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Competitive Facility Location

Input. Graph with positive node weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to
select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units
of profit? (Player one might play vindictively to minimize B's profit)

10 1 5 15 5 1 5 1 15 10

Yes if B = 20; no if B = 25.

Competitive Facility Location

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

Known PSPACE Iio‘mplete Problem

- To solve in poly-space, use recursion like QSAT, but at each

step there are up to n choices instead of 2.

. To show that it's complete, we show that QSAT polynomial

reduces o it. Given an instance of QSAT, we construct an
instance of COMPETITIVE-FACILITY such that player 2 can
force a win iff QSAT formula is false.
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Competitive Facility Location
assume nis odd__
Construction. Given instance ®(x;, ..., X,) = 3x,Vxp_q ... 3%, (C; A €y A .ACK)
of QSAT.
. Include a node for each literal and its negation and connect them.
- at most one of x; and its negation can be chosen
. Choose ¢ > k+2, and put weight ¢ on literal x' and its negation;
set B=chl+ 3+ | +ct+ 2+ 1.
- ensures variables are selected in order x,, X1, ..., X;.
. Asis, player 2 will lose by 1 unit: ¢!+ cm3+ |+ c4+c2
0on o

100 : 100
®&—®

10 10
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Competitive Facility Location

Construction. Given instance ®(x;, ..., X,) =3x,¥xp_1 ... 3%, (C; A €y A .ACy) Of
QSAT.
. Give player 2 one last move on which she can try to win.
. For each clause Cj, add node with value 1 and an edge to each of its
literals.

- Player 2 can make last move iff truth assignment defined alternately by
the players failed to satisfy some clause. =
10 10

XV X VX

JOM KLEINBERG - EVA TARDOS

Technical Detail:
Eliminate pointless clauses

XV Xy VX

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T
do?
A. Theory says you're unlikely to find a poly-time algorithm.

11.1 Load Balancing

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

p-approximation algorithm.
. Guaranteed fo run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
. Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum,
without even knowing what optimum value is!

s

Load Balancing Load Balancing: List Scheduling
Input. m identical machines; n jobs, job j has List-scheduling algorithm.
processi'ng time t;. ) ) . Consider n jobs in some fixed order. IE|
« Job j must run contiguously on one machine. - Assign job j to machine whose load is smallest so far. play

- A machine can process at most one job at a time.

. . ) List-Scheduling(m, n, t;,t,,...,t;) {
Def. Let J(i) be the subset of jobs assigned to for i =1 Jf, m { T
machine i. The load of machine i is L; = ;. 5 t;. L« 0 +—  loadonmachinei

J(i) « ¢ +— jobsassigned tomachine i

}
Def. The makespan is the maximum load on any

machine L = max; L;. for j =1 ton {
i = argmin, L, «—  machine i has smallest load
J(i) « J(i) U {j} < assign job j o machine i
L« L+t «— update load of machine i
Load balancing. Assign each job to a machine to )

minimize makespan SEEER S wp S

M=2 Machines. Subset Sum problem in disguise!

Implementation. O(n log m) using a priority queue.
= Search problem is NP-Hard

Copyright 2000, Kevin Wayne 2
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Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lesena L. The optimel meloxspon L' = mo iy,

Pf. Some moching nust procass the et tima-cossesing

jeb. -

Larenn 2. The optimal melespon £ > 23,8

Pf.

= The tatel pracacsing tima ks 3,1;.

« Onz of mmachined meest da ot & Lim frectionof
fetal wark. -

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load
before assignment isL;i-t; = Li-t; <L, foralll<k<m.

blue jobs scheduled before |

|
L [
I Y

0 H
Li-1 L

\

Ko

n o

Load Balancing: List Scheduling Analysis

Thesram. Gready clooritim is & 2-epprodmetion.

Pf. Consiver Joo! L, of bottlenack mochine i.

