CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Homework 4: Due tomorrow (March 8) at 11:59 PM

Recap

.Linear Programming
Very Powerful Technique (Subject of Entire Courses)
. Our Focus: Using Linear Programming as a Tool
- Solving Network Flow using Linear Programming
- Finding Minimax Optimal Strategy in 2-Player Zero Sum Game
- Operations Research (Brewery Example)
.Solving Linear Programs
Simplex Intuition:
- Optimal point is an "extreme point”
- No "local optimum”
Simplex Runs in Exponential Time in Worst Case
- But other algorithms (e.g., Ellipsoid) run in polynomial time

2-Player Zero-Sum Games

Example: Shooter-Goalie

—
2

shoot Right [oX: 1/ 3

7

Shooter scores 80% of time when shooter aims
right and goalie blocks left

Minimax Optimal Strategy (possibly randomized) best
strategy you can find given that opponent is rational (and knows

your strategy)

How can we find Minimax Optimal Strategy?

2-Player Zero-Sum Games

Player 1 Mixed Strategy: p,,..,p, (n actions)
Suppose Player 2 plays action j

—~Player 1 receives reward m;; with probability p;
- Player 1 receives expected reward };; pym;; when player 2 plays j

> Player 2 receives expected reward —Y;p;m;;

Player 2 will select j to maximize —}; pym;;
(Equivalently, minimize ¥; p;m;;)

Therefore, expected value of Strategy p;, ..., p, o player 1is

Vi(py, -, pn) = min {Z pimij}
[

Best Strategy pj, ..., p, should maximize Vi =V, (p3, ..., pp)

Finding Minimax Optimal Solution using Linear Programming

Variables: p,,..p,and v (p;is probability of action i)
Goal: Maximize v (our expected reward).

Constraints:
Expected reward

pl' ...,pn 2 0
1>p,+ dp, =1 when player 2
For all columns j we have takes

action j
2 pim;j = v
i

m;; denotes reward when player 1 takes action i and player 2
takes action .

Duality: Vi = -V

2-Player Zero-Sum Games

Example: Shooter-Goalie

—
2

shoot Right [oX: 1/ 3
. . _ Pr shoot
Shooter Minimax (solve in Mathematica) left/right
» v \ /
$,20S,>201<S,+S,<1,
Maximize <SL(1 +SR<é)2v, 5L<i>+SR 1 2v>,{v,SL,SR}
2 5 10 3
AN] |\) _
| |

Goalie Blocks Left Goalie Blocks Right

2-Player Zero-Sum Games

Example: Shooter-Goalie

¢y U% _ Block Lef'r Block R.gm
- Wl Shoot Left ¥4 0.9
shoot Right [oX: 1/3

- v \
S, >0,S,>201<S,+S,<1,

S, (1/2) + Sx(4/5) = v, (*WSuSal
1\ S5.(9/10) +5:(1/3) zv)

i,

Maximize

Solution: {v->0.638462,L->0.538462,R->0.461538}
- Shooter guaranteed to score at least 63.846% of the time by
shooting left 53.846% of time

7

2-Player Zero-Sum Games

Example: Shooter-Goalie

Shooter Minimax (solve in Mathematica)
Pr block left/right

" v,) /
B,>0B,>0, 1<B,+B,<1,

imi 1 9 1
Maximize <BL S IS Y) BL<—4)+BR _Z)> v >, {v, B, By}

2 10 = 3

\ J \ S J
\ J i
| |

Shooter Shoots Left Shooter Shoots Right

2-Player Zero-Sum Games

Example: Shooter-Goalie

g Shoot Left I

E shoot Right [oX:

[(U,)

BLZO,BR20,1SBL+BRS 1,
B,(—1/2) + By(—9/10) > v, (VB Bl

|\ B (=4/5) +Bp(=1/3)zv)

Solution: {v->- -0.638462, B,->0.653846,B;->0.346154}

- Goal scored at most 63. 846% if goalie bIocks right 65.384% of

the time

=

i,

Maximize

Chapter 8

NP and Computational
Intractability

PEARSON Slides by Kevin Wayne.
ﬁ_““ Copyright © 2005 Pearson-Addison Wesley.
%ﬂy All rights reserved.

