## CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

Homework 5. Due on Thursday, March 28th at 11:59 PM (on Gradescope)

Midterm 2. April 3 @ 8PM (EE 170)
Practice Midterm Released Soon
3x5 Index Card (Double Sided)

#### Midterm 2

- . When?
  - . April 3<sup>rd</sup> from 8PM to 10PM (2 hours)
- . Where?
  - . EE 170
- · What can I bring?
  - 3x5 inch index card with your notes (double sided)
  - No electronics (phones, computers, calculators etc...)

#### Midterm 2

- . When?
  - April 3rd from 8PM to 10PM (2 hours)
- . Where?
  - . EE 170
- What material should I study?
  - The midterm will cover recent topics more heavily
    - Network Flow
      - Max-Flow Min-Cut, Augmenting Paths, etc...
      - Ford Fulkerson, Dinic's Algorithm etc...
      - Applications of Network Flow (e.g., Maximum Bipartite Matching)
    - Linear Programming
    - NP-Completeness
      - Polynomial time reductions, P, NP, NP-Hard, NP-Completess, coNP
    - PSPACE (only basic questions)

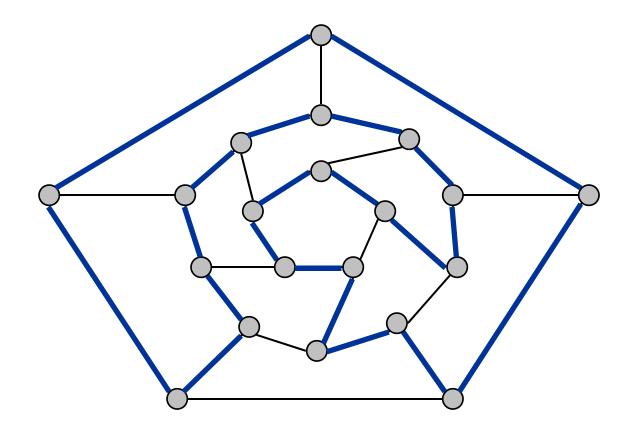
## 8.5 Sequencing Problems

#### Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

## Hamiltonian Cycle

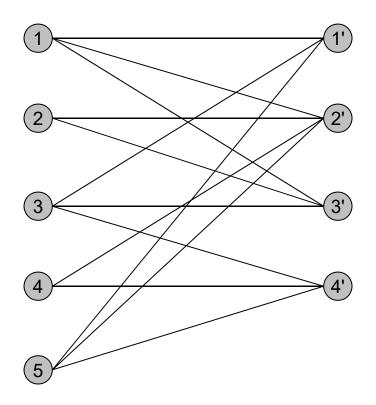
HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle  $\Gamma$  that contains every node in V.



YES: vertices and faces of a dodecahedron.

## Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle  $\Gamma$  that contains every node in V.



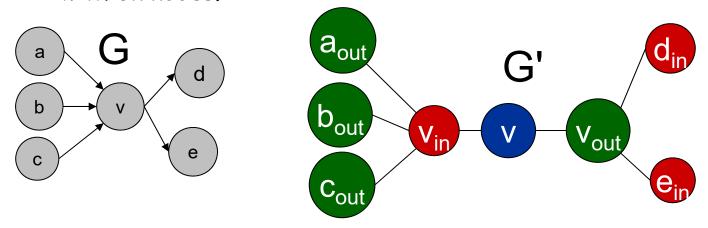
NO: bipartite graph with odd number of nodes.

### Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle  $\Gamma$  that contains every node in V?

Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.

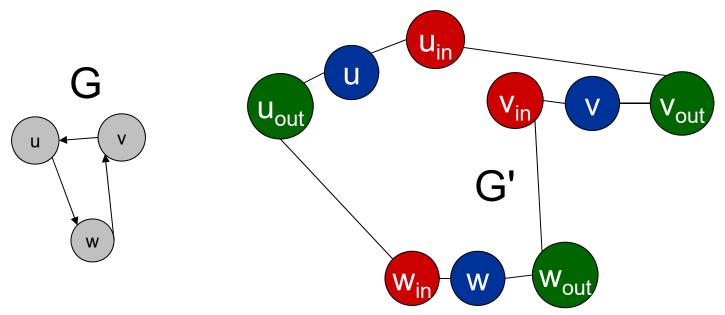


### Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

#### Pf. $\Rightarrow$

- Suppose G has a directed Hamiltonian cycle  $\Gamma$  (e.g., (u,w,v).
- Then G' has an undirected Hamiltonian cycle (same order).
  - For each node v in directed path cycle replace v with vin, v, vout



### Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

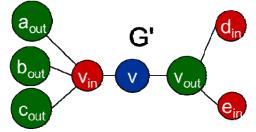
#### Pf. $\Rightarrow$

- Suppose G has a directed Hamiltonian cycle  $\Gamma$ .
- Then G' has an undirected Hamiltonian cycle (same order).
  - For each node v in directed path cycle replace v with  $v_{in}$ , v,  $v_{out}$

