7.3 Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

- Use care when selecting augmenting paths:
 - Some choices lead to exponential algorithms.
 - Clever choices lead to polynomial algorithms.
 - If capacities are irrational, algorithm not guaranteed to terminate!

- Goal: choose augmenting paths so that:
 - Can find augmenting paths efficiently.
 - Few iterations.

- Choose augmenting paths with: [Edmonds-Karp 1972, Dinic 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.

Capacity Scaling

Intuition: Choosing path with highest bottleneck capacity increases flow by max possible amount:
- Don’t worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let G_Δ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Max Flow Recap

- Max-Flow Problem, Min Cut Problem
- Definition of a s-t flow $f(x)$ and a s-t cut (A,B)
- Value of a flow f
- Capacity of a s-t cut (A,B)

Weak Duality Lemma: For any flow f and s-t cut A,B we have $\text{val}(f) \leq \text{cap}(A,B)$ (i.e., capacity of minimum cut is upper bound on max flow)

Finding a Max-Flow:
- Greedy algorithm failed
- Residual Graph
- Ford-Fulkerson Algorithm
 - Iteratively find augmenting path in residual graph
 - Proof of Correctness
 - Max-Flow Min-Cut Equivalence
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 Gₙ ← residual graph
 while (Δ ≥ 1) {
 Gₙ(Δ) ← Δ - residual graph
 while (there exists augmenting path P in Gₙ(Δ)) {
 f ← augment(f, c, P)
 update Gₙ(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
 ▪ By integrality invariant, when Δ = 1 ⇒ Gₙ(Δ) = Gₙ.
 ▪ Upon termination of Δ = 1 phase, there are no augmenting paths.

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + \lfloor \log₂ C \rfloor times.

Pf. Initially C ≤ Δ < 2C. Δ decreases by a factor of 2 each iteration.

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most v(f) + m Δ.

Lemma 3. There are at most 2m augmentations per scaling phase.

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C) augmentations. It can be implemented to run in O(m² log C) time.

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

Use Breadth First Search to Compute Level Graph
Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

Create Residual Graph G_f

Remark: Number of levels increased. This is not a coincidence!
Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph G_f

Finding a Blocking Flow in G_{f_1}

Definition: $c_{f_1}(e)$ denotes the capacity of the edge e in G_{f_1}

Definition: Given an augmenting flow f^* for the level graph G_{f_1} and a path P in G_{f_1} we define $R(P, f^*) = \min\{c_{f_1}(e) - f^*(e) : e \in P\}$

Finding Blocking Flow(G_{f_1})

1. **Initialize**
 - $\text{InitCap}(e) = c_{f_1}(e)$ and $f^*(e) = 0$ for each edge e in G_{f_1}
 - While there is a path P with $R(P, f^*) > 0$
 - Update $f^*(e) = f^*(e) + R(P, f^*)$ for each edge $e \in P$
 - Update $\text{InitCap}(e) = \text{InitCap}(e) - R(P, f^*)$ for each edge $e \in P$

Analysis: Each iteration of the "while" loop eliminates an edge

Implication: Terminates after $O(n)$ iterations of while loop.

Finding a Blocking Flow in G_{f_2}

Definition: $c_{f_2}(e)$ denotes the capacity of the edge e in G_{f_2}

Definition: Given an augmenting flow f^* for the level graph G_{f_2} and a path P in G_{f_2} we define $R(P, f^*) = \min\{c_{f_2}(e) - f^*(e) : e \in P\}$

Finding Blocking Flow(G_{f_2})

1. **Initialize**
 - $\text{InitCap}(e) = c_{f_2}(e)$ and $f^*(e) = 0$ for each edge e in G_{f_2}
 - While there is a path P with $R(P, f^*) > 0$
 - Update $f^*(e) = f^*(e) + R(P, f^*)$ for each edge $e \in P$
 - Update $\text{InitCap}(e) = \text{InitCap}(e) - R(P, f^*)$ for each edge $e \in P$

Analysis: Each iteration of the "while" loop eliminates an edge

Implication: Terminates after $O(n)$ iterations of while loop.