1

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.
. Greedy.

. Divide-and-conquer.

. Dynamic programming.
- Duality.

. Reductions.

. Local search.
. Randomization.

Algorithm design anti-patterns.

. NP-completeness.
. PSPACE-completeness.
. Undecidability.

Ex.

O(n log n) interval scheduling.

O(n log n) FFT.

O(n?) edit distance.

O(n3) bipartite matching.

Circulation via Network Flow

Bipartite Matching via Network Flow
Minimax Strategy via Linear Programming

O(nk) algorithm unlikely.
O(nk) certification algorithm unlikely.
No algorithm possible.

8.1 Polynomial-Time Reductions

13

Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin
1966]
Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path
Matching 3D-matching
Min cut Max cut
2-SAT 3-SAT
Planar 4-color Planar 3-color
Bipartite vertex cover Vertex cover

Primality testing Factoring

Classify Problems

Desiderata. Classify problems according to those that can be
solved in polynomial-time and those that cannot.

Provably requires exponential-time.
. Given a Turing machine, does it halt in at most k steps?
. Given a board position in an n-by-n generalization of chess,
can black guarantee a win?

Frustrating news. Huge number of fundamental problems have
defied classification for decades.

This chapter. Show that these fundamental problems are

"computationally equivalent" and appear to be different
manifestations of one really hard problem.

14

Polynomial-Time Reduction

Desiderata’. Suppose we could solve X in polynomial-time. What
else could we solve in polynomial time?
don't confuse with reduces from
Reduction. Problem X polynomial r'edu/ces to problem Y if arbitrary
instances of problem X can be solved using:
. Polynomial humber of standard computational steps, plus
. Polynomial number of calls to oracle that solves problem Y.

. computational model supplemented by special piece
Notation. X < P Y. of hardware that solves instances of Y in a single step

Remarks.
. We pay for time to write down instances sent to black box =

instances of Y must be of polynomial size.
. Note: Cook reducibility.

in contrast to Karp reductions

15

16

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X <, Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X <, Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If X <, Y and Y <; X, we use notation X =,Y.
\

up to cost of reduction

Reduction By Simple Equivalence

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction by encoding with gadgets.

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S c V such that |S| > k, and for each edge at most
one of its endpoints is in S?

Ex. Is there anindependent set of size > 6? Yes.
Ex. Is there anindependent set of size >7? No.

—0
O—@

() independent set

19

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S — V such that |S| <k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size < 4? VYes.
Ex. Is there a vertex cover of size < 3? No.

N

‘ vertex cover

20

Vertex Cover and Independent Set

Claim. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set iff V— S is a vertex cover.

]
1

() independent set

‘ vertex cover

21

Vertex Cover and Independent Set

Claim. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set iff V — S is a vertex
cover.

. Let S be any independent set.

. Consider an arbitrary edge (u, v).

. Sindependent =u¢ Sorve S = ueV-SorveV-5
. Thus, V- S covers (u, v).

. Let V- S be any vertex cover.

. Consider two nodesu e Sandv € S.

. Observe that (u, v) ¢ E since V - S is a vertex cover.

. Thus, no two nodes in S are joined by an edge = S
independent seft. =

Reduction from Special Case to General Case

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction by encoding with gadgets.

23

Set Cover

SET COVER: Given a set U of elements, a collection S, S,, ..., S, of
subsets of U, and an integer k, does there exist a collection of < k of
these sets whose union is equal to U?

Sample application.
. m available pieces of software.
. Set U of n capabilities that we would like our system to have.
. The ith piece of software provides the set S; — U of capabilities.
. Goal: achieve all n capabilities using fewest pieces of software.