#### Pf. ⇐

- Suppose G' has an undirected Hamiltonian cycle  $\Gamma'$ .
- $lacksymbol{\Gamma}$  must visit nodes in G' using one of following two orders:

• Blue nodes in  $\Gamma'$  make up directed Hamiltonian cycle  $\Gamma$  in G, or reverse of one. •



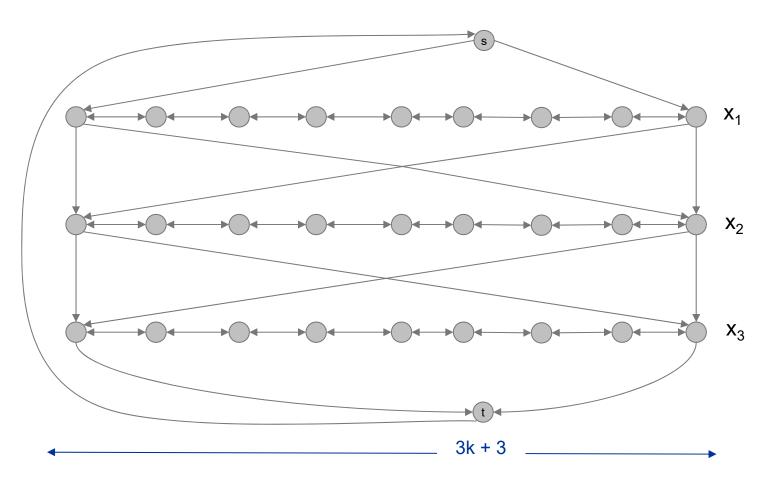
Claim.  $3-SAT \leq_P DIR-HAM-CYCLE$ .

Pf. Given an instance  $\Phi$  of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff  $\Phi$  is satisfiable.

Construction. First, create graph that has 2<sup>n</sup> Hamiltonian cycles which correspond in a natural way to 2<sup>n</sup> possible truth assignments.

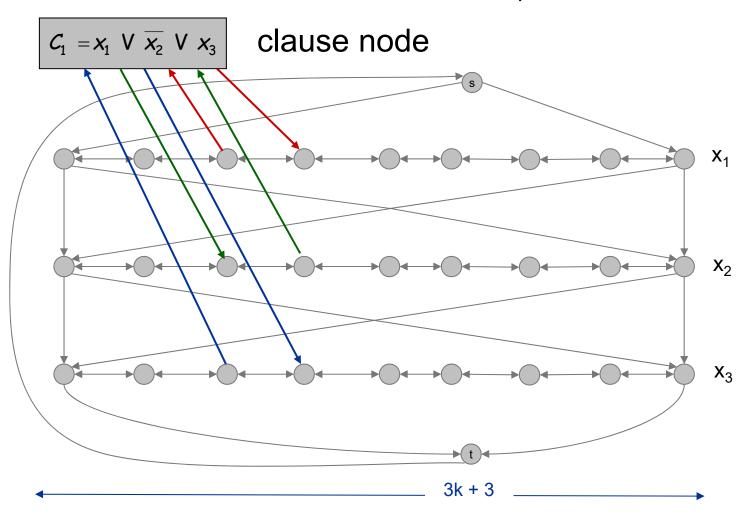
Construction. Given 3-SAT instance  $\Phi$  with n variables  $x_i$  and k clauses.

- Construct G to have 2<sup>n</sup> Hamiltonian cycles.
- Intuition: traverse path i from left to right  $\Leftrightarrow$  set variable  $x_i = 1$ .



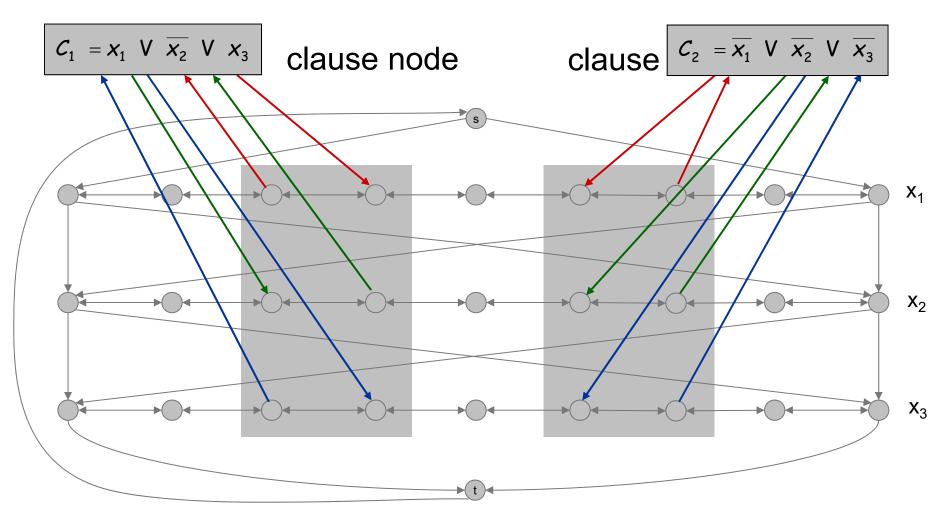
Construction. Given 3-SAT instance  $\Phi$  with n variables  $x_i$  and k clauses.

