Max Flow Recap

Max-Flow Problem, Min Cut Problem
- Definition of a s-t flow \(f(e) \) and a s-t cut \((A,B)\)
- Value of a flow \(f \)
- Capacity of a s-t cut \((A,B)\)

Weak Duality Lemma: For any flow \(f \) and s-t cut \(A,B \) we have \(v(f) \leq cap(A, B) \) (i.e., capacity of minimum cut is upper bound on max-flow)

Finding a Max-Flow:
- **Greedy algorithm fails!**
- Residual Graph
- **Ford-Fulkerson Algorithm**
 - Repeatedly find augmenting path in residual graph
 - Proof of Correctness
 - **Max-Flow Min-Cut Equivalence**
7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

\[
\begin{align*}
&
\text{Q. Is generic Ford-Fulkerson algorithm polynomial in input size?} \\
&
\text{A. No. If max capacity is } C, \text{ then algorithm can take } C \text{ iterations.}
\end{align*}
\]
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don’t worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Diagram](image)
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_\Delta_f ← residual graph

 while (Δ ≥ 1) {
 G_\Delta_f(Δ) ← Δ-residual graph
 while (there exists augmenting path P in G_\Delta_f(Δ)) {
 f ← augment(f, c, P)
 update G_\Delta_f(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}
Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and \(C \).

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then \(f \) is a max flow.

Pf.

- By integrality invariant, when \(\Delta = 1 \) \(\Rightarrow \) \(G_f(\Delta) = G_f \).
- Upon termination of \(\Delta = 1 \) phase, there are no augmenting paths. \(\blacksquare \)
Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. ← proof on next slide

Lemma 3. There are at most $2m$ augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L2 $\Rightarrow v(f^*) \leq v(f) + m (2\Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. ▪

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. ▪
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta \\
= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta \\
\geq \text{cap}(A,B) - m\Delta
\]
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

G:

Discard cross-layer edges
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

\[G: \]

\[G_L: \]

Discard cross-layer edges
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

\[G: \]

Level 0

Level 1

Level 2

Level 3

\[G_L \]

Discard cross-layer edges
Find Blocking Flow
Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph G_f

G_f: [Diagram of the residual graph with capacities shown]

G_L: [Diagram of the residual graph with minimum flow paths shown]

Total Flow: 14
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f:

Remark: Number of levels increased. This is not a coincidence!
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f: Level 0

Level 1

Level 2

Level 3

Level 4

s

3

2

4

5

t

5

2

7

1

6

4

1

4

5

2

7

1

6

4

1

4

5

2

7

1

6

4
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f:

$G_{f,L}$
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f: Level 0

Level 1

Level 2

Level 3

Level 4

$G_{f,L}$

Blocking Flow for level graph $G_{f,L}$

Total Extra Flow: 5
Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph G_f

G_f:

$G_{f,L}$:

Total Extra Flow: 5
Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph G_f

G_f:

Breadth First Search: Yields minimum s-t cut! \Rightarrow We are done!
Finding a Blocking Flow in $G_{f,L}$

Definition: $C_{f,L}(e)$ denotes the capacity of the edge e in $G_{f,L}$

Definition: Given an augmenting flow f' for the level graph $G_{f,L}$ and a path P in $G_{f,L}$ we define $B(P, f') = \min_{e \in P} \{ C_{f,L}(e) - f'(e) \}$

FindBlockingFlow($G_{f,L}$)

- **Initialize:**
 - RemCap(e) = $C_{f,L}(e)$ and $f'(e) = 0$ for each edge e in $G_{f,L}$
- **While** there is a path P with $B(P, f') > 0$
 - Update $f'(e) = f'(e) + B(P, f')$ for each edge $e \in P$
 - Update RemCap(e) = RemCap(e) − $B(P, f')$ for each edge $e \in P$

Analysis: Each iteration of the “while” loop eliminates an edge

Implication: Terminates after $O(m)$ iterations of while loop.
Finding a Blocking Flow in $G_{f,L}$

Definition: $C_{f,L}(e)$ denotes the capacity of the edge e in $G_{f,L}$

Definition: Given an augmenting flow f' for the level graph $G_{f,L}$ and a path P in $G_{f,L}$ we define $B(P, f') = \min_{e \in P} \{ C_{f,L}(e) - f'(e) \}$

FindBlockingFlow($G_{f,L}$)
- **Initialize:**
 - RemCap$\left(e \right) = C_{f,L}(e)$ and $f'(e) = 0$ for each edge e in $G_{f,L}$
- **While** there is a path P with $B(P, f') > 0$
 - Update $f'(e) = f'(e) + B(P, f')$ for each edge $e \in P$
 - Update RemCap$\left(e \right) = \text{RemCap}(e) - B(P, f')$ for each edge $e \in P$

Analysis: Each iteration of the “while” loop eliminates an edge

Implication: Terminates after $O(m)$ iterations of while loop.

Naïve Running Time Analysis: $O(m(m+n))$
Finding a Blocking Flow in $G_{f,L}$

Definition: We let $C_{f,L}(e)$ denote the capacity of an edge e in $G_{f,L}$

Definition: Given an augmenting flow f' for $G_{f,L}$ and a s-t path P we define $B(P) = \min_{e \in P} C_{f,L}(e)$

FindBlockingFlow($G_{f,L}$)
- Initialize $\text{RemCap}(e) = C_{f,L}(e)$
- While there exists a path P with $B(P) > 0$
 - Set $f'(e) = f'(e) + B(P)$ for each edge $e \in P$
 - Set $\text{RemCap}(e) = \text{RemCap}(e) - B(P)$ for each edge $e \in P$

Analysis: Each iteration of while loop “eliminates” at least one edge.

