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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Homework 4: Due tomorrow (March 8) at 11:59 PM 

Recap

•Linear Programming
• Very Powerful Technique (Subject of Entire Courses)
• Our Focus: Using Linear Programming as a Tool

• Solving Network Flow using Linear Programming
• Finding Minimax Optimal Strategy in 2-Player Zero Sum Game
• Operations Research (Brewery Example)

•Solving Linear Programs
• Simplex Intuition: 

• Optimal point is an “extreme point”
• No “local optimum”

• Simplex Runs in Exponential Time in Worst Case
• But other algorithms (e.g., Ellipsoid) run in polynomial time
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2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Shooter scores 80% of time when shooter aims 
right and goalie blocks left

Minimax Optimal Strategy (possibly randomized) best 
strategy you can find given that opponent is rational (and knows 
your strategy)

How can we find Minimax Optimal Strategy?

2-Player Zero-Sum Games

Player 1 Mixed Strategy: 𝑝ଵ, … , 𝑝 (n actions)

Suppose Player 2 plays action j

Player 1 receives reward 𝑚 with probability 𝑝

 Player 1 receives expected reward ∑ 𝑝𝑚 when player 2 plays j

 Player 2 receives expected reward െ ∑ 𝑝𝑚

Player 2 will select j to maximize െ ∑ 𝑝𝑚

(Equivalently, minimize ∑ 𝑝𝑚 )

Therefore, expected value of Strategy  𝑝ଵ, … , 𝑝 to player 1 is 

𝑉1 𝑝ଵ, … , 𝑝 ൌ min


 𝑝𝑚



Best Strategy 𝑝ଵ
∗, … , 𝑝

∗ should maximize 𝑉ଵ
∗ ൌ 𝑉1 𝑝ଵ

∗, … , 𝑝
∗
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Finding Minimax Optimal Solution using Linear Programming

Variables: p1,…pn and v  (pi is probability of action i)
Goal: Maximize v (our expected reward).

Constraints: 
• 𝑝ଵ, … , 𝑝  0
• 1  𝑝ଵ   …  𝑝  1
• For all columns j we have

 𝑝𝑚



 𝑣

𝑚 denotes reward when player 1 takes action i and player 2 
takes action j.

Duality: 𝑉ଵ
∗ ൌ െ𝑉ଶ

∗
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Expected reward 
when player 2 
takes
action j

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Maximize

𝑣,
𝑆𝐿  0, S𝑅  0,1  𝑆𝐿  S𝑅  1,

𝑆𝐿 
1
2

 S𝑅 
4
5

  𝑣, 𝑆𝐿
9

10
 S𝑅

1
3

 𝑣 , 𝑣, 𝑆𝐿, S𝑅

Goalie Blocks Left Goalie Blocks Right

Pr shoot
left/rightShooter Minimax (solve in Mathematica)
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2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Maximize

𝑣,
𝑆𝐿  0, S𝑅  0,1  𝑆𝐿  S𝑅  1,

𝑆𝐿 1 2⁄  S𝑅 4 5⁄  𝑣,
𝑆𝐿ሺ9/10ሻ  S𝑅 1 3⁄  𝑣

, 𝑣, 𝑆𝐿, S𝑅

Solution: {v->0.638462,L->0.538462,R->0.461538}
- Shooter guaranteed to score at least 63.846% of the time by 
shooting left 53.846% of time

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Maximize

𝑣,
𝐵𝐿  0, B𝑅  0, 1  𝐵𝐿  B𝑅  1,

𝐵𝐿 െ
1
2

 B𝑅 െ
9

10
 𝑣, 𝐵𝐿 െ 4

5
 B𝑅 െ

1
3

  𝑣 , 𝑣, 𝐵𝐿, B𝑅

Shooter Minimax (solve in Mathematica)
Pr block left/right

Shooter Shoots Left Shooter Shoots Right

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Maximize

𝑣,
𝐵𝐿  0, B𝑅  0,1  𝐵𝐿  B𝑅  1,
𝐵𝐿 െ 1 2⁄  B𝑅 െ 9 10⁄  𝑣,

𝐵𝐿ሺെ4/5ሻ  B𝑅 െ1 3⁄   𝑣

, 𝑣, 𝐵𝐿, B𝑅

Solution: {v->-0.638462,BL->0.653846,BR->0.346154}
- Goal scored at most 63.846% of time if goalie blocks right 
65.384% of the time
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Chapter 8

NP and Computational
Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns. Ex.
 Greedy. O(n log n) interval scheduling.
 Divide-and-conquer. O(n log n) FFT.
 Dynamic programming. O(n2) edit distance.
 Duality. O(n3) bipartite matching.
 Reductions. Circulation via Network Flow

Bipartite Matching via Network Flow
Minimax Strategy via Linear Programming

 Local search. 
 Randomization.