Construct G to have 2<sup>n</sup> Hamiltonian cycles.



Construction. Given 3-SAT instance  $\Phi$  with n variables  $x_i$  and k clauses.

For each clause: add a node and 6 edges.



Claim.  $\Phi$  is satisfiable iff G has a Hamiltonian cycle.

#### Pf. $\Rightarrow$

- Suppose 3-SAT instance has satisfying assignment  $x^*$ .
- Then, define Hamiltonian cycle in G as follows:
  - if  $x_i^* = 1$ , traverse row i from left to right
  - if  $x_i^* = 0$ , traverse row i from right to left
  - for each clause  $C_{\rm j}$  , there will be at least one row i in which we are going in "correct" direction to splice node  $C_{\rm j}$  into tour

Claim.  $\Phi$  is satisfiable iff G has a Hamiltonian cycle.

#### **Pf**. ⇐

- Suppose G has a Hamiltonian cycle  $\Gamma$ .
- . If  $\Gamma$  enters clause node  $\textbf{\textit{C}}_{i}$  , it must depart on mate edge.
  - thus, nodes immediately before and after  $C_j$  are connected by an edge e in G
  - removing  $C_j$  from cycle, and replacing it with edge e yields Hamiltonian cycle on G {  $C_j$  }
- . Continuing in this way, we are left with Hamiltonian cycle  $\Gamma^{\text{'}}$  in

$$G - \{C_1, C_2, \ldots, C_k\}.$$

- Set  $x^*_i = 1$  iff  $\Gamma'$  traverses row i left to right.
- Since  $\Gamma$  visits each clause node  $C_j$ , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. •

#### Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

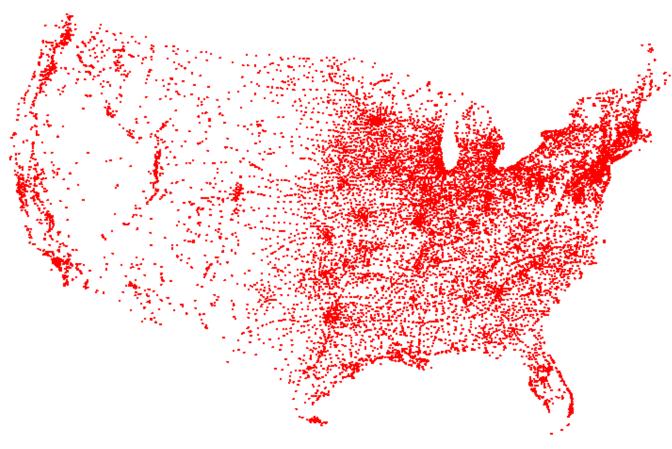
LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim.  $3-SAT \leq_P LONGEST-PATH$ .

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE  $\leq p$  LONGEST-PATH.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

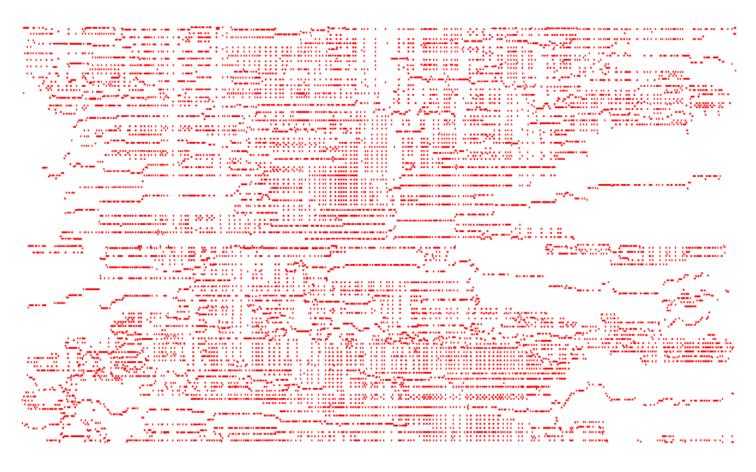
TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour

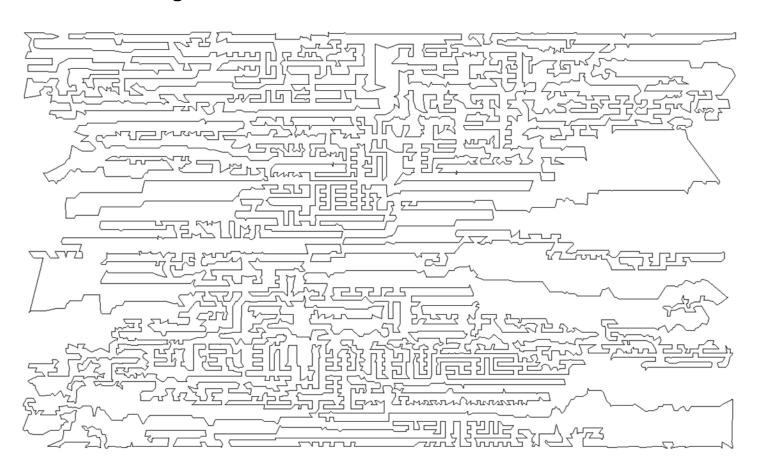
Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE  $\leq_P$  TSP. Pf.

• Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function  $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$ 

■ TSP instance has tour of length  $\leq$  n iff G is Hamiltonian. ■

Remark. TSP instance in reduction satisfies  $\Delta$ -inequality.

## Numerical Problems

#### Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

#### Subset Sum (proof from book)

Construction. Let  $X \cup Y \cup Z$  be a instance of 3D-MATCHING with triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.

- Let  $X = \{x_1, x_2, x_3, x_4\}$ ,  $Y = \{y_1, y_2, y_3, y_4\}$ ,  $Z = \{z_1, z_2, z_3, z_4\}$
- For each triplet  $t=(x_i, y_j, z_k) \in T$ , create an integer  $w_t$  with 3n digits that has a 1 in positions i, n+j, and 2n+k.

use base m+1

Claim. 3D-matching iff some subset sums to W = 111,..., 111.

| Triplet t <sub>i</sub> |                       |                       | <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>x</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | y <sub>1</sub> | <b>y</b> <sub>2</sub> | <b>y</b> <sub>3</sub> | y <sub>4</sub> | <b>Z</b> <sub>1</sub> | $z_2$ | $z_3$ | $Z_4$ | W <sub>i</sub>  |
|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|-----------------------|-------|-------|-------|-----------------|
| <b>x</b> <sub>1</sub>  | <b>y</b> <sub>2</sub> | $z_3$                 | 1                     | 0                     | 0                     | 0                     | 0              | 1                     | 0                     | 0              | 0                     | 0     | 1     | 0     | 100,001,000,010 |
| $\mathbf{x}_2$         | y <sub>4</sub>        | $Z_2$                 | 0                     | 1                     | 0                     | 0                     | 0              | 0                     | 0                     | 1              | 0                     | 1     | 0     | 0     | 10,000,010,100  |
| <b>x</b> <sub>1</sub>  | y <sub>1</sub>        | <b>Z</b> <sub>1</sub> | 1                     | 0                     | 0                     | 0                     | 1              | 0                     | 0                     | 0              | 1                     | 0     | 0     | 0     | 100,010,001,000 |
| $\mathbf{x}_2$         | <b>y</b> <sub>2</sub> | $Z_4$                 | 0                     | 1                     | 0                     | 0                     | 0              | 1                     | 0                     | 0              | 0                     | 0     | 0     | 1     | 10,001,000,001  |
| <b>x</b> <sub>4</sub>  | <b>y</b> <sub>3</sub> | $Z_4$                 | 0                     | 0                     | 0                     | 1                     | 0              | 0                     | 1                     | 0              | 0                     | 0     | 0     | 1     | 100,100,001     |
| <b>x</b> <sub>3</sub>  | y <sub>1</sub>        | $Z_2$                 | 0                     | 0                     | 1                     | 0                     | 1              | 0                     | 0                     | 0              | 0                     | 1     | 0     | 0     | 1,010,000,100   |
| <b>x</b> <sub>3</sub>  | y <sub>1</sub>        | $z_3$                 | 0                     | 0                     | 1                     | 0                     | 1              | 0                     | 0                     | 0              | 0                     | 0     | 1     | 0     | 1,010,000,010   |
| <b>x</b> <sub>3</sub>  | y <sub>1</sub>        | <b>Z</b> <sub>1</sub> | 0                     | 0                     | 1                     | 0                     | 1              | 0                     | 0                     | 0              | 1                     | 0     | 0     | 0     | 1,010,001,000   |
| <b>X</b> <sub>4</sub>  | <b>y</b> <sub>4</sub> | $Z_4$                 | 0                     | 0                     | 0                     | 1                     | 0              | 0                     | 0                     | 1              | 0                     | 0     | 0     | 1     | 100,010,001     |

111,111,111,111

#### Partition

SUBSET-SUM. Given natural numbers  $w_1$ , ...,  $w_n$  and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers  $v_1$ , ...,  $v_m$ , can they be partitioned into two subsets that add up to the same value?

$$^{1}$$
  $^{1}$ /<sub>2</sub>  $\Sigma_{i}$   $V_{i}$ 

Claim. SUBSET-SUM  $\leq_{P}$  PARTITION.