« Lot | be kot Joh schedided en machine I,

= Whan [ab | axsiqned fo meching I, § hod smoliest oo, T lead

befors assigumant 5Ly - ) = Li-f) < L, forallsksm
« S inevualities over off band divide by mc

k"f‘ézh Lemma 1
1% .
=;Zt. L1
Now Iz= -y + 2 s

< = I.’\
Lemma 2

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

'77:]0

optimal makespan = 10

Copyright 2000, Kevin Wayne

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

'77:10

machine 6 idle

machine 7 idle

machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t;, t,,...,t;) {
Sort jobs so that t; 2 t,2 .. 2 t,

for i =1 tom {
L« 0 —
JE) < ¢ —
}

load on machine i
jobs assigned fo machine i

for j =1 ton {
i = argmin, L,
J(i) « J(i) U {j} < ossignjob jtomachine i
L« L+ tg <« update load of machine i

}
return J(1), .., J(m)

«— machine i has smallest load




Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more than m jobs, L* > 2 t,.;.
Pf.
. Consider first m+1 jobs ty, ..., ty.1.

. Since the 1;'s are in descending order, each takes at least t,,; time.

- There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.
Li= (Li-t) + t; <

—_r 3

<L < %L
Lemma 3
(by observation, can assume number of jobs > m )

L*.
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Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is 6raham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, .., 2m
and one job of length m.
One processor gets 3 jobs by pigeonhole principle
Optimal makespan: m+(m+1)+(m+1) = 3m+2
LPT makespan: m + (3m/2+1)+(3m/2) = 4m+1

11.2 Center Selection

Center Selection Problem

Input. Set of nsitess;, ..., s, and integer k> 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

r(©)

@ center
m site

Center Selection Problem

Input. Set of nsitess,, .., s, and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.
. dist(s;, C) = min_ _ dist(s;, ¢) = distance from s; to closest
center.
. r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

. dist(x,x)=0 (identity)
. dist(x, y) = dist(y, x) (symmetry)
. dist(x, y) < dist(x, z) + dist(z, y) (triangle inequality)

2
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Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

@ center
m site
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Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce
the covering radius each time by as much as possible.

Remark: arbitrarily bad!

(]
greedy center 1

k= 2 centers

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the
site farthest from any existing center.

Greedy-Center-Selection(k, n, s;,S;,...,8,) {

c=¢

repeat k times {
Select a site s; with maximum dist(s;, C)
Add s; to C

} site farthest from any center

return C

Observation. Upon termination all centers in C are pairwise at
least r(C) apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < 3 r(C).
. For each site c; in C, consider ball of radius 3 r(C) around it.

« Exactly one ¢;* (strictly) inside each ball; let ¢; be the site paired with ¢*.

- At least one ¢;* site since r(C*) < 3 r(C)

- If ¢;* is in balls for both ¢; and ¢; then by the triangle inequality
dist(ci.c)) < dist(c;, ¢;*) + dist(cy, ¢;) < 3 r(C)+3 r(C) = r(C)

- Contradiction! Prior Observation = r(C) < dist(c,,cJ)

o C*
m sites

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < i r(C).

. For each site ¢; in C, consider ball of radius 3 r(C) around it.

. Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.

. Consider any site s and its closest center ¢* in C*.

. dist(s, €) < dist(s, ¢;) < dist(s, ¢*) + dist(c*, ¢;) < 2r(C*).

. Thusr(C) < 2r(C*). = \

A-inequality < r(C*) since c* s closest center

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center
selection problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place
centers anywhere.

e.g.. points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

11.6 LP Rounding: Vertex Cover

Copyright 2000, Kevin Wayne



Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4 weight = 11

4/16/2019

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident fo at least one vertex in S.

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E)
with vertex weights w; > 0, find a minimum weight subset of
nodes S such that every edge is incident to at least one
vertex in S.

Integer programming formulation.
- Model inclusion of each vertex i using a 0/1 variable x;.

0 if vertex i is not in vertex cover
X =
i . S
1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieVix=1}

. Objective function: minimize %, w; x;.

- Must take eitherior j: x;+x; > 1.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming
formulation.

(ILP) min > w;X;
iev
St X +X; > 1 (,j)e E
Xi e {01} ieV

Observation. If x* is optimal solution to (ILP), then
S={i e V:x* =1} is a min weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers ajj and b;, find integers X; that

satisfy:

D .
max c'x Yax; = b 1<i<m
j=1
56 M ab X 2 0 1<jsn

X el X integral 1<j<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

even if all coefficients are 0/1 and
at most two variables per inequality

Copyright 2000, Kevin Wayne

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
- Input: infegers ¢, b;, aj.
+ Output: real numbers x;.

i)

(P) max % c
(P) max c'x sl
s.t. AX

X

n
b st XX, = by I1<is<m
j=l

(Y

X; 2 0 1<j<n

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.