Implication: Terminates after at most m rounds.

Naïve Running Time: $O((m+n)m)$

Amortization: Can enumerate paths in amortized time $O(n)$ per path
Dinic’s Algorithm

1. Start with empty flow f
2. Construct G_f
3. Repeat until s and t are disconnected (no augmenting path)
 1. (Level Graph) Run BFS on G_f to build $G_{f,L}$
 2. (Blocking Flow) Find blocking flow f' in $G_{f,L}$
 3. (Augment) Let $f = f + f'$ and Construct G_f
4. Output f

Analysis:
Claim: Each time we iterate the loop we increase the depth of G_f

Implication: Must terminate in at most n iterations!

Time Per Iteration: $O(nm)$ to find blocking flow f'

Total Time: $O(n^2m)$
Dinic’s Algorithm: Correctness and Running Time

Correctness follows directly from Augmenting Path Theorem.

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Running Time Analysis: Let f_i denote residual graph after iteration i ($G_{f_0} = G$)

Definition: $\text{depth}(G_{f_i}) = \text{length of the shortest directed path from } s \text{ to } t$.

Key Claim: $\text{depth}(G_{f_{i+1}}) > \text{depth}(G_{f_i})$ (depth always increases)
Dinic’s Algorithm: Correctness and Running Time

Running Time Analysis: Let \(f_i \) denote residual graph after iteration \(i \) (\(G_{f_0} = G \))

Definition: \(\text{depth}(G_{f_l}) = \text{length of the shortest directed path from } s \text{ to } t \).

Key Claim: \(\text{depth}(G_{f_{i+1}}) > \text{depth}(G_{f_i}) \) (depth always increases)

Proof: Suppose (for contradiction) that \(\text{depth}(G_{f_{i+1}}) \leq \text{depth}(G_{f_i}) \).

- Then \(G_{f_{i+1}} \) contains an \(s-t \) path of length \(\leq \text{depth}(G_{f_i}) \).
- This path corresponds to an augmenting path for the flow \(f' = f_{i+1} - f_i \) in \(G_{f_l} \).
- But since the augmenting path has length \(\text{depth}(G_{f_i}) \) it is also an augmenting path in the level graph \(G_{f_i L} \).
- This contradicts the claim that \(f' \) is a blocking flow in \(G_{f_i L} \)!
Dinic's Algorithm: Correctness and Running Time

Running Time Analysis: Let f_i denote residual graph after iteration i ($G_{f_0} = G$)

Definition: $\text{depth}(G_{f_i}) =$ length of the shortest directed path from s to t.

Key Claim: $\text{depth}(G_{f_{i+1}}) > \text{depth}(G_{f_i})$ (depth always increases)

Implication: \#iterations is at most n

Time to Compute Blocking Flow in Level Graph: $O(mn)$
- Using special data-structure called dynamic trees $O(m \log n)$

Total Time: $O(mn \log n)$ with dynamic trees or $O(mn^2)$ without.
7.7 Extensions to Max Flow
Circulation with Demands

Circulation with demands.
- Directed graph $G = (V, E)$.
- Edge capacities $c(e), e \in E$.
- Node supply and demands $d(v), v \in V$.

Def. A circulation is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?
Circulation with Demands

Necessary condition: \(\text{sum of supplies} = \text{sum of demands} \).

\[
\sum_{v : d(v) > 0} d(v) = \sum_{v : d(v) < 0} -d(v) =: D
\]

Pf. Sum conservation constraints for every demand node \(v \).
Circulation with Demands

Max flow formulation.

G:

- Supply: -6
- Demand: 11
Max flow formulation.

- Add new source s and sink t.
- For each v with $d(v) < 0$, add edge (s, v) with capacity $-d(v)$.
- For each v with $d(v) > 0$, add edge (v, t) with capacity $d(v)$.
- Claim: G has circulation iff G' has max flow of value D.

![Graph G' showing the circulation problem with supplies, demands, and edges labeled with capacities.](image)
Circulation with Demands

Integrity theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrity theorem for max flow.

Characterization. Given \((V, E, c, d)\), there does not exists a circulation iff there exists a node partition \((A, B)\) such that \(\sum_{v \in B} d_v > \text{cap}(A, B)\).

Pf idea. Look at min cut in \(G'\).
Circulation with Demands and Lower Bounds

Feasible circulation.
- Directed graph $G = (V, E)$.
- Edge capacities $c(e)$ and lower bounds $\ell(e), e \in E$.
- Node supply and demands $d(v), v \in V$.

Def. A circulation is a function that satisfies:
- For each $e \in E$: $\ell(e) \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem with lower bounds. Given (V, E, ℓ, c, d), does there exist a circulation?
Idea. Model lower bounds with demands.
- Send $\ell(e)$ units of flow along edge e.
- Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. If all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

Pf sketch. $f(e)$ is a circulation in G iff $f'(e) = f(e) - \ell(e)$ is a circulation in G'.
7.8 Survey Design
Survey Design

Survey design.

- Design survey asking n_1 consumers about n_2 products.
- Can only survey consumer i about product j if they own it.
- Ask consumer i between c_i and c_i' questions.
- Ask between p_j and p_j' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when $c_i = c_i' = p_i = p_i' = 1$.
Algorithm. Formulate as a circulation problem with lower bounds.
- Include an edge \((i, j)\) if consumer \(j\) owns product \(i\).
- Integer circulation \(\iff\) feasible survey design.