
3/26/2019

1

CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Homework 5. Due on Thursday, March 28th at 11:59 PM (on Gradescope)

Midterm 2. April 3 @ 8PM (EE 170)
Practice Midterm Released Soon
3x5 Index Card (Double Sided)

Midterm 2

• When? 
• April 3rd from 8PM to 10PM (2 hours)

• Where?
• EE 170

• What can I bring?
• 3x5 inch index card with your notes (double sided)
• No electronics (phones, computers, calculators etc…)
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Midterm 2

• When? 
• April 3rd from 8PM to 10PM (2 hours)

• Where?
• EE 170

• What material should I study?
• The midterm will cover recent topics more heavily

• Network Flow 
• Max-Flow Min-Cut, Augmenting Paths, etc…
• Ford Fulkerson, Dinic’s Algorithm etc…
• Applications of Network Flow (e.g., Maximum Bipartite 

Matching)
• Linear Programming
• NP-Completeness

• Polynomial time reductions, P, NP, NP-Hard, 
NP-Completess, coNP

• PSPACE (only basic questions)
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Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.

YES:  vertices and faces of a dodecahedron.
6

Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.
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NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle  that contains every node in V?

Claim.  DIR-HAM-CYCLE  P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle  (e.g., (u,w,v).
 Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle .
 Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

Pf.  
 Suppose G' has an undirected Hamiltonian cycle '.
 ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

 Blue nodes in ' make up directed Hamiltonian cycle  in G, or 
reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT  P DIR-HAM-CYCLE.

Pf.   Given an instance  of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff  is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.
 Intuition:  traverse path i from left to right   set variable xi = 1.

s

t
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.

s

t

3k + 3

x1

x2

x3

clause node3211 VV xxxC 
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 For each clause:  add a node and 6 edges.

s

t

clause nodeclause node3211 VV xxxC  3212 VV xxxC 

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose 3-SAT instance has satisfying assignment x*.
 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right
– if x*i = 0, traverse row i from right to left
– for each clause Cj , there will be at least one row i in 

which we are going in "correct" direction to splice 
node Cj into tour

15

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose G has a Hamiltonian cycle .
 If  enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are 
connected by an edge e in G

– removing Cj from cycle, and replacing it with edge e 
yields Hamiltonian cycle on G - { Cj }

 Continuing in this way, we are left with Hamiltonian cycle ' 
in
G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff ' traverses row i left to right.
 Since  visits each clause node Cj , at least one of the paths 

is traversed in "correct" direction, and each clause is 
satisfied.   ▪
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT  P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE  P LONGEST-PATH.
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE  P TSP.
Pf.
 Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

 TSP instance has tour of length  n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies -inequality.

d(u, v)    
 1 if (u, v)   E

 2 if (u, v)   E





Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

Numerical Problems
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Subset Sum (proof from book)

Construction.  Let X  Y  Z be a instance of 3D-MATCHING with 
triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.
 Let X = { x1, x2, x3 x4 },  Y = { y1, y2, y3, y4 } ,  Z = { z1, z2, z3, z4 }
 For each triplet t= (xi, yj, zk )  T, create an integer wt with 3n digits 

that has a 1 in positions i, n+j, and 2n+k.

Claim. 3D-matching iff some subset sums to W = 111,…, 111.

100,010,001

1,010,001,000

1,010,000,010

1,010,000,100

10,001,000,001

100,010,001,000

10,000,010,100

100,001,000,010

100,100,001

x2 y2 z4

x4 y3 z4

x3 y1 z2

x3 y1 z3

x3 y1 z1

x4 y4 z4

x1 y2 z3

x2 y4 z2

x1 y1 z1

Triplet ti wi

0 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4

111,111,111,111

use base m+1
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Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned 
into two subsets that add up to the same value? 

Claim.  SUBSET-SUM  P PARTITION.
Pf.  Let W, w1, …, wn be an instance of SUBSET-SUM.
 Create instance of PARTITION with m = n+2 elements.

– v1 = w1, v2 = w2, …, vn = wn,   vn+1 = 2 i wi - W,   vn+2 = i wi + W

 There exists a subset that sums to W iff there exists a partition 
since two new elements cannot be in the same partition.  ▪

vn+2 =  i wi + W

vn+1 = 2 i wi - W              

i wi - W

W subset A

subset B

½ i vi
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Randall Munro
http://xkcd.com/c287.html

Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring

27

3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register 
so that no more than k registers are used and no two program 
variables that are needed at the same time are assigned to the 
same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem 
iff interference graph is k-colorable.

