2/22/2019

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Max Flow Recap

#oor-Flow Probles, Min Ot Problem

- Definitien of o 5-1 flow fe) ond o 3-T eat (4,8)
- Volee of o flow ¥

- Copocity of a s-t et (AB)

Wiak Damlity Lessan: For wry flow f ond 57 et AR we.
Trave ¥} < cap(A, B} (2. capacity of reinimios cot is upper
baund an max-flew)

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n,and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO0

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to
terminatel

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
. Few iterations.

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter A.
- Let 6¢(A) be the subgraph of the residual graph consisting of only
arcs with capacity at least A.

110 102 110 102
®< | >E> ®< >
IZZ\L/WO 122\(@/170
G 6¢(100)

Copyright 2000, Kevin Wayne

2/22/2019

Capacity Scaling

Scaling-Max-Flow(G, s, t, c¢) {
foreach e e E f(e) « O
A « smallest power of 2 greater than or equal to C
G¢ « residual graph

while (A 2 1) {
G¢(A) « A-residual graph
while (there exists augmenting path P in G¢(A)) {
T « augment(f, c, P)
update G¢(A)

AeA/2

return f

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
. By integrality invariant, when A=1 = G4(A) = 6;.
. Upon termination of A = 1 phase, there are no augmenting
paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, 1 times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. < proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f)+m(24).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time. =

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)
. We show that at the end of a A-phase, there exists a cut (A, B)
such that cap(A, B) < v(f)+m A.
. Choose A to be the set of nodes reachable from s in 6¢(A).
. By definition of A, s € A.
+ By definition of f, 1 ¢ A.

v(f) =

S Loz

> cap(ABymA

original network

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Level 3

capacity

410—(;3— 9

Discard cross-layer edges

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

/
10
10

Discard cross-layer edges

Copyright 2000, Kevin Wayne

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

GL 10 10,
@4 10— e 9>:>— 1o¥
9 9 10

Discard cross-layer edges
Find Blocking Flow

capacity
/

Dinic's Max Flow Min-Cut Algorithm

Remark: Number of levels increased. This is not a coincidence!

Dinic's Max Flow Min-Cut Algorithm

R BFS on & Yo craote level graph &,

2/22/2019

Dinic's Max Flow Min-Cut Algorithm

Create Residual Graph 6¢

AN
6 5 - \
5) 7 1<, | . 4

/v@< —’@\ flow
@410+ >@_w

Total Flow: 14

Dinic's Max Flow Min-Cut Algorithm

Poan BFS on 6y o create kevel groph G,
Level 3

Dinic's Max Flow Min-Cut Algorithm

Ram BF'S on &y 1o creoie level groph Gy

Level 0 ™
G, 5
A 5 5 6 6
@{ Y \@L \@
Total Extra Flow: 5
Bioching Flew Tor Joval grogh Gy,

Copyright 2000, Kevin Wayne

e

Dinic's Max Flow Min-Cut Algorithm

New Residual Graph G
4
o 10/—%\?%‘\
) 2 1 6\1 10

O

flow
-
5
. /K ?\5
" Z 7\:; |

Total Extra Flow: 5

Bhacdting Flme for keval graph 6,0

2/22/2019

Dinic's Max Flow Min-Cut Algorithm

New Residual Graph 6;

Breadth First Search: Yields minimum s-t cut!> We are done!

4 ity
capacr
G: / P
8 1
10 2 6 10
10>®

Finding n Blocking Flow in &,
Deafinition: G (e} denotes the capacity of the adge e in Gr;

Definition: Givas ax sugmenting Tl {* Tor the kel graph G, eed
a path P in 6 wa defloe B{P,) = mln G () - F {53}

FindBinclingFlow{s, }
+ Tnitiellam:
- RemCopfe) = Gy, () and f{c) = O for eoch edos € (& Gy,
- While b5 & puih Pwith {2, />0
. Updetw) = {6+ B{P. f*) for axh adom o € P
+ Update RenCap(s) = RemCap(s) — B(P,) for each arige e = P

Anolysis: Each Herstien of the “whil” lop eiminciasax adga
Implicetion: Terminatesafter O{m) ihersiions off while loop.

Finding a Blocking Flow in &,
Definition: C;p(s) denotes the capacityof the edge e in i,

Definitisn: Sfven an cogmenting low Tor the keve] groph 5, axd
a puth P in Gp ww deefine B(P, £ = minofC(e) — F(0}

FinaRlockingPlow{Gy, }

» Inthiole:
. RemCapde} = Gy4(c) and F(c) = D far aach edge & in G
+ Whike there is a path P with B(P. 3 > 0
- Update F{e)=f{c) + BP.) for echadgee € P
. Updete RemCopfir} = RewCople) — B(P, '} for anchedge w c &

Apnlysis: Ench itermtion of the “whils” loop abmintteson sigs

Implication: Terminrtes after O{m) taratians of whils loop.

Finding a Blocking Flew in 6.

Defintifon: We le¥ Cry.(s) denote the copasity of anedge e in 6
Dexfiwitinn: Hiven on angmanting Fioe £ for &, and a &t path Pee
define B{P) = mingep Gy le)

]
"5
- Triviokize Reelopds] = Gpafe)
. Whils there eadetea poth P with 5{) > 0t
. SetI(e) =(s) + B(M for eachedge o c P
. St Remep(e) = Bemalap{s) — B{F) for soch edge « € P

Asalysis: Eoch feration of while loop "eliminates” af leest one exige.
Trnplication: Terminatbes of e ob most m rousss.

