machine i is L; = ;. 5 t;. L« 0 +— loadonmachinei

J(i) « ¢ +— jobsassigned tomachine i

}
Def. The makespan is the maximum load on any

machine L = max; L;. for j =1 ton {
i = argmin, L, «— machine i has smallest load
J(i) « J(i) U {j} < assign job j o machine i
L« L+t «— update load of machine i
Load balancing. Assign each job to a machine to)

minimize makespan SEEER S wp S

M=2 Machines. Subset Sum problem in disguise!

Implementation. O(n log m) using a priority queue.
= Search problem is NP-Hard

Copyright 2000, Kevin Wayne 2

4/16/2019

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lesena L. The optimel meloxspon L' = mo iy,

Pf. Some moching nust procass the et tima-cossesing

jeb. -

Larenn 2. The optimal melespon £ > 23,8

Pf.

= The tatel pracacsing tima ks 3,1;.

« Onz of mmachined meest da ot & Lim frectionof
fetal wark. -

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load
before assignment isL;i-t; = Li-t; <L, foralll<k<m.

blue jobs scheduled before |

|
L [
I Y

0 H
Li-1 L

\

Ko

n o

Load Balancing: List Scheduling Analysis

Thesram. Gready clooritim is & 2-epprodmetion.

Pf. Consiver Joo! L, of bottlenack mochine i.

« Lot | be kot Joh schedided en machine I,

= Whan [ab | axsiqned fo meching I, § hod smoliest oo, T lead

befors assigumant 5Ly -) = Li-f) < L, forallsksm
« S inevualities over off band divide by mc

k"f‘ézh Lemma 1
1% .
=;Zt. L1
Now Iz= -y + 2 s

< = I.’\
Lemma 2

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

'77:]0

optimal makespan = 10

Copyright 2000, Kevin Wayne

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

'77:10

machine 6 idle

machine 7 idle

machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t;, t,,...,t;) {
Sort jobs so that t; 2 t,2 .. 2 t,

for i =1 tom {
L« 0 —
JE) < ¢ —
}

load on machine i
jobs assigned fo machine i

for j =1 ton {
i = argmin, L,
J(i) « J(i) U {j} < ossignjob jtomachine i
L« L+ tg <« update load of machine i

}
return J(1), .., J(m)

«— machine i has smallest load

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more than m jobs, L* > 2 t,.;.
Pf.
. Consider first m+1 jobs ty, ..., ty.1.

. Since the 1;'s are in descending order, each takes at least t,,; time.

- There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.
Li= (Li-t) + t; <

—_r 3

<L < %L
Lemma 3
(by observation, can assume number of jobs > m)

L*.

4/16/2019

Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is 6raham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, .., 2m
and one job of length m.
One processor gets 3 jobs by pigeonhole principle
Optimal makespan: m+(m+1)+(m+1) = 3m+2
LPT makespan: m + (3m/2+1)+(3m/2) = 4m+1

11.2 Center Selection

Center Selection Problem

Input. Set of nsitess;, ..., s, and integer k> 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

r(©)

@ center
m site

Center Selection Problem

Input. Set of nsitess,, .., s, and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.
. dist(s;, C) = min_ _ dist(s;, ¢) = distance from s; to closest
center.
. r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

. dist(x,x)=0 (identity)
. dist(x, y) = dist(y, x) (symmetry)
. dist(x, y) < dist(x, z) + dist(z, y) (triangle inequality)

2

Copyright 2000, Kevin Wayne

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

@ center
m site

4/16/2019

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce
the covering radius each time by as much as possible.

Remark: arbitrarily bad!

(]
greedy center 1

k= 2 centers

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the
site farthest from any existing center.

Greedy-Center-Selection(k, n, s;,S;,...,8,) {

c=¢

repeat k times {
Select a site s; with maximum dist(s;, C)
Add s; to C

} site farthest from any center

return C

Observation. Upon termination all centers in C are pairwise at
least r(C) apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < 3 r(C).
. For each site c; in C, consider ball of radius 3 r(C) around it.

« Exactly one ¢;* (strictly) inside each ball; let ¢; be the site paired with ¢*.

- At least one ¢;* site since r(C*) < 3 r(C)

- If ¢;* is in balls for both ¢; and ¢; then by the triangle inequality
dist(ci.c)) < dist(c;, ¢;*) + dist(cy, ¢;) < 3 r(C)+3 r(C) = r(C)

- Contradiction! Prior Observation = r(C) < dist(c,,cJ)

o C*
m sites

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < i r(C).

. For each site ¢; in C, consider ball of radius 3 r(C) around it.

. Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.

. Consider any site s and its closest center ¢* in C*.

. dist(s, €) < dist(s, ¢;) < dist(s, ¢*) + dist(c*, ¢;) < 2r(C*).

. Thusr(C) < 2r(C*). = \

A-inequality < r(C*) since c* s closest center

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center
selection problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place
centers anywhere.

e.g.. points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

11.6 LP Rounding: Vertex Cover

Copyright 2000, Kevin Wayne

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4 weight = 11

4/16/2019

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident fo at least one vertex in S.