Pf. Let W,  $w_1$ , ...,  $w_n$  be an instance of SUBSET-SUM.

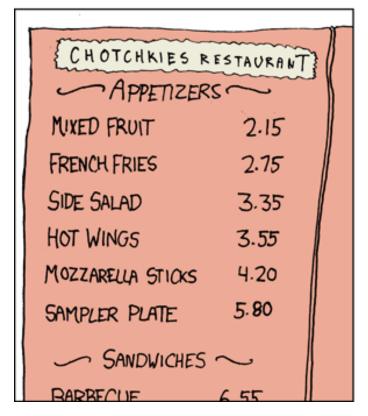
• Create instance of PARTITION with m = n+2 elements.

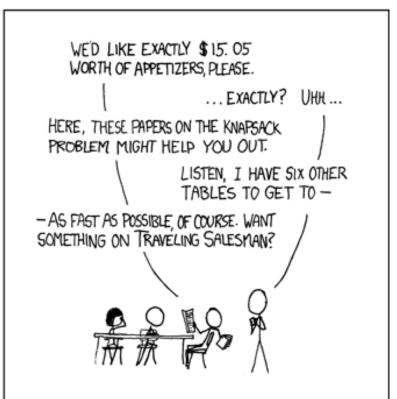
$$- v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W$$

 There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition. ■



#### MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS





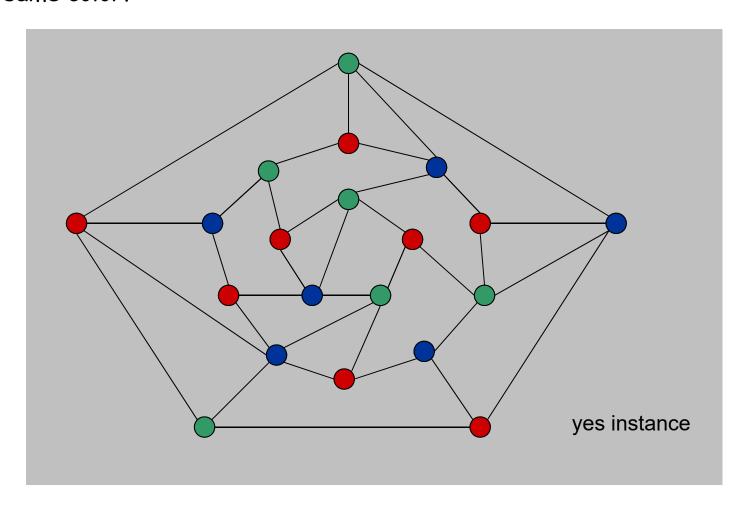
Randall Munro http://xkcd.com/c287.html

## 8.7 Graph Coloring

#### Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?



#### Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR  $\leq P$  k-REGISTER-ALLOCATION for any constant  $k \geq 3$ .

Claim.  $3-SAT \leq_P 3-COLOR$ .

Pf. Given 3-SAT instance  $\Phi$ , we construct an instance of 3-COLOR that is 3-colorable iff  $\Phi$  is satisfiable.

#### Construction.

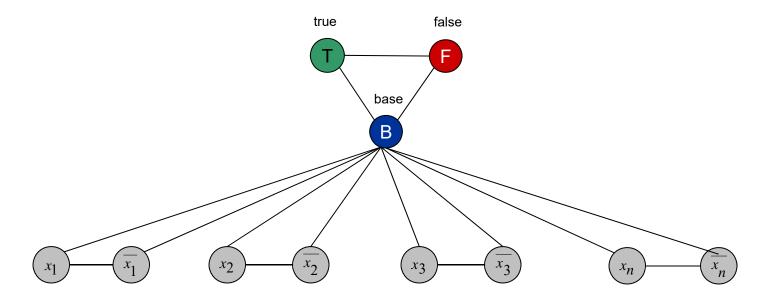
- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

Claim. Graph is 3-colorable iff  $\Phi$  is satisfiable.

Pf.  $\Rightarrow$  Suppose graph is 3-colorable.

