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Recap

•Polynomial Time Reductions (X  P Y )
• Cook vs Karp Reductions
• 3-SAT  P Independent Set  (Gadgets)

•Decision Problems vs Search Problems
• Self-Reducibility

•Complexity Classes
• Polynomial Time Certifier
• Definition of P, NP, EXP
• P ⊆ NP ⊆ EXP
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8.4  NP-Completeness
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Polynomial Transformation

Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary 
instances of problem X can be solved using:
 Polynomial number of standard computational steps, plus
 Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial transforms (Karp) to problem Y if given any 
input x to X, we can construct an input y such that x is a yes instance 
of X iff y is a yes instance of Y. 

we require |y| to be of size polynomial in |x|

we abuse notation  p and blur distinction

Note.  Polynomial transformation is polynomial reduction 
with just one call to oracle for Y, exactly at the end of the 
algorithm for X.  Almost all previous reductions were of this 
form. 

Open question.  Are these two concepts the same with 
respect to NP?
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NP-Complete

NP-complete.  A problem Y in NP with the property that for every 
problem X in NP, X  p Y.

NP-hard. A problem Y (not necessarily in NP) with the property 
that for every problem X in NP, X  p Y 

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable 
in poly-time iff P = NP.
Pf.   If P = NP then Y can be solved in poly-time since Y is in NP.
Pf.   Suppose Y can be solved in poly-time.
 Let X be any problem in NP.  Since X  p Y, we can solve X in

poly-time. This implies NP   P.
 We already know P   NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete 
problems?
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1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT
gates, is there a way to set the circuit inputs so that the output is 1?

Q: Why is CIRCUIT-SAT in NP?
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sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf.  (sketch)
 Any algorithm that takes a fixed number of bits n as input and 

produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 Consider some problem X in NP.  It has a poly-time certifier 
C(s, t).
To determine whether s is in X, need to know if there exists 
a certificate t of length p(|s|) such that C(s, t) = yes.

 View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, 
certificate t) and convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s
– remaining p(|s|) bits represent bits of t

 Circuit K is satisfiable iff there exists t s.t C(s, t) = yes.
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Example

Ex.  Construction below creates a circuit K whose inputs can be set so 
that K outputs true iff graph G has an independent set of size 2.
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v w

n
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G = (V, E), n = 3



9

Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
 Step 1.  Show that Y is in NP.
 Step 2.  Choose an NP-complete problem X.
 Step 3.  Prove that X  p Y.

Justification.  If X is an NP-complete problem, and Y is a problem 
in NP with the property that X  P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W   P  X    P Y.
 By transitivity, W  P Y. 
 Hence Y is NP-complete.  ▪ by assumptionby definition of

NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.
Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.
 Let K be any circuit.
 Create a 3-SAT variable xi for each circuit element i.
 Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses:
– x1 = x4  x5    add 3 clauses:
– x0 = x1  x2    add 3 clauses:

 Hard-coded input values and output value.
– x5 = 0   add 1 clause:
– x0 = 1   add 1 clause:

 Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  ▪
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Observation.  All problems below are NP-complete and polynomial 
reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic 
examples.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-
complete.

Notable exceptions.  Factoring, graph isomorphism, Nash 
equilibrium.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 
 Prime intellectual export of CS to other disciplines.
 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"
 Broad applicability and classification power.
 "Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 
scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
 1926:  Ising introduces simple model for phase transitions.
 1944:  Onsager solves 2D case in tour de force.
 19xx:  Feynman and other top minds seek 3D solution.
 2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.



8.9  co-NP and the Asymmetry of NP
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Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1.  SAT vs. TAUTOLOGY.
 Can prove a CNF formula is satisfiable by giving such an assignment.
 How could we prove that a formula is not satisfiable? 

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.
 Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
 How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT  P TAUTOLOGY, but how do we 
classify TAUTOLOGY?

not even known to be in NP
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NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.
Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 
with the yes and no answers reverse.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }
Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.
Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.
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Fundamental question.  Does NP = co-NP?
 Do yes instances have succinct certificates iff no instances do?
 Consensus opinion:  no.

Theorem.  If NP  co-NP, then P  NP.
Pf idea.
 P is closed under complementation.
 If P = NP, then NP is closed under complementation.
 In other words, NP = co-NP.
 This is the contrapositive of the theorem.

NP = co-NP ?
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Good Characterizations

Good characterization.  [Edmonds 1965]   NP   co-NP.
 If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate
– for no instance, there is a succinct disqualifier

 Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.
 If yes, can exhibit a perfect matching.
 If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations

Observation.  P  NP   co-NP.
 Proof of max-flow min-cut theorem led to stronger result 

that max-flow and min-cut are in P.
 Sometimes finding a good characterization seems easier than 

finding an efficient algorithm.

Fundamental open question.  Does P = NP   co-NP?
 Mixed opinions.
 Many examples where problem found to have a non-trivial 

good characterization, but only years later discovered to be 
in P.

