Recap

• Polynomial Time Reductions ($X \leq_P Y$)
 - Cook vs Karp Reductions
 - 3-SAT \leq_P Independent Set (Gadgets)
• Decision Problems vs Search Problems
• Self-Reducibility

Complexity Classes

• Polynomial Time Certifier
• Definition of P, NP, EXP
• $P \subseteq NP \subseteq EXP$

8.4 NP-Completeness

NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_P Y$.

NP-hard. A problem Y (not necessarily in NP) with the property that for every problem X in NP, $X \leq_P Y$

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = NP$.

Proof.
- **\Rightarrow** If $P = NP$ then Y can be solved in poly-time since Y is in NP.
- **\Leftarrow** Suppose Y can be solved in poly-time.
 - Let X be any problem in NP. Since $X \leq_P Y$, we can solve X in poly-time. This implies $NP \subseteq P$.
 - We already know $P \subseteq NP$. Thus $P = NP$.

Fundamental question. Do there exist “natural” NP-complete problems?

Polynomial Transformation

Def. Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

NP-Complete Problems

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

Q: Why is CIRCUIT-SAT in NP?
The *First* NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Proof (sketch).
- Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 - Consider some problem X in NP. It has a poly-time certifier $C(s, t)$.
 - To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t) = \text{yes}$.
 - View $C(s, t)$ as an algorithm on $|s| + p(|s|)$ bits (input s, certificate t) and convert it into a poly-size circuit K.
 - First $|s|$ bits are hard-coded with s.
 - Remaining $p(|s|)$ bits represent bits of t.
 - Circuit K is satisfiable iff there exists t s.t. $C(s, t) = \text{yes}$.

Example

Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

$$
\begin{align*}
\text{independent set of size 2?} & \\
\text{independent set?} & \\
\text{Hard-coded inputs (graph description)} & \\
\text{n inputs (nodes in independent set)} & \\
\end{align*}
$$

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_P Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_P Y$ then Y is NP-complete.

Proof. Let W be any problem in NP. Then $W \leq_P X \leq_P Y$.
- By transitivity, $W \leq_P Y$.
- Hence Y is NP-complete.
 - by definition of NP-complete
 - by assumption

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.
Extent and Impact of NP-Completeness

Extent of NP-completeness [Papadimitriou 1995]
- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords).
- More than “compiler”, “operating system”, “database”
- Broad applicability and classification power.
- “Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly.”

NP-completeness can guide scientific inquiry.
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.

More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in shear flows.
- Medicine: reconstructing 3-D shape from biplane angiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.
- Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is not satisfiable?

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.
- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT \(\equiv\) P TAUTOLOGY, but how do we classify TAUTOLOGY?

\[\text{not even known to be in NP}\]

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, COMPOSITES.

Def. Given a decision problem \(X\), its complement \(\overline{X}\) is the same problem with the yes and no answers reverse.
Ex. \(X = \{0, 1, 4, 6, 8, 9, 10, 12, 14, 15, \ldots\}\)
\(\overline{X} = \{2, 3, 5, 7, 11, 13, 17, 23, 29, \ldots\}\)

co-NP. Complements of decision problems in NP.
Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

NP = co-NP?

Fundamental question. Does NP = co-NP?
- Do yes instances have succinct certificates if no instances do?
- Consensus opinion: no.

Theorem. If NP = co-NP, then P = NP.
Pf idea.
- P is closed under complementation.
- If P = NP, then NP is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.
Good Characterizations

Good characterization. [Edmonds 1965] $\text{NP} \cap \text{co-NP}$.
- If problem X is in both NP and co-NP, then:
 - for yes instance, there is a succinct certificate
 - for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.
- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that $|N(S)| < |S|$.

Observation. $\text{P} \subseteq \text{NP} \cap \text{co-NP}$

Proof of max-flow min-cut theorem led to stronger result
that max-flow and min-cut are in P.

- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
 - [Khachiyan, 1979] linear programming
 - [Agrawal-Kayal-Saxena, 2002] primality testing

Fact. Factoring is in $\text{NP} \cap \text{co-NP}$, but not known to be in P.

- If poly-time algorithm for factoring, can break RSA cryptosystem.

8.5 Sequencing Problems

Basic genres:*
- Packing problems: SET-PACKING, INDEPENDENT-SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.
Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

Claim: $\text{DIR-HAM-CYCLE} \leq \text{HAM-CYCLE}$.

Pf. Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.

![Graph transformation from directed to undirected]

Claim: G has a Hamiltonian cycle iff G' does.

Pf.

- **\Rightarrow** Suppose G has a directed Hamiltonian cycle Γ.
- Then Γ' has an undirected Hamiltonian cycle (same order).
- For each node v in directed path cycle replace v with v_{in}, v, v_{out}.

Pf.

- **\Leftarrow** Suppose G' has an undirected Hamiltonian cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.

3-SAT Reduces to Directed Hamiltonian Cycle

Claim: $3\text{-SAT} \leq \text{DIR-HAM-CYCLE}$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.
- First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.
3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamiltonian cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = 1$.

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.
- Suppose Φ has a satisfying assignment x^*.
- If $x^*_i = 1$, traverse row i from left to right.
- If $x^*_i = 0$, traverse row i from right to left.

3-SAT Reduces to Directed Hamiltonian Cycle

Pf.

1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
2. Show $\text{HAM-CYCLE} \leq_p \text{LONGEST-PATH}$.
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

All 33,638 cities in US with a population of at least 600
Reference: http://www.tsp.gatech.edu

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu

HAM-CYCLE: given a graph $G = (V, E)$, does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_p TSP.

Pf.
• Given instance $G = (V, E)$ of HAM-CYCLE, create n cities with distance function
\[
d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \not\in E \end{cases}
\]
• TSP instance has tour of length $\leq n$ if and only if G is Hamiltonian.

Remark. TSP instance in reduction satisfies \(\Delta\)-inequality.
8.7 Graph Coloring

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET,
- Covering problems: SET-COVER, VERTEX-COVER,
- Constraint satisfaction problems: SAT, 3-SAT,
- Sequencing problems: HAMILTONIAN-CYCLE, TSP,
- Partitioning problems: 3D-MATCHING, 3-COLOR,
- Numerical problems: SUBSET-SUM, KNAPSACK.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_k k-REGISTER-ALLOCATION for any constant k \geq 3.

3-Colorability

Claim. 3-SAT \leq_p 3-COLOR.

Pf. Given 3-SAT instance \varphi, we construct an instance of 3-COLOR that is 3-colorable iff \varphi is satisfiable.

Construction.
- For each literal, create a node.
- Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- Connect each literal to its negation.
- For each clause, add gadget of 6 nodes and 13 edges.
- To be described next.

Claim. Graph is 3-colorable iff \varphi is satisfiable.

Pf. Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

Claim. Graph is 3-colorable iff \varphi is satisfiable.

Pf. Suppose graph is 3-colorable.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.
Claim. Graph is 3-colorable iff ϕ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (i) ensures each literal is T or F.
 - (ii) ensures a literal and its negation are opposites.
 - (iv) ensures at least one literal in each clause is T.

3-Colorability

Claim. Graph is 3-colorable iff ϕ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT formula ϕ is satisfiable.
 - Color all true literals T.
 - Color node below green node F, and node below that B.
 - Color remaining middle row nodes B.
 - Color remaining bottom nodes T or F as forced.