LP Feasible Region

LP geometry in 2D.

the inequalities |

The region satis
020,520
6

=0
n+lnzée
2+ 1326

X+ 2%,= 6

2%+ %, 6
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Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min Y w; X
iev
St X +X; > 1 (i,j))eE
X; > 0 ieV

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

ES
z

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S={ie V : x* > 3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
. Consider an edge (i, j) € E.
- Since x*;+ x*; 2 1, either x*; > 3or x*jz % = (i, j) covered.

Pf. [S has desired cost]
. Let S* be optimal vertex cover. Then

.
w2 Twix > 1 Xw
ieS* ieS ieS

LP is a relaxation x*,

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3607, even with unit weights.
\

105 - 21
Open research problem. Close the gap.
Theorem. [Khot-Regev 2003] No polynomial time p-approximation

for any constant p < 2 under a stronger conjecture called the
** Unique Games Conjecture.”

11.8 Knapsack Problem

Copyright 2000, Kevin Wayne

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant &> 0.
« Load balancing. [Hochbaum-Shmoys 19871
. Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
of f accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.
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Knapsack Problem Knapsack is NP-Complete
Knapsack problem. KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
. Given n objects and a "knapsack." values v;, a weight limit W, and a target value V, is there a subset S
. Tfem i has value v; > 0 and weighs w;> 0. ~— we'll assumew,<W X such that:
- Knapsack can carry weight up to W. ZS: W < W
- Goal: fill knapsack so as to maximize total value. 'ez v =V
ieS
1 1 1 SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
2 6 2 U, is there a subset S ¢ X whose elements sum to exactly U?
w=n 3 18 5
4 22 6 Claim. SUBSET-SUM < » KNAPSACK.
5 28 7 Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:
Vi=W =L Yu < U
ieS
V=W=U Ty = U
ies
P “
Knapsack Problem: Dynamic Programming 1 Knapsack Problem: Dynamic Programming IT
Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w. Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value
. Case 1: OPT does not select item i. exactly v.
- OPT selects best of 1, ..., i-1 using up to weight limit w . Case 1: OPT does not select item i.
. Case 2: OPT selects item i. - OPT selects best of 1, ..., i-1 that achieves exactly value v
- new weight limit = w - w; . Case 2: OPT selects item i.
- OPT selects best of 1, .., i-1 using up to weight limit w - w; - consumes weight w;, new value needed = v - v;
- OPT selects best of 1, ..., i-1 that achieves exactly value v
v i =0 0 if v=0
OPT(i,w)=y OPT(i-Lw) if w>w w if i=0,v>0
max{OPT(i-1,w), V;+ OPT(i-Lw-w,)} otherwise OPT (i, v)= OPT(i-1,v) s
Running time. O(n W) min{OPT(i-1,v), w;+ OPT(i—1,v—Vv;)} otherwise
- W = weight limit.
. Not polynomial in input size! PR
Running time. O(h V*) = O(? Vya,)-
. V* = optimal value = maximum v such that OPT(n, v) < W.
- Not polynomial in input size!
45 3
Knapsack: FPTAS Knapsack: FPTAS
Intuition for approximation algorithm. Knapsack FPTAS. Round up all values: 0, v = % i
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance. - Vmax = largest value in original instance
- Return optimal items in rounded instance. - & = precision parameter
-6 = scaling factor = € Vpe / n
Observation. Optimal solution to problems with V or \) are equivalent.
1 934,221 1 1 1 1
2 5,956,342 2 2 6 2 Intuition. V close fo v so optimal solution using Vis nearly optimal:
3 17,810,013 5 =) 3 18 5 V  small and integral so dynamic programming algorithm is fast.
4 21,217,800 6 4 22 6
5 27343199 7 5 28 7 Running fime. O(n® / ¢).
+ Dynamic program II running fime is O(n®9,,,). Where
w=1t W=l o V| _|n
max 0 s |
original instance rounded instance
47 a8

Copyright 2000, Kevin Wayne 8



Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, :i ‘(;—' 0

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution theri+g)Y v, > Y v,
ieS ies*

Pf. Let S* be any feasible solution satisfying weight constraint.

always round up

v £ XV
ies* ies*

< ¥ Solve rounded instance optimally
ies

< Y+ never round up by more than 0
ies

< Yv+no ISl<n
ics DP alg can take Voo,

< (I+e) XV N0 = &Vinge, Viax < Ties Vi

ies
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11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph 6 = (V, E), a vertex cover is a set S < V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight=2+2+4

weight = 11

Pricing Method

Pricing method. Each edge must be covered by some
vertfex.
Edge e = (i, j) pays price p, > 0 to use vertex iand j.