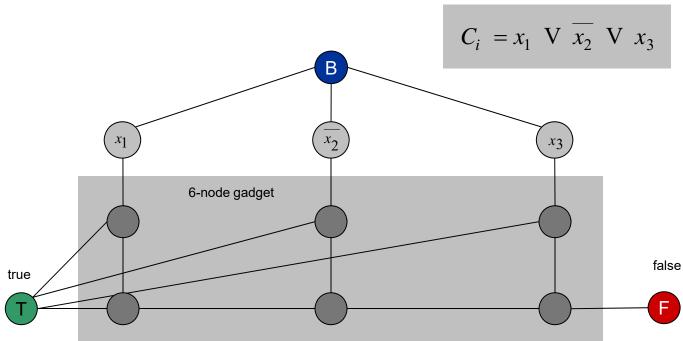
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.



Claim. Graph is 3-colorable iff  $\Phi$  is satisfiable.

Pf.  $\Rightarrow$  Suppose graph is 3-colorable.

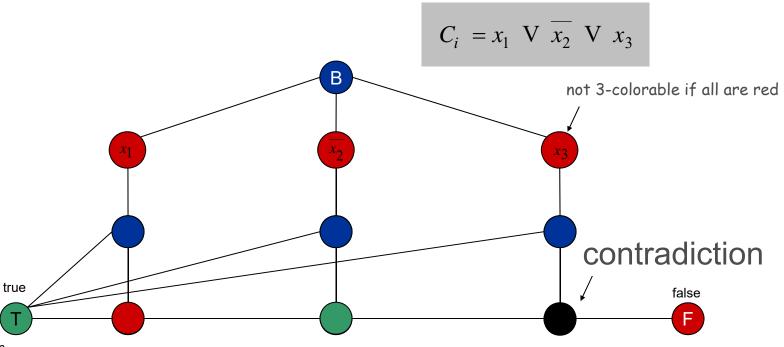
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.



Claim. Graph is 3-colorable iff  $\Phi$  is satisfiable.

Pf.  $\Rightarrow$  Suppose graph is 3-colorable.

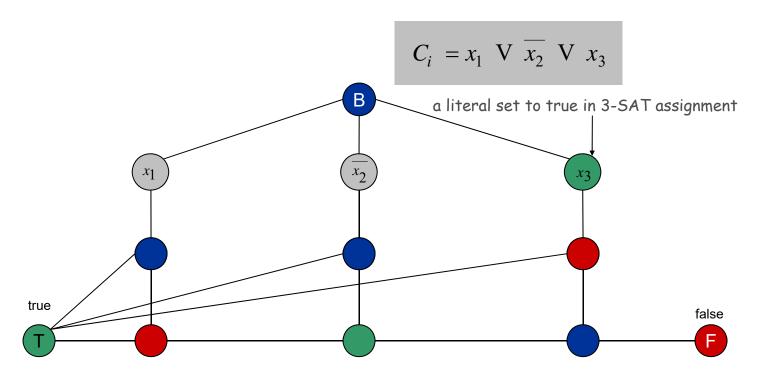
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.



Claim. Graph is 3-colorable iff  $\Phi$  is satisfiable.

Pf.  $\leftarrow$  Suppose 3-SAT formula  $\Phi$  is satisfiable.

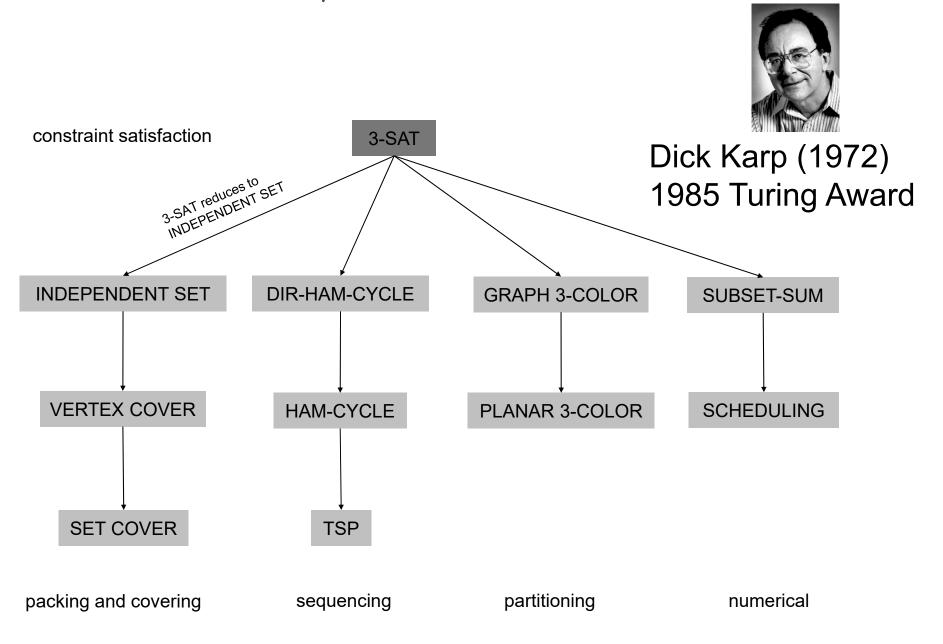
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.