– linear programming [Khachiyan, 1979]
– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP   co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem
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PRIMES is in NP  co-NP

Theorem.  PRIMES is in NP  co-NP.
Pf.  We already know that PRIMES is in co-NP, so it suffices to prove 
that PRIMES is in NP.

Pratt's Theorem.  An odd integer s is prime iff there exists an integer 
1 < t < s  s.t. t s1  1 (mod s)

t (s1) / p  1 (mod s)
for all prime divisors p of s-1

Certifier.
- Check s-1 = 2  2  3  36,473.
- Check 17s-1 = 1 (mod s).
- Check 17(s-1)/2  437,676 (mod s).
- Check 17(s-1)/3  329,415 (mod s).
- Check 17(s-1)/36,473  305,452 (mod s).

Input.  s = 437,677
Certificate.  t = 17, 22  3  36,473

prime factorization of s-1
also need a recursive certificate
to assert that 3 and 36,473 are prime

use repeated squaring
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FACTOR is in NP  co-NP

FACTORIZE.  Given an integer x, find its prime factorization.
FACTOR.  Given two integers x and y, does x have a nontrivial factor 
less than y?

Theorem.  FACTOR  P FACTORIZE.

Theorem.  FACTOR is in NP  co-NP.
Pf.
 Certificate:  a factor p of x that is less than y.
 Disqualifier:  the prime factorization (𝑥1, 𝑥2, … , 𝑥𝑘) of 𝑥 (where each 

prime factor is greater than y).
– We can verify (in polynomial time) that 
 Each factor 𝑥𝑖 

is prime (PRIMES is in P)
 Each factor is greater than y i.e. y  𝑥𝑖 for each 𝑖  𝑘
 Product of factors is 𝑥 ൌ 𝑥1 ൈ 𝑥2 ൈ ⋯ ൈ 𝑥𝑘.
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Primality Testing and Factoring

Easy To Show:  PRIMES  P FACTOR.

Natural question:  Does FACTOR  P PRIMES ?
Consensus opinion.  No.

State-of-the-art.
 PRIMES is in P.
 FACTOR not believed to be in P.

RSA cryptosystem.
 Based on dichotomy between complexity of two problems.
 To use RSA, must generate large primes efficiently.
 To break RSA, suffixes to find efficient factoring algorithm.

proved in 2001



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle  that contains every node in V?

Claim.  DIR-HAM-CYCLE  P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'
v vout
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle  (e.g., (u,w,v).
 Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

vu

w

vin

wout

uin

win

G

G'

v vout

u
uout

w
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle .
 Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

Pf.  
 Suppose G' has an undirected Hamiltonian cycle '.
 ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

 Blue nodes in ' make up directed Hamiltonian cycle  in G, or 
reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT  P DIR-HAM-CYCLE.

Pf.   Given an instance  of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff  is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.
 Intuition:  traverse path i from left to right   set variable xi = 1.

s

t

3k + 3

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.

s

t

3k + 3

x1

x2

x3

clause node3211 VV xxxC 
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 For each clause:  add a node and 6 edges.

s

t

clause nodeclause node3211 VV xxxC  3212 VV xxxC 

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose 3-SAT instance has satisfying assignment x*.
 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right
– if x*i = 0, traverse row i from right to left
– for each clause Cj , there will be at least one row i in 

which we are going in "correct" direction to splice 
node Cj into tour
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose G has a Hamiltonian cycle .
 If  enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are 
connected by an edge e in G

– removing Cj from cycle, and replacing it with edge e 
yields Hamiltonian cycle on G - { Cj }

 Continuing in this way, we are left with Hamiltonian cycle ' 
in
G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff ' traverses row i left to right.
 Since  visits each clause node Cj , at least one of the paths 

is traversed in "correct" direction, and each clause is 
satisfied.   ▪
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT  P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE  P LONGEST-PATH.
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE  P TSP.
Pf.
 Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

 TSP instance has tour of length  n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies -inequality.

d(u, v)    
 1 if (u, v)   E
 2 if (u, v)   E






42

Randall Munro
http://xkcd.com/c287.html



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register 
so that no more than k registers are used and no two program 
variables that are needed at the same time are assigned to the 
same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem 
iff interference graph is k-colorable.

Fact.  3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3.
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3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR that 
is 3-colorable iff  is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.

T

B

F

x1 x1 x2 x2 xn xnx3 x3

true false

base
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

T F

B

x1 x2 x3

  Ci  x1 V x2 V x3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

Ci  x1 V x2 V x3

T F

B

x1 x2 x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose 3-SAT formula  is satisfiable.
 Color all true literals T.
 Color node below green node F, and node below that B.
 Color remaining middle row nodes B.
 Color remaining bottom nodes T or F as forced.  ▪

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

Ci  x1 V x2 V x3

true false