Fairness. Edges incident to vertex i should pay < w; in
total.

for each vertex i: ¥ p, <w
e=G.0)

Lemma. For any vertex cover S and any fair prices p,:

X pe < W(S).
Pf. .
TP <Y XpP< Xw o= wWS).
ecE ieS e=(i.j) ieS

each edge e covered by

sum fairness inequalities
at least one node in

for each node in S

Pricing Method
Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E

=w
Pe = 0

2 Pe=W
e=(i,J) |
while (Jedge i-j such that neither i nor j are tight)

select such an edge e
increase p, as much as possible until i or j tight
}

S « set of all tight nodes
return S

Copyright 2000, Kevin Wayne

Pricing Method

price of edge a-b
N

vertex weight

Figure 11.8
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Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

- Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

W)= Xwi=% Xp £ X XP =2Xp < 2WSH).
ies ieS e=(ij) eV e=(ij) ecE 1
fairness lemma
all nodes in S are tight g _y each edge counted twice
prices > 0

* 11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of m machines M: set of n jobs J.
. Job j must run contiguously on an authorized machine in
MJ oM.
+ Job j has processing time t;.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i.
The
load of machine iis L; = % 54 1.

Def. The makespan is the maximum load on any machine =

max; L;.

Generalized load balancing. Assign each job to an
authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

(IP) min L
st XX = forallj el
i
Tx; < L forallie M
i
Xij e {0, t;} foralljeJandieM;
Xj = 0 forallj e Jandig M;

LP relaxation.

(LP) min L
s.t. Xx; = t; foralljed
i
Txj < L forallieM
i
Xij > 0 foralljeJandie M;
Xjj = 0 foralljeJandigM;

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* > L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* > max; ;.
Pf. Some machine must process the most time-consuming job. =

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let 6(x) be the graph with an edge
from machine i to job j if x;; > 0. Then 6(x) is acyclic.
1

can transform x into another LP solution where
Pf. (deferred) 6(x) is acyclic if LP solver doesn't return such an x

6(x) acyclic o 6(x) eyclic
job

[] machine

Copyright 2000, Kevin Wayne
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Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where 6(x) is a forest. Root
forest 6(x) at some arbitrary machine node r.
« If job jis aleaf node, assign j to its parent machine i.
. If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

O job
[] machine

4/16/2019

Generalized Load Balancing: Analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x;; = t;.
Pf. Since i is a leaf, x; = O for all j # parent(i). LP constraint
guarantees %; x;; = 1;. =

Lemma 6. At most one non-leaf job is assighed to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

O b
[] machine

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP  Lemmal(LP is a relaxation)
Ttp= X < Xx L
jed je ield
jisaleaf jisaleaf

optimal value of LP
Lemma 2

- parent(i) bareneiy < L ¥

. Thus, the overall load L; < 2L*. =

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Xx; =t foralljed Supph
i

Xxj; < L forallieM
i

Xij > 0 foralljeJandie M
Xij = 0 foralljeJandigM;

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let 6(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution
(x', L) such that 6(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. Augment flow along the cycle C. «— flow conservation maintained
. Af least one edge from C is removed (and none are added).
- Repeat until 6(x") is acyclic.

3&3 3@3
6 : 6
4@(2 > 40<j >j
1 5 5
ot oy

augment along C

6(x) - 6(x")

Copyright 2000, Kevin Wayne

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t; fime if processed on machine i.
« 2-approximation algorithm via LP rounding.
« No 3/2-approximation algorithm unless P = NP.

11
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Load Balancing on 2 Machines

H Claim. Load balancing is hard even if only 2 machines.
Ex.rr‘a S Ildes Pf. NUMBER-PARTITIONING < », LOAD-BALANCE.

NP-complete by Exercise 8.26
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Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - &) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let 6= (V,E), k be an instance of DOMINATING-SET. «— see Exercise 8.29
. Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (uv)eE
-d(u,v)=1if(u,v) e E
. Note that 6' satisfies the triangle inequality.
- Claim: 6 has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
. Thus, if 6 has a dominating set of size k, a (2 - ¢)-approximation
algorithm on 6" must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.
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