## Extra Slides

# 8.10 A Partial Taxonomy of Hard Problems

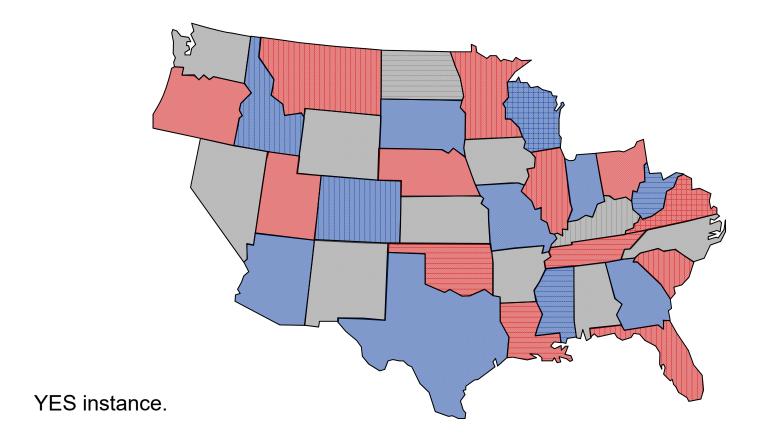
## Polynomial-Time Reductions



# 4 Color Theorem

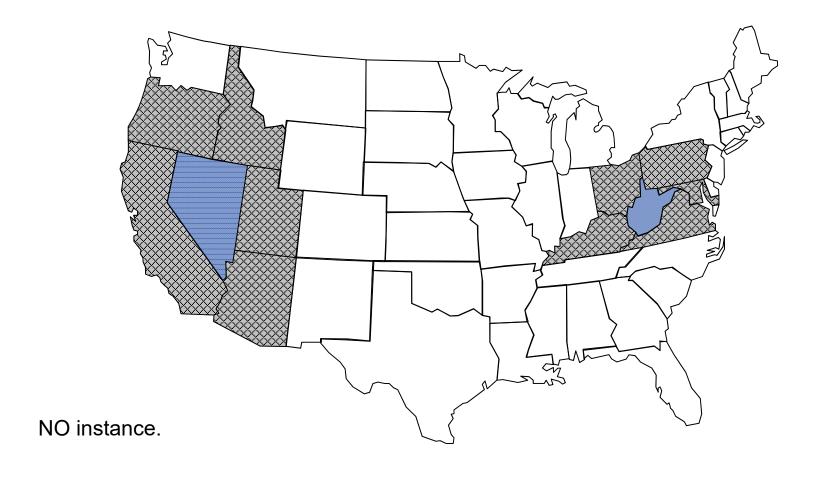
# Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



# Planar 3-Colorability

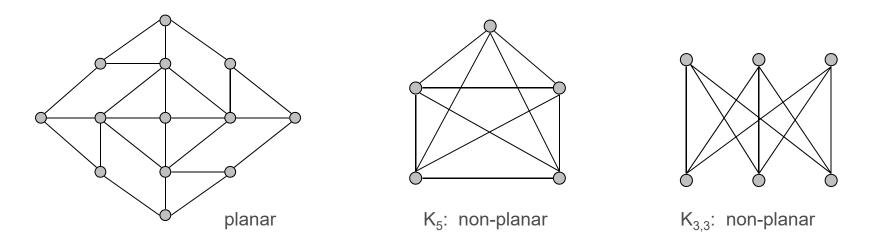
PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



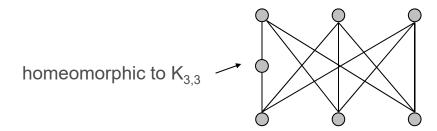
#### Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.



Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to  $K_5$  or  $K_{3,3}$ .



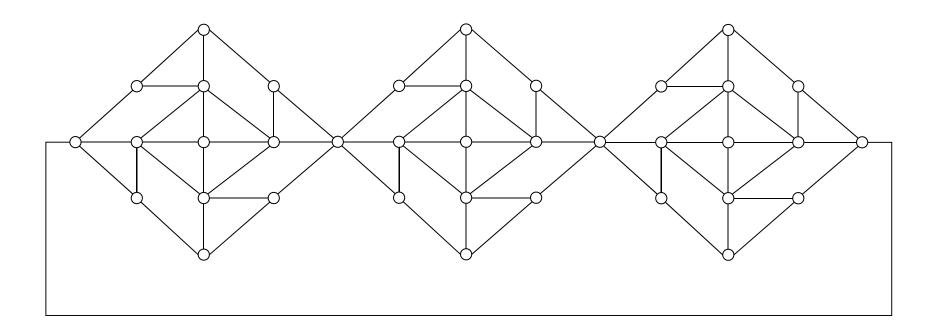
#### Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] O(n).

