

Algorithm Desig	n Patterns and Anti-Patterns
Algorithm design patterns. Greedy. Divide-and-conquer. Dynamic programming. Duality. Reductions.	Ex. O(n log n) interval scheduling. O(n log n) FFT. O(n²) edit distance. O(n³) bipartite matching. Circulation via Network Flow Bipartite. Matching via Network Flow Minimax Strategy via Linear Programming
Local search.Randomization.	
Algorithm design anti-patterns. • NP-completeness. • PSPACE-completeness. • Undecidability.	O(n ^k) algorithm unlikely. O(n ^k) certification algorithm unlikely. No algorithm possible.

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

don't confuse with reduces from Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$. computational model supplemented by special piece of hardware that solves instances of Y in a single step.

Remarks.

- We pay for time to write down instances sent to black box $\,\Rightarrow\,$ instances of Y must be of polynomial size.
- Note: Cook reducibility.
 - iore: Cook reducibility.
 - in contrast to Karp reductions

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X\leq_p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$.

up to cost of reduction

SET COVER: Given a set U of elements, a collection S_1,S_2,\ldots,S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- . The ith piece of software provides the set $\mathbf{S}_i \subseteq \mathbf{U}$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

Polynomial-Time Reduction

Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Review
 Basic reduction strategies. Simple equivalence: INDEPENDENT-SET = p VERTEX-COVER. Special case to general case: VERTEX-COVER ≤ p SET-COVER. Encoding with gadgets: 3-SAT ≤ p INDEPENDENT-SET.
Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$. Pf idea. Compose the two algorithms.
Ex: $3-SAT \leq p$ INDEPENDENT-SET $\leq p$ VERTEX-COVER $\leq p$ SET-COVER.

Self-Reducibility

Decision problem. Does there exist a vertex cover of size $\leq k^2$

Search problem. Find vertex cover of minimum cardinality.

- Self-reducibility. Search problem \leq_{P} decision version.
- Applies to all (NP-complete) problems in this chapter.
 Justifies our focus on decision problems.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- . (Binary) search for cardinality k^\star of min vertex cover. . Find a vertex v such that $G-\{v\}$ has a vertex cover of
- size $\leq k^{\star}$ 1. - any vertex in any min vertex cover will have this
- property
- Include v in the vertex cover.
- Recursively find a min vertex cover in $G \stackrel{?}{-} \{v\}$.

Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- . Algorithm A solves problem X: A(s) = yes iff $s \in X.$

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, } Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|⁸.

Problem	Description	Algorithm	Yes	No	
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16	
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51	
PRIMES	Is x prime?	AK5 (2002)	53	51	
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta	
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	

Definition of P

P Decision problems for which there is a poly-time algorithm

NP Certification algorithm intuition. Certificer views things from "managerial" viewpoint. Certificer doesn't determine whether s ∈ X on its own; rather, it checks a proposed proof t that s ∈ X. Def. Algorithm C(s, t) is a certifier for problem X if for every string s, s ∈ X iff there exists a string t such that C(s, t) = yes. "certificate" or "witness" NP. Decision problems for which there exists a poly-time certifier. C(s, t) is a poly-time algorithm and |t| = p(|s|) for some polynomial p(). Remark, NP stands for nondeterministic polynomial-time.