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)
with vertex weights w; > 0, find a minimum weight subset of
nodes S such that every edge is incident to at least one
vertex in S.

Integer programming formulation.
- Model inclusion of each vertex i using a 0/1 variable x;.

0 if vertex i is not in vertex cover
X =
i . S
1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieVix=1}

. Objective function: minimize %, w; x;.

- Must take eitherior j: x;+x; > 1.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming
formulation.

(ILP) min > w;X;
iev
St X +X; > 1 (,j)e E
Xi e {01} ieV

Observation. If x* is optimal solution to (ILP), then
S={i e V:x* =1} is a min weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers ajj and b;, find integers X; that

satisfy:

D .
max c'x Yax; = b 1<i<m
j=1
56 M ab X 2 0 1<jsn

X el X integral 1<j<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

even if all coefficients are 0/1 and
at most two variables per inequality

Copyright 2000, Kevin Wayne

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
- Input: infegers ¢, b;, aj.
+ Output: real numbers x;.

i)

(P) max % c
(P) max c'x sl
s.t. AX

X

n
b st XX, = by I1<is<m
j=l

(Y

X; 2 0 1<j<n

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

the inequalities |

The region satis
020,520
6

=0
n+lnzée
2+ 1326

X+ 2%,= 6

2%+ %, 6

4/16/2019

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min Y w; X
iev
St X +X; > 1 (i,j))eE
X; > 0 ieV

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

ES
z

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S={ie V : x* > 3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
. Consider an edge (i, j) € E.
- Since x*;+ x*; 2 1, either x*; > 3or x*jz % = (i, j) covered.

Pf. [S has desired cost]
. Let S* be optimal vertex cover. Then

.
w2 Twix > 1 Xw
ieS* ieS ieS

LP is a relaxation x*,

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3607, even with unit weights.
\

105 - 21
Open research problem. Close the gap.
Theorem. [Khot-Regev 2003] No polynomial time p-approximation

for any constant p < 2 under a stronger conjecture called the
** Unique Games Conjecture.”

11.8 Knapsack Problem

Copyright 2000, Kevin Wayne

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant &> 0.
« Load balancing. [Hochbaum-Shmoys 19871
. Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
of f accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

4/16/2019

Knapsack Problem Knapsack is NP-Complete
Knapsack problem. KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
. Given n objects and a "knapsack." values v;, a weight limit W, and a target value V, is there a subset S
. Tfem i has value v; > 0 and weighs w;> 0. ~— we'll assumew,<W X such that:
- Knapsack can carry weight up to W. ZS: W < W
- Goal: fill knapsack so as to maximize total value. 'ez v =V
ieS
1 1 1 SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
2 6 2 U, is there a subset S ¢ X whose elements sum to exactly U?
w=n 3 18 5
4 22 6 Claim. SUBSET-SUM < » KNAPSACK.
5 28 7 Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:
Vi=W =L Yu < U
ieS
V=W=U Ty = U
ies
P “
Knapsack Problem: Dynamic Programming 1 Knapsack Problem: Dynamic Programming IT
Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w. Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value
. Case 1: OPT does not select item i. exactly v.
- OPT selects best of 1, ..., i-1 using up to weight limit w . Case 1: OPT does not select item i.
. Case 2: OPT selects item i. - OPT selects best of 1, ..., i-1 that achieves exactly value v
- new weight limit = w - w; . Case 2: OPT selects item i.
- OPT selects best of 1, .., i-1 using up to weight limit w - w; - consumes weight w;, new value needed = v - v;
- OPT selects best of 1, ..., i-1 that achieves exactly value v
v i =0 0 if v=0
OPT(i,w)=y OPT(i-Lw) if w>w w if i=0,v>0
max{OPT(i-1,w), V;+ OPT(i-Lw-w,)} otherwise OPT (i, v)= OPT(i-1,v) s
Running time. O(n W) min{OPT(i-1,v), w;+ OPT(i—1,v—Vv;)} otherwise
- W = weight limit.
. Not polynomial in input size! PR
Running time. O(h V*) = O(? Vya,)-
. V* = optimal value = maximum v such that OPT(n, v) < W.
- Not polynomial in input size!
45 3
Knapsack: FPTAS Knapsack: FPTAS
Intuition for approximation algorithm. Knapsack FPTAS. Round up all values: 0, v = % i
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance. - Vmax = largest value in original instance
- Return optimal items in rounded instance. - & = precision parameter
-6 = scaling factor = € Vpe / n
Observation. Optimal solution to problems with V or \) are equivalent.
1 934,221 1 1 1 1
2 5,956,342 2 2 6 2 Intuition. V close fo v so optimal solution using Vis nearly optimal:
3 17,810,013 5 =) 3 18 5 V small and integral so dynamic programming algorithm is fast.
4 21,217,800 6 4 22 6
5 27343199 7 5 28 7 Running fime. O(n® / ¢).
+ Dynamic program II running fime is O(n®9,,,). Where
w=1t W=l o V| _|n
max 0 s |
original instance rounded instance
47 a8

Copyright 2000, Kevin Wayne 8

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, :i ‘(;—' 0

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution theri+g)Y v, > Y v,
ieS ies*

Pf. Let S* be any feasible solution satisfying weight constraint.

always round up

v £ XV
ies* ies*

< ¥ Solve rounded instance optimally
ies

< Y+ never round up by more than 0
ies

< Yv+no ISl<n
ics DP alg can take Voo,

< (I+e) XV N0 = &Vinge, Viax < Ties Vi

ies

4/16/2019

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4

weight = 11

Pricing Method

Pricing method. Each edge must be covered by some
vertfex.
Edge e = (i, j) pays price p, > 0 to use vertex iand j.