simple planar graph can have at mos

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

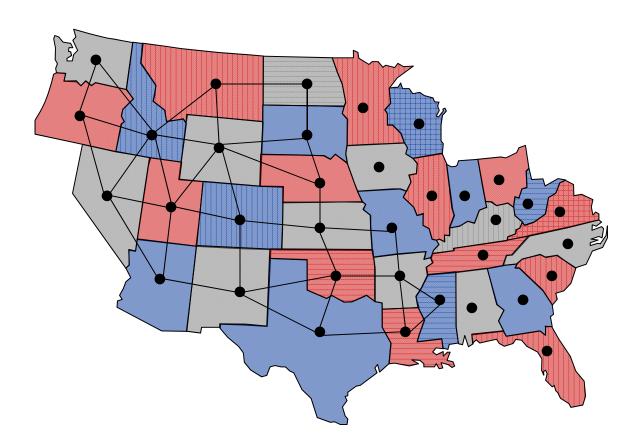
# Q. Is this planar graph 3-colorable?



# Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR  $\leq P$  PLANAR-GRAPH-3-COLOR.

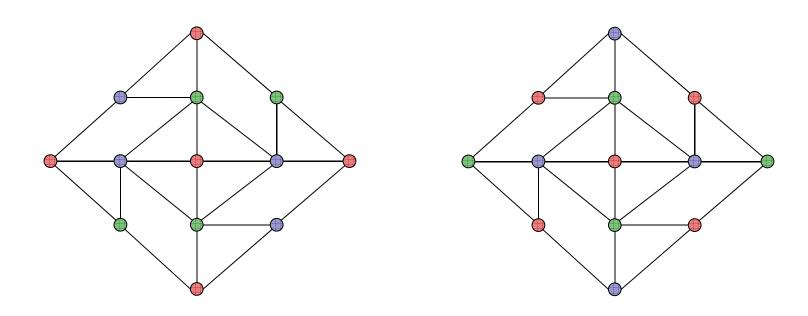
Pf sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.



Claim. W is a planar graph such that:

- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.

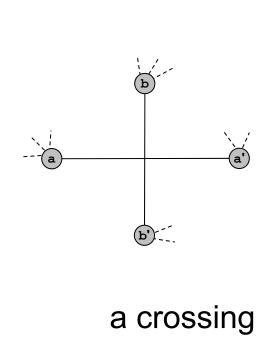
Pf. Only 3-colorings of W are shown below (or by permuting colors).

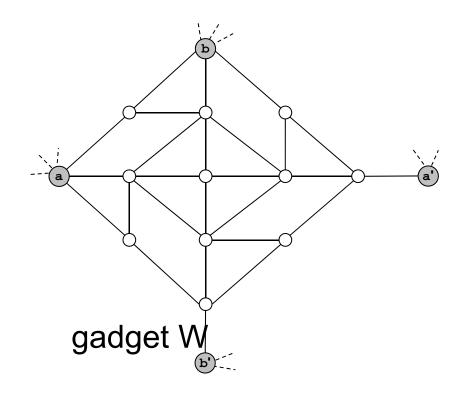


Claim. 3-COLOR  $\leq p$  PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W,  $a \neq a'$  and  $b \neq b'$ .
- If  $a \neq a'$  and  $b \neq b'$  then can extend to a 3-coloring of W.

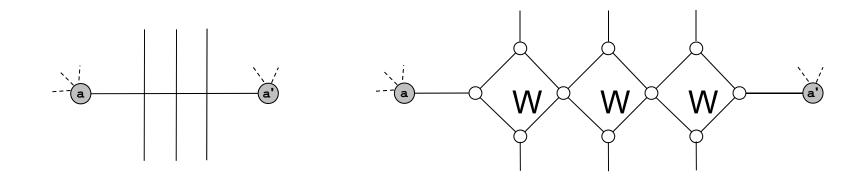




Claim. 3-COLOR  $\leq p$  PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W,  $a \neq a'$  and  $b \neq b'$ .
- If  $a \neq a'$  and  $b \neq b'$  then can extend to a 3-coloring of W.



multiple crossings

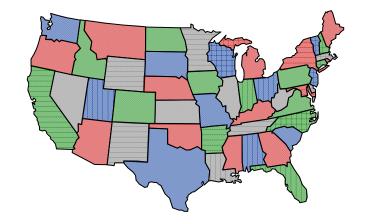
gadget W

# Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.



Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

#### Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an  $O(n^3)$  algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Pf of theorem. Tour de force.

# Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an  $O(n^3)$  algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive!

Mind boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance G = (V, E) that one could fit into the known universe, one would easily prefer  $n^{70}$  to even *constant* time, if that constant had to be one of Robertson and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm. Practice. LEDA implementation guarantees  $O(n^3)$ .