Fact.  3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3.
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3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR that 
is 3-colorable iff  is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.

T

B

F

x1 x1 x2 x2 xn xnx3 x3

true false

base
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

T F

B

x1 x2 x3

  Ci  x1 V x2 V x3

6-node gadget

true
false
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

  Ci  x1 V x2 V x3

T F

B

x1 x2 x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose 3-SAT formula  is satisfiable.
 Color all true literals T.
 Color node below green node F, and node below that B.
 Color remaining middle row nodes B.
 Color remaining bottom nodes T or F as forced.  ▪

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

  Ci  x1 V x2 V x3

true
false

Extra Slides

8.10  A Partial Taxonomy of Hard Problems

36

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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4 Color Theorem
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Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors 
so that no adjacent regions have the same color?

YES instance.

39

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors 
so that no adjacent regions have the same color?

NO instance.

40

Def.  A graph is planar if it can be embedded in the plane in such a way 
that no two edges cross.
Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it 
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

41

Planarity testing.  [Hopcroft-Tarjan 1974] O(n).

Remark.  Many intractable graph problems can be solved in poly-time if 
the graph is planar; many tractable graph problems can be solved 
faster if the graph is planar.

Planarity Testing

simple planar graph can have at mos

42

Planar Graph 3-Colorability

Q. Is this planar graph 3-colorable?
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Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR  P PLANAR-GRAPH-3-COLOR.

Pf sketch.  Create a vertex for each region, and an edge between 
regions that share a nontrivial border.
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Planar Graph 3-Colorability

Claim.  W is a planar graph such that:
 In any 3-coloring of W, opposite corners have the same color. 
 Any assignment of colors to the corners in which opposite corners 

have the same color extends to a 3-coloring of W.

Pf.  Only 3-colorings of W are shown below (or by permuting colors).
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Planar Graph 3-Colorability

Claim.  3-COLOR  P PLANAR-GRAPH-3-COLOR.
Pf.  Given instance of 3-COLOR, draw graph in plane, letting edges cross.
 Replace each edge crossing with planar gadget W.
 In any 3-coloring of W, a  a' and b  b'.
 If a  a' and b  b' then can extend to a 3-coloring of W.

a crossing

a a'

b

b'

a a'

b

b'

gadget W
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Planar Graph 3-Colorability

Claim.  3-COLOR  P PLANAR-GRAPH-3-COLOR.
Pf.  Given instance of 3-COLOR, draw graph in plane, letting edges cross.
 Replace each edge crossing with planar gadget W.
 In any 3-coloring of W, a  a' and b  b'.
 If a  a' and b  b' then can extend to a 3-coloring of W.

multiple crossings

a'a a'

gadget W

W W Wa

47

Planar k-Colorability

PLANAR-2-COLOR.  Solvable in linear time.

PLANAR-3-COLOR.  NP-complete.

PLANAR-4-COLOR.  Solvable in O(1) time.

Theorem.  [Appel-Haken, 1976]  Every planar map is 4-colorable.
 Resolved century-old open problem.
 Used 50 days of computer time to deal with many special cases.
 First major theorem to be proved using computer.

False intuition.  If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR
and PLANAR-5-COLOR.

48

Graph minor theorem.  [Robertson-Seymour 1980s]

Corollary.  There exist an O(n3) algorithm to determine if a graph can 
be embedded in the torus in such a way that no two edges cross.

Pf of theorem.  Tour de force.

Polynomial-Time Detour
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Graph minor theorem.  [Robertson-Seymour 1980s]

Corollary.  There exist an O(n3) algorithm to determine if a graph can 
be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1.  The proof is highly non-constructive!
Mind boggling fact 2.  The constant of proportionality is enormous!

Theorem.  There exists an explicit O(n) algorithm.
Practice.  LEDA implementation guarantees O(n3).

Polynomial-Time Detour

Unfortunately, for any instance G = (V, E) that one could fit 
into the known universe, one would easily prefer n70 to even 
constant time, if that constant had to be one of Robertson 
and Seymour's.   - David Johnson