Ex:
U={12,3,4,5,6,7}
k=2
5:=3,7} S,={2,4}

SZ:{3,4, 5, 6} 55:{5}
53:{1} 56: {1, 2, 6,7}

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER <, SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.
. Create SET-COVER instance:
-k=k, U=E, S,={e e E:eincident tov}
. Set-cover of size < k iff vertex cover of size < k. =

VERTEX COVER ° Q SET COVER
67 e e4 _: 11 21 314: 51 617}

U={
é €3 k=2
e Ab S.= {3, 7} S, = {2, 4)
S.={3,4,5, 6} Sy= {5}
e €5 S, = {1} S:={1,2,6,7)

24

25

Polynomial-Time Reduction

Basic strategies.
. Reduction by simple equivalence.
. Reduction from special case to general case.
. Reduction by encoding with gadgets.

8.2 Reductions via "Gadgets"

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction via "gadgets.”

Satisfiability

Literal: A Boolean variable or its negation. X; or X

Clause: A disjunction of literals. Cj =X V X VX

Conjunctive normal form: A propositional

® = CAC,ACAC
formula @ that is the conjunction of clauses. 1A M2 A 3/ g

SAT: Given CNF formula @, does it have a satisfying truth
assignment?

3-SAT:. SAT where each clause contains (at most) 3 literals.

each corresponds to a different variable

Ex: (X_lvx2 vx3)/\(x1 vx_zvx3)/\(x2 vX3)/\(X_1vX_2vX_3)

Yes: x; = true, x, = frue x; = false.

27

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT <, INDEPENDENT-SET.

Pf. Given an instance @ of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff @ is
satisfiable.

Construction.
. G contains 3 vertices for each clause, one for each literal.

. Connect 3 literals in a clause in a triangle.
. Connect literal to each of its negations.

29

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |®| iff @ is
satisfiable.

Pf. = Let S be independent set of size k.
. S must contain exactly one vertex in each triangle.
. Set these literals to true. «— and any other variables in a consistent way
. Truth assignment is consistent and all clauses are satisfied.

Pf < Given satisfying assignment, select one true literal from
each triangle. This is an independent set of size k. =

30

Review

Basic reduction strategies.
. Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
. Special case to general case: VERTEX-COVER <, SET-COVER.
. Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

Transitivity. If X<, Y and Y <, Z, then X <, Z.
Pf idea. Compose the two algorithms.

Ex: 3-SAT <, INDEPENDENT-SET < ;, VERTEX-COVER <, SET-
COVER.

31

Self-Reducibility

Decision problem. Does there exist a vertex cover of size
< k?

Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem <, decision version.
. Applies to all (NP-complete) problems in this chapter.
. Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.
. (Binary) search for cardinality k* of min vertex cover.
. Find a vertex v such that 6 —{ v} has a vertex cover of
size < k* - 1.
- any vertex in any min vertex cover will have this
property
: del d all incident ed
. Include v in the vertex cover. elete v and ol incident ecges
. . . A
. Recursively find a min vertex cover in G — {v}.

8.3 Definition of NP

Decision Problems

Decision problem.
. X is a set of strings.
. Instance: string s.
. Algorithm A solves problem X: A(s) = yes iff s € X.

Polynomial time. Algorithm A runs in poly-time if for every string
s, A(s) terminates in at most p(|s|) "steps", where p(-) is some

olynomial.
poly length of s

PRIMES: X={2,3,5,7,11,13,17, 23, 29, 31, 37, ...}
Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s]|) = |s|®.

33

Definition of P

P. Decision problems for which there is a poly-time algorithm.

34

35

NP

Certification algorithm intuition.
. Certifier views things from "managerial" viewpoint.
. Certifier doesn't determine whether s € X onits own;
rather, it checks a proposed proof t that s € X.

Def. Algorithm C(s, 1) is a certifier for problem X if for every
string s, s € X iff there exists a string t such that C(s, t) = yes.

"certificate" or "witness"

NP. Decision problems for which there exists a poly-time

certifier. T
C(s, t) is a poly-time algorithm and

|| < p(|s|) for some polynomial p(-).