Reachable

Dinic’s Algorithm

1. Start with empty flow f
2. Construct G_f
3. Repeat until s and t are disconnected (no augmenting path)
 - (Level Graph) Run BFS on G_f to build G_{f_1}
 - (Blocking Flow) Find blocking flow f^* in G_{f_1}
4. (Augment) Let $f \leftarrow f + f^*$ and Construct G_f
5. Output f

Analysis:
- Global: Each time we iterate the loop we increase the depth of G_f
- Implication: Stop iteration in at most n iterations.

Time Per Iteration: $O(n^2m)$ to find first blocking flow f^*

Total Time: $O(n^3)$
Circulation with Demands

Circulation with demands
- Directed graph $G = (V, E)$
- Edge capacities $c(e), e \in E$
- Node supply and demands $d(v), v \in V$

Demand if $d(v) > 0$ supply if $d(v) < 0$ transshipment if $d(v) = 0$

Def. A circulation is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e\in\delta^{-}(v)} f(e) - \sum_{e\in\delta^{+}(v)} f(e) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

Necessary condition: sum of supplies = sum of demands.

$\sum_{v\in V} d(v) = \sum_{v\in V} d(v) = D$

Pf. Sum conservation constraints for every demand node v.

Circulation with Demands

Circulation with Demands: Circulation problem: given (V, E, c, d), does there exist a circulation?

Necessary condition: sum of supplies = sum of demands.

$\sum_{v\in V} d(v) = \sum_{v\in V} d(v) = D$

Pf. Sum conservation constraints for every demand node v.

Key Claim: $\text{depth}(G_f) > \text{depth}(G)$ (depth always increases)

Proof: Suppose (for contradiction) $\text{depth}(G_f) \leq \text{depth}(G)$.
- Then G_{f} contains an s-t path of length $\leq \text{depth}(G_f)$.
- This path corresponds to an augmenting path for the flow $f = f_{\text{inf}} - f_{\text{from}}$.
- But since the augmenting path has length $\text{depth}(G_f)$ it is also an augmenting path in the level graph $G_{f_{\text{inf}}}$.
- This contradicts the claim that f is a blocking flow in $G_{f_{\text{inf}}}$.
Circulation with Demands

Max flow formulation.

- Add new source s and sink t.
- For each v with $d(v) > 0$, add edge (v, t) with capacity $d(v)$.
- Claim: G has circulation iff G' has max flow of value D.

G:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>10</th>
<th>6</th>
<th>-7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

saturates all edges leaving s and entering t

G':

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>10</th>
<th>6</th>
<th>-7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Proof. Follows from max flow formulation and integrality theorem for max flow.

Characterization. Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d(v) > \text{cap}(A, B)$

Proof idea. Look at min cut in G'.

Circulation with Demands and Lower Bounds

Feasible circulation.
- Directed graph $G = (V, E)$.
- Edge capacities $c(e)$ and lower bounds $\ell(e)$, $e \in E$.
- Node supply and demands $d(v)$, $v \in V$.

Def. A circulation is a function that satisfies:
- For each $e \in E$: $\ell(e) \leq f(e) \leq c(e)$
- For each $v \in V$: $\sum_{v \leftarrow e} f(e) - \sum_{v \rightarrow e} f(e) = d(v)$

Circulation problem with lower bounds. Given (V, E, ℓ, c, d), does there exist a circulation?

7.8 Survey Design
Survey Design

Survey design.
- Design survey asking n_1 consumers about n_2 products.
- Can only survey consumer i about product j if they own it.
- Ask consumer i between c_i and c_i' questions.
- Ask between p_j and p_j' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when $c_i = c_i' = p_j = p_j' = 1$.

Algorithm. Formulate as a circulation problem with lower bounds.
- Include an edge (i, j) if consumer j owns product i.
- Integer circulation \iff feasible survey design.