Fairness. Edges incident to vertex i should pay < w; in
total.

for each vertex i: ¥ p, <w
e=G.0)

Lemma. For any vertex cover S and any fair prices p,:

X pe < W(S).
Pf. .
TP <Y XpP< Xw o= wWS).
ecE ieS e=(i.j) ieS

each edge e covered by

sum fairness inequalities
at least one node in

for each node in S

Pricing Method
Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E

=w
Pe = 0

2 Pe=W
e=(i,J) |
while (Jedge i-j such that neither i nor j are tight)

select such an edge e
increase p, as much as possible until i or j tight
}

S « set of all tight nodes
return S

Copyright 2000, Kevin Wayne

Pricing Method

price of edge a-b
N

vertex weight

Figure 11.8

4/16/2019

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

- Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

W)= Xwi=% Xp £ X XP =2Xp < 2WSH).
ies ieS e=(ij) eV e=(ij) ecE 1
fairness lemma
all nodes in S are tight g _y each edge counted twice
prices > 0

* 11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of m machines M: set of n jobs J.
. Job j must run contiguously on an authorized machine in
MJ oM.
+ Job j has processing time t;.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i.
The
load of machine iis L; = % 54 1.

Def. The makespan is the maximum load on any machine =

max; L;.

Generalized load balancing. Assign each job to an
authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

(IP) min L
st XX = forallj el
i
Tx; < L forallie M
i
Xij e {0, t;} foralljeJandieM;
Xj = 0 forallj e Jandig M;

LP relaxation.

(LP) min L
s.t. Xx; = t; foralljed
i
Txj < L forallieM
i
Xij > 0 foralljeJandie M;
Xjj = 0 foralljeJandigM;

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* > L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* > max; ;.
Pf. Some machine must process the most time-consuming job. =

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let 6(x) be the graph with an edge
from machine i to job j if x;; > 0. Then 6(x) is acyclic.
1

can transform x into another LP solution where
Pf. (deferred) 6(x) is acyclic if LP solver doesn't return such an x

6(x) acyclic o 6(x) eyclic
job

[] machine

Copyright 2000, Kevin Wayne

10

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where 6(x) is a forest. Root
forest 6(x) at some arbitrary machine node r.
« If job jis aleaf node, assign j to its parent machine i.
. If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

O job
[] machine

4/16/2019

Generalized Load Balancing: Analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x;; = t;.
Pf. Since i is a leaf, x; = O for all j # parent(i). LP constraint
guarantees %; x;; = 1;. =

Lemma 6. At most one non-leaf job is assighed to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

O b
[] machine

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP Lemmal(LP is a relaxation)
Ttp= X < Xx L
jed je ield
jisaleaf jisaleaf

optimal value of LP
Lemma 2

- parent(i) bareneiy < L ¥

. Thus, the overall load L; < 2L*. =

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Xx; =t foralljed Supph
i

Xxj; < L forallieM
i

Xij > 0 foralljeJandie M
Xij = 0 foralljeJandigM;

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let 6(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution
(x', L) such that 6(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. Augment flow along the cycle C. «— flow conservation maintained
. Af least one edge from C is removed (and none are added).
- Repeat until 6(x") is acyclic.

3&3 3@3
6 : 6
4@(2 > 40<j >j
1 5 5
ot oy

augment along C

6(x) - 6(x")

Copyright 2000, Kevin Wayne

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t; fime if processed on machine i.
« 2-approximation algorithm via LP rounding.
« No 3/2-approximation algorithm unless P = NP.

11

4/16/2019

Load Balancing on 2 Machines

H Claim. Load balancing is hard even if only 2 machines.
Ex.rr‘a S Ildes Pf. NUMBER-PARTITIONING < », LOAD-BALANCE.

NP-complete by Exercise 8.26

e f 9
~
length of job f

machine 1 a d £
yes

machine 2 b c e 9

o
—

Time

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - &) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let 6= (V,E), k be an instance of DOMINATING-SET. «— see Exercise 8.29
. Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (uv)eE
-d(u,v)=1if(u,v) e E
. Note that 6' satisfies the triangle inequality.
- Claim: 6 has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
. Thus, if 6 has a dominating set of size k, a (2 - ¢)-approximation
algorithm on 6" must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

Copyright 2000, Kevin Wayne 12

