CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Max Flow Recap

Max-Flow Problem, Min Cut Problem

Definition of a s-t flow f(e) and a s-t cut (A,B)
Value of a flow f

. Capacity of a s-t cut (A,B)

Weak Duality Lemma: For any flow f and s-t cut A,B we

have v(f) < cap(4, B) (i.e., capacity of minimum cut is upper
bound on max-flow)

Finding a Max-Flow:
. Greedy algorithm fails!
Residual &raph
Ford-Fulkerson Algorithm
Repeatedly find augmenting path in residual graph
Proof of Correctness
Max-Flow Min-Cut Equivalence

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Isgeneric Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to

terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.

. Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
- Let 6 (A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

SN SN

110 102 110 102
1

122 170 122 170
) 4
2

6, 6, (100)

Capacity Scaling

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
. By integrality invariant, when A=1 = G¢(A) = G;.
. Upon termination of A = 1 phase, there are no augmenting
paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1+ log, C| times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. «—— proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f) +m (24).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented o runin O(m? log C) time. =

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A.

. Choose A to be the set of nodes reachable from s in G¢(A).

. By definition of A, s € A.

. By definition of f, t ¢ A.

A B
v(f)y = D f(e)- Zf(e)
> Y (c(e)-A)- ZA
= Dce)- Y A- ZA
> cap(A,B)-mA >

original network

10

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Discard cross-layer edges

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity
G: l ; /
10 9?2
Q
|
s 10 =@ 9 O
Level O
2 4 (4
capacity
G, 8 4

10

10
®/ 10——@ : ® 10\@

Discard cross-layer edges

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacit
G: pacity
10 10
Level 3
s 10 10 »(
Level O
4
5 1 4 — ﬂOW
G, 10 8 10
@4 10 = (B g 10
9 9 10

Discard cross-layer edges
Find Blocking Flow

13

14

Dinic's Max Flow Min-Cut Algorithm

Create Residual Graph G;

Total Flow: 14

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,

Level 3
4
‘ £
1 6 6
Le el l
3- _/‘
Level 2 Level4

Remark: Number of levels increased. This is not a coincidencel

15

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,

Level 3

<
(5)- 10 T

Level 2 Level 4

16

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,
Level 3

9 &)+ 10 i
Level 2 Level 4

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G to create level graph Gy,

Level 3
A 52
Gy: 5 - ‘
| 7 1
5 7. 1 6 5 5
Leyel 1
: il

9 p Jat 9 (5) 10 t
1)&/ Level 2 Level 4

flow
/K o) ~ K
G 5 e
fiL - 7 5 & 6
S ’ 1 —— \@

Total Extra Flow: 5
Blocking Flow for level graph G,

18

19

Dinic's Max Flow Min-Cut Algorithm

New Residual Graph 6;

ﬁ 4 —4)
Gy 10 W 64\

Total Extra Flow: 5
Blocking Flow for level graph Gy,

Dinic's Max Flow Min-Cut Algorithm

New Residual Graph 6

21

Finding a Blocking Flow in G,

Definition: Cs;(e) denotes the capacity of the edge e in G,

Definition: Given an augmenting flow f' for the level graph G, and
a path P in G;;, we define B(P, f') = mineep{Cs 1 (€) — f'(e)}

FindBlockingFlow(Gy,)
Initialize:
RemCap(e) = Cs.(e) and f'(e) = 0 for each edge e in G¢,,
While there is a path P with B(P,f') > 0
Update f'(e) = f'(e) + B(P,f') for each edge e € P
Update RemCap(e) = RemCap(e) — B(P, f') for each edge e € P

Analysis: Each iteration of the "while" loop eliminates an edge

Implication: Terminates after O(m) iterations of while loop.

22

Finding a Blocking Flow in G,

Definition: Cs;(e) denotes the capacity of the edge e in G,

Definition: Given an augmenting flow f' for the level graph G, and
a path P in G, we define B(P, f') = mingep{Cs 1 (€) — f'(€)}

FindBlockingFlow(Gy,)
. Initialize:
RemCap(e) = Cs.(e) and f'(e) = 0 for each edge e in G¢,,
While there is a path P with B(P,f') > 0
Update f'(e) = f'(e) + B(P,f') for each edge e € P
Update RemCap(e) = RemCap(e) — B(P, f') for each edge e € P

Analysis: Each iteration of the "while" loop eliminates an edge

Implication: Terminates after O(m) iterations of while loop.
Naive Running Time Analysis: O(m(m+n))

23

Finding a Blocking Flow in G,

Definition: We let (¢ (e) denote the capacity of an edge e in G,
Definition: Given an augmenting flow f' for G, and a s-t path P we
define B(P) = min,ep Cr (€)

FindBlockingFlow(G .)
Initialize RemCap(e) = Cfy(e)
While there exists a path P with B(P) > 0
Set f'(e) = f'(e) + B(P) for each edge e € P
Set RemCap(e) = RemCap(e) — B(P) for eachedge ¢ € P

Analysis: Each iteration of while loop "eliminates” at least one edge.
Implication: Terminates after at most m rounds.