Nafve Rumming Time: Cimnlm)
Amsritzatin: Con enumerabe paitkes in amartized fine Ofx) per peth

Copyright 2000, Kevin Wayne

Dinic's Algorithm

L Shart efth mupty flow §

r Cemshruct G

2 Rmpest umtil £ oed + are discommactad (no aageesting path)
+ (Loswd Groph]) Ram BFS on G e bulld &,
= [Blocking Flew) Find blecking flew F in &z,
= [Angoent]) Let F=F+F end Consiruct &;

+ Cutput £

Arsheis
Clalm: Ench tise we itevate The loop we increase the depth of &
Tppllcation: Mt termingte in ot mest n ferahiond

Time Per Itecotion: Ofwes) te find blecking flow
Totel Time: O(m)

Dinic's Algorithm: Correctness and Running Time
Carrocinass fellews directly frem Augmenting Path Theasrem,

Augmenting path theorem. Flesr f iz o mox flow HF there ers mo
omgoiing pothe.

Running Time Analysis: Let f denste rasidunl greaph of ter iteratien
il&:ﬂ

Defintiion: daptk{iGy,) = lengih of the sherhest directed poth Frem
stot)

Key Clolan: depfh{(Gy,,,) > depti{5,)} (depth clways incresses)

2/22/2019

Dinic's Algorithm: Correctness and Running Time

Reming Tiee Anadysic: Lt f; denote residunl greph ofter iteotios
i, = £

Dafintian: depth{Cy,} = kengih of the shortest directed path from
[33;08

Koy Clalm: depth{Ey,,} > depth(,} (depth clmoyt incresses)

Proof: Suppase (for comtrodiction) thet depiv{iy,, } < depik(fy,).
- Theny, comtoinsans-t pathof length < deptie(€r,).

- This psth comresponds in on sugrenting peth for the flow
F=fm—fimty

- But sincs the cugmanting poth hes langth depth(G.,} It is olso o
sugsanting path i the lovel graph 6.

- This centrodicis the clois thot £ is o bincking fiew in B}

Dinic's Algorithm: Correctness and Running Time

Furning Time Aselysis: Lat f; denefe residue] graph of ter iferation
1 (G, = €}

Defiaftion: depih{E;,) = length of the sharsest direched poth fram
stot)

Rey Cloimn: depih{(G5,,,} > dopik{G,} (depth hways incresnes)
Implcation: Hiterotisnt ke of mostn

Tirse #o Computs Blacking Flew i Leve) Greph: Cirem)
+ Uing special doto-siructure colled dynsisic trent Ofm lg &)

Totol Tise: £3{mn lag n) with dymenic frees or Ofmn®) without.

7.7 Extensions to Max Flow

Circulation with Demands

Circulation with demands.
. Directed graph 6 = (V, E).
. Edge capacities c(e), e < E.
+ Node supply and demands d(v), v e V.
!

demand if d(v) > O; supply if d(v) < O: transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. Foreache e E: 0 < f(e) < c(e) (capacity)
. ForeachveV: Y fe) - Xf(e) = d(v) (conservation)
eintov eoutof v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?

Copyright 2000, Kevin Wayne

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Yd(v)= X -d(v) = D

vid(v)>0 vid(v)< 0

Pf. Sum conservation constraints for every demand node v.

-8 -6 «— supply

42 ° demand
-7 3 \D\
3 4 — 1

10 0 4N

T capacity

flow

Circulation with Demands

Max flow formulation.

-6 «— supply

2/22/2019

demand

Circulation with Demands

Max flow formulation.
. Add new source s and sink t.
. For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
. For each v with d(v) > 0, add edge (v, t) with capacity d(v).
. Claim: 6 has circulation iff 6' has max flow of value D.

saturates all edges

ﬁ leaving s and entering t
7 8

—— supply

7 7
10 6 4
3 4
0
10\®/ 1

9
N

demand

Circulation with Demands

Integrality theorem. If all capacities and demands are
integers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
Z,pd,>cap(A,B) demand by nodes in B exceeds supply

of nodes in B plus max capacity of

. . . N edges going from A to B
Pf idea. Look at min cut inG'. gesgemg

Circulation with Demands and Lower Bounds

Feasible circulation.

. Directed graph 6 = (V, E).

- Edge capacities c(e) and lower bounds / (e), e € E.
« Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

. Foreache c E: t(e) < f(e) < c(e) (capacity)
. Foreachve V: Ste) - Tfe) = dv) (conservation)
eintov e outofv

Circulation problem with lower bounds. Given (V, E, ¢, c, d), does
there exists a a circulation?

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
. Send /(e) units of flow along edge e.
« Update demands of both endpoints.

lower bound upper bound capacity
I |
©— 2.9 —@ @7
dv) d(w) dv)+2 dw) -2
G 6

Theorem. There exists a circulation in G iff there exists a
circulation in 6'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - /(e) is a
circulation in 6'.

35

7.8 Survey Design

Copyright 2000, Kevin Wayne

2/22/2019

Survey Design Survey Design
one survey question per product
Survey design. | Algorithm. Formulate as a circulation problem with lower bounds.
. Design survey asking n; consumers about n, products. . Include an edge (i, j) if consumer j owns product i.
- Can only survey consumer i about product j if they own it. . Integer circulation < feasible survey design.

. Ask consumer i between c; and ¢;' questions.
« Ask between p; and p;' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ¢;= ¢;" = p;=p;' = 1.

products

Copyright 2000, Kevin Wayne 7

