CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2019

Midterm Exam Tomorrow Night: Wed, Feb 20 (8PM-10PM) @ EE 170

 $\textit{Course} \ \textit{Recap:} \ (\textit{Or}, \, \textit{What} \, \textit{Could} \, \, \textit{be} \, \, \textit{On} \, \, \textit{the} \, \, \textit{First} \, \, \textit{Midterm?})$

Gale-Shapley, Stable Matching Problem

Asymptotic Analysis (e.g., Big O notation)

Recurrence Relationships

Greedy Algorithms

Graph Algorithms

Divide-And-Conquer + Recurrence Relationships

Dynamic Programming

Basic Questions about Network Flow (today)

Midterm 1

Practice Midterm and Solutions Posted on Blackboard

- · Solutions posted yesterday (Monday)
- · No electronics (laptop, calculator, smart phone etc...)
- May prepare one 3x5 inch index card with any notes you want
 No additional notes
- · Exam is 2 hours (8PM to 10PM)
 - Practice exam is longer than the real midterm Topics are reasonably representative of real midterm

Soviet Rail Network, 1955

Soviet Rail Network, 1955

Reference: On the history of the tronsportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut Max flow and min cut. • Two very rich algorithmic problems. . Cornerstone problems in combinatorial optimization - Beautiful mathematical duality. Nontrivial applications / reductions. Data mining. Network reliability. · Open-pit mining. Distributed computing. Project selection. Egalitarian stable matching. Airline scheduling. Security of statistical data. Bipartite matching. Network intrusion detection. Baseball elimination. Multi-camera scene reconstruction Image segmentation. Many many more ... Network connectivity.

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf. $v(f) = \sum_{\substack{c \text{ out of } A \\ c \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A \\ e \text{ out of } A}} f(e) \le \sum_{\substack{c \text{ out of } A \\ c \text{ out of } A}} \le \sum_{\substack{c \text{ out of } A \\ c \text{ out of } A}} g(e)$

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow \boldsymbol{f} is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

- (i) There exists a cut (A, B) such that v(f) = cap(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma.
- (ii) ⇒ (iii) We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)

- Let f be a flow with no augmenting paths.
- . Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of f, t ∉ A.

Running Time

Assumption. All capacities are integers between 1 and $\it C$.

Invariant. Every flow value f(e) and every residual capacity $\mathbf{c}_{\rm f}$ (e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^{\bigstar}) \leq n C$ iterations.

Pf. Each augmentation increase value by at least 1. •

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
- A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- . Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- · Can find augmenting paths efficiently.
- . Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- . Don't worry about finding exact highest bottleneck path.
- . Maintain scaling parameter $\Delta.$
- . Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and $\emph{C}.$

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

- . By integrality invariant, when Δ = 1 \Rightarrow $\textit{G}_{f}(\Delta)$ = $\textit{G}_{f}.$
- . Upon termination of Δ = 1 phase, there are no augmenting naths .

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration. •

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most v(f) + $m \Delta$, — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

- . Let f be the flow at the end of the previous scaling phase.
- L2 \Rightarrow v(f*) \leq v(f) + m (2 Δ).
- . Each augmentation in a $\Delta\text{-phase}$ increases v(f) by at least $\Delta.$ -

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a $\Delta\text{-scaling}$ phase. Then value of the maximum flow is at most v(f) + m Δ .

- Pf. (almost identical to proof of max-flow min-cut theorem)
- . We show that at the end of a Δ -phase, there exists a cut (A, B) such that $cap(A, B) \leq v(f) + m \Delta$.
- . Choose A to be the set of nodes reachable from s in $G_{\mathbf{f}}(\Delta)$.
- By definition of A