Remark. NP stands for nondeterministic polynomial-time.

36

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate
exists iff s is composite. Moreover |t| < |s|.

Cerfifier'. boolean C(S, t) {

iIT (t<1ort=>=>>s)
return false

else 1T (s 1s a multiple of t)
return true

else
return false

¥

Instance. s = 437,669.
Certificate. Tt = 541 or 809. «—— 437,669 = 541 x 809

Conclusion. COMPOSITES is in NP.

37

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula @, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in ® has at least one true literal.

Ex.
(X_IVXZVX3)/\(X1VX_ZVX3)A(XIVX2VX4)A(;1VX_3VE)

instance s

certificate t

Conclusion. SAT is in NP.

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly
once, and that there is an edge between each pair of adjacent nodes in
the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

38

39

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P < NP.

Pf. Consider any problem X in P.
. By definition, there exists a poly-time algorithm A(s) that solves X.
. Certificate: t = ¢, certifier C(s, 1) = A(s).

Claim. NP < EXP.

Pf. Consider any problem X in NP.
. By definition, there exists a poly-time certifier C(s, t) for X.
. To solve input s, run C(s, t) on all strings t with [+]| < p(|s]).
. Return yes, if C(s, t) returns yes for any of these.

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
. Is the decision problem as easy as the certification problem?
. Clay $1 million prize.

If P NP If P= NP

would break RSA cryptography

(and potentially collawomy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

40

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

P = NP?

o
S
S
|
-
-+
=
L

Copyright ® 2000, Twentieth Century Fox

43

Looking for a Job?

Some writers for the Simpsons and Futurama.

. J. Steward Burns. M.S. in mathematics, Berkeley, 1993.

. David X. Cohen. M.S. in computer science, Berkeley, 1992.

. Al Jean. B.S. in mathematics, Harvard, 1981.

. Ken Keeler. Ph.D. in applied mathematics, Harvard, 1990.

. Jeff Westbrook. Ph.D. in computer science, Princeton, 1989.

2-Player Zero-Sum Games

Example: Shooter-Goalie

_
1/2 0.9

Shoot Right [oX: 1/3
Shooter Minimax (solve in Mathematica) Terff,?f;fft
> v, l
L= 0&&R, =2 0&&L,+ R, ==1&&

v .

Maximize

AN (4)> &&L. 2 +R, 1 L
\2 ss—l"‘m 3"’

| |
Goalie Blocks Left Goalie Blocks Right

44

2-Player Zero-Sum Games

Example: Shooter-Goalie

—
2

shoot Right [oX: 1/ 3

v,
 |L=0R=201<L+R<1,
Max1m1ze[L(1/2) + R(4/5) > v,) {vJ LJ R]'
L(9/10)+ R(1/3) =2 v

Solution:
{v->0.638462,L->0.538462,R->0.461538}

Shooter guaranteed to score af least 63.846% of the time
by shooting left 53.846% of time

45

2-Player Zero-Sum Games

Example: Shooter-Goalie

Pr block
o _ _ left/right
Shooter Minimax (solve in Mathematica) /

" (v, \

e A T o) T S e AT *{v, L, Rg}
_\‘G 72)t Re\ 10 —"’ i(?)* i\ —;’J |

| |
Shooter Shoots Left Shooter Shoots Right

> _.

Maximize

46

2-Player Zero-Sum Games

Example: Shooter-Goalie

).\ Ol Shoot Left IR

shoot Right [oX: 1/3

{ L‘;ZO&&Rgzoz'&LG+RG==1&& }{ . R]]
-1 -9 —4 -1 1V L Rg

Le (T)'l'RG (E)EV&&LG (?)+Rg (T) 2V

Solution:

(v > —0.638462, L. — 0.653846, R, — 0.346154}

Goalie can ensure goal is scored at most 63.846% of the time by
., blocking left 65.384% of the time