Algorithm design anti-patterns.
 NP-completeness. O(nk) algorithm unlikely.
 PSPACE-completeness. O(nk) certification algorithm unlikely.
 Undecidability. No algorithm possible.

8.1  Polynomial-Time Reductions
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Classify Problems According to Computational Requirements

Q.  Which problems will we be able to solve in practice?

A working definition.  [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 

1966] 

Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

14

Classify Problems

Desiderata.  Classify problems according to those that can be 
solved in polynomial-time and those that cannot.

Provably requires exponential-time.
 Given a Turing machine, does it halt in at most k steps?
 Given a board position in an n-by-n generalization of chess,

can black guarantee a win?

Frustrating news.  Huge number of fundamental problems have 
defied classification for decades.

This chapter.  Show that these fundamental problems are 
"computationally equivalent" and appear to be different 
manifestations of one really hard problem.
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Polynomial-Time Reduction

Desiderata'.  Suppose we could solve X in polynomial-time. What 
else could we solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary 
instances of problem X can be solved using:
 Polynomial number of standard computational steps, plus
 Polynomial number of calls to oracle that solves problem Y.

Notation.  X  P Y. 

Remarks.
 We pay for time to write down instances sent to black box  

instances of Y must be of polynomial size.
 Note:  Cook reducibility.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

in contrast to Karp reductions
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X  P Y and Y can be solved in polynomial-time,  
then X can also be solved in polynomial time.

Establish intractability.  If X  P Y and X cannot be solved in 
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction

Reduction By Simple Equivalence

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.
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Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge at most 
one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.
Ex.  Is there an independent set of size  7?  No.

independent set
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge, at least 
one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.
Ex.  Is there a vertex cover of size  3?  No.

vertex cover
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V  S is a vertex cover.

vertex cover

independent set
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V  S is a vertex 
cover.


 Let S be any independent set.
 Consider an arbitrary edge (u, v).
 S independent  u  S or v  S   u  V  S or v  V  S.
 Thus, V  S covers (u, v).


 Let V  S be any vertex cover.
 Consider two nodes u  S and v  S.
 Observe that (u, v)  E since V  S is a vertex cover.
 Thus, no two nodes in S are joined by an edge   S 

independent set. ▪

Reduction from Special Case to General Case

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.
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Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of 
subsets of U, and an integer k, does there exist a collection of  k of 
these sets whose union is equal to U?

Sample application.
 m available pieces of software.
 Set U of n capabilities that we would like our system to have.
 The ith piece of software provides the set Si  U of capabilities.
 Goal:  achieve all n capabilities using fewest pieces of software.

Ex:
U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER  P SET-COVER.
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set 
cover instance whose size equals the size of the vertex cover instance.

Construction.  
 Create SET-COVER instance:

– k = k,  U = E,  Sv = {e  E : e incident to v }
 Set-cover of size  k iff vertex cover of size  k.  ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 
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Polynomial-Time Reduction

Basic strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.

8.2  Reductions via "Gadgets"

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction via "gadgets."

27

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth 
assignment?

3-SAT:  SAT where each clause contains (at most) 3 literals.

Satisfiability

  C j  x1  x2  x3

  xi   or  xi

     C1 C2  C3 C4

x1  x2  x3   x1  x2  x3   x2  x3   x1  x2  x3 

each corresponds to a different variable
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT  P INDEPENDENT-SET.
Pf.  Given an instance  of 3-SAT, we construct an instance (G, k) of 
INDEPENDENT-SET that has an independent set of size k iff  is 
satisfiable.

Construction.
 G contains 3 vertices for each clause, one for each literal.
 Connect 3 literals in a clause in a triangle.
 Connect literal to each of its negations.

  x2   x3

  x1

  x1   x2   x4

  x1  x2

  x3

k = 3

G

  
    x1  x2  x3   x1  x2  x3   x1  x2  x4 
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = || iff  is 
satisfiable.

Pf.   Let S be independent set of size k.
 S must contain exactly one vertex in each triangle.
 Set these literals to true.
 Truth assignment is consistent and all clauses are satisfied.

Pf   Given satisfying assignment, select one true literal from 
each triangle. This is an independent set of size k.  ▪

  x2   x3

  x1

  x1   x2   x4

  x1  x2

  x3

k = 3

G

and any other variables in a consistent way

  
    x1  x2  x3   x1  x2  x3   x1  x2  x4 
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Review

Basic reduction strategies.
 Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.
 Special case to general case:  VERTEX-COVER  P SET-COVER.
 Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

Transitivity.  If X  P Y and Y  P Z, then X  P Z.
Pf idea.  Compose the two algorithms.

Ex:  3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-
COVER.
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Self-Reducibility

Decision problem.  Does there exist a vertex cover of size 
 k?
Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem  P decision version.
 Applies to all (NP-complete) problems in this chapter.
 Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.
 (Binary) search for cardinality k* of min vertex cover.
 Find a vertex v such that G  { v } has a vertex cover of 

size  k* - 1.
– any vertex in any min vertex cover will have this 

property
 Include v in the vertex cover.
 Recursively find a min vertex cover in G  { v }.

delete v and all incident edges

8.3  Definition of NP
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Decision Problems

Decision problem.
 X is a set of strings.
 Instance:  string s.
 Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string 
s, A(s) terminates in at most p(|s|) "steps", where p() is some 
polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s
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Definition of P

P.  Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y? Grade school 
division 51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between 
x and y less than 5?

Dynamic 
programming

niether 
neither

acgggt 
ttttta

LSOLVE Is there a vector x that 
satisfies Ax = b?

Gauss-Edmonds 
elimination

0 1 1

2 4 2

0 3 15
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NP

Certification algorithm intuition.
 Certifier views things from "managerial" viewpoint.
 Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every 
string s,  s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time
certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t|  p(|s|) for some polynomial p().

"certificate" or "witness"

36

Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 
exists iff s is composite.  Moreover |t|  |s|.

Certifier.  

Instance.  s = 437,669.
Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {
if (t  1 or t  s)

return false
else if (s is a multiple of t)

return true
else 

return false
}
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Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.

x1  x2  x3   x1  x2  x3   x1  x2  x4   x1   x3   x4 

x1 1, x2 1, x3  0, x4 1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 
once, and that there is an edge between each pair of adjacent nodes in 
the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.
EXP.  Decision problems for which there is an exponential-time algorithm.
NP.  Decision problems for which there is a poly-time certifier.

Claim.  P   NP.
Pf.  Consider any problem X in P.
 By definition, there exists a poly-time algorithm A(s) that solves X.
 Certificate: t = , certifier C(s, t) = A(s). ▪

Claim.  NP   EXP.
Pf.  Consider any problem X in NP.
 By definition, there exists a poly-time certifier C(s, t) for X.
 To solve input s, run C(s, t) on all strings t with |t|  p(|s|).
 Return yes, if C(s, t) returns yes for any of these. ▪
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The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 Is the decision problem as easy as the certification problem?
 Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)
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The Simpson's:  P = NP?

Copyright © 1990, Matt Groening
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Futurama:  P = NP?

Copyright © 2000, Twentieth Century Fox
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Looking for a Job?

Some writers for the Simpsons and Futurama.
 J. Steward Burns.  M.S. in mathematics, Berkeley, 1993.
 David X. Cohen.  M.S. in computer science, Berkeley, 1992.
 Al Jean.  B.S. in mathematics, Harvard, 1981.
 Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990.
 Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989.

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
Shoot Right 0.8 1/3

Shooter Minimax (solve in Mathematica)

Goalie Blocks Left Goalie Blocks Right

Pr shoot
left/right

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

2-Player Zero-Sum Games

Example: Shooter-Goalie

46

Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3

Shooter Minimax (solve in Mathematica)

Shooter Shoots Left Shooter Shoots Right

Pr block
left/right

2-Player Zero-Sum Games

Example: Shooter-Goalie
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Block Left Block Right
Shoot Left 1/2 0.9
shoot Right 0.8 1/3