Naive Running Time: O((m+h)m)
Amortization: Can enumerate paths in amortized time O(n) per path

4,

Dinic's Algorithm

Start with empty flow f

Construct G;

Repeat until s and T are disconnected (no augmenting path)
. (Level Graph) Run BFS on G; to build G,

. (Blocking Flow) Find blocking flow f' in G,

+ (Augment) Let f=f+f' and Construct G;

Output f

Analysis:

24

Claim: Each time we iterate the loop we increase the depth of G;
Implication: Must terminate in at most n iterations!
Time Per Iteration: O(nm) fo find blocking flow f'

Total Time: O(n?m)

Dinic's Algorithm: Correctness and Running Time

Correctness follows directly from Augmenting Path Theorem.

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Running Time Analysis: Let f; denote residual graph after iteration
i (Gfo -— G)

Definition: depth(Gy,) = length of the shortest directed path from
s to 1).

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)

25

Dinic's Algorithm: Correctness and Running Time

Running Time Analysis: Let f; denote residual graph after iteration
i (Gfo = G)

Definition: depth(Gy,) = length of the shortest directed path from
s to 1).

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)
Proof: Suppose (for contradiction) that depth(Gy,,.) < depth(Gy,).
. Then Gy, contains an s-1 path of length < depth(Gy,).

This path corresponds to an augmenting path for the flow

f’ = fi+1 _fi in Gfi-

But since the augmenting path has length depth(Gy,) it is also an

augmenting path in the level graph Gy, ;.

This contradicts the claim that f’ is a blocking flow in Gy, ;!

26

27

Dinic's Algorithm: Correctness and Running Time

Running Time Analysis: Let f; denote residual graph after iteration
i (Gfo = G)

Definition: depth(Gy,) = length of the shortest directed path from
s to 1).

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)
Implication: #iterations is at most n

Time to Compute Blocking Flow in Level Graph: O(mn)
Using special data-structure called dynamic trees O(m log n)

Total Time: O(mn log n) with dynamic trees or O(mn2) without.

7.7 Extensions to Max Flow

Circulation with Demands

Circulation with demands.
. Directed graph G = (V, E).
. Edge capacities c(e), e € E.

- Node supply and demands d(v), v € V.
T

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. For eache € E: 0 < f(e) < c(e) (capacity)
. Foreachv e V: > f(e) = Xf(e) = d(v) (conservation)
eintov e out of v

Circulation problem: given (V, E, c, d), does there exist a circulation?

29

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
>d(v) = > —-d(v) = D

v:d(v)>0 v:d(v)< 0

Pf. Sum conservation constraints for every demand node v.

-8 -6 «— supply
7
2 demand
4 > 11
4\
T capacity

flow

30

Circulation with Demands

Max flow formulation.

demand

31

Circulation with Demands

Max flow formulation.
. Add new source s and sink t.
. For each v with d(v) < O, add edge (s, v) with capacity -d(v).
. For each v with d(v) > O, add edge (v, 1) with capacity d(v).
. Claim: G has circulation iff G' has max flow of value D.

saturates all edges
leaving s and entering t

b — supply

demand
32

Circulation with Demands

Integrality theorem. If all capacities and demands are
intfegers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that

ZVEB dv > CGP(A, B) _— demand by nodes in B exceeds supply

of nodes in B plus max capacity of

. . . . edges going from A to B
Pf idea. Look at mincut inG'.

33

34

Circulation with Demands and Lower Bounds

Feasible circulation.
. Directed graph G = (V, E).
. Edge capacities c(e) and lower bounds / (e), e € E.
- Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

. Foreache € E: () < f(e) < c(e) (capacity)
. Foreachv e V: Sfe) - Yfe) = d(v) (conservation)
egintov e out of v

Circulation problem with lower bounds. Given (V, E, ¢, c, d), does
there exists a a circulation?

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.

. Send /(e) units of flow along edge e.
. Update demands of both endpoints.

capacity
b }
@— 29 —@ © 7@

d(v) d(w) d(v) + 2 dw) - 2
6 o

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - /(e) isa
circulation in G'.

35

/.8 Survey Design

37

Survey Design

one survey question per product

Survey design. |
. Design survey asking n; consumers about n, products.
. Can only survey consumer i about product j if they own it.
. Ask consumer i between c; and c¢,' questions.
. Ask between p; and p;" consumers about product .

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc,= ¢, =p,=p; = 1.

38

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
- Include an edge (i, j) if consumer j owns product i.
. Integer circulation < feasible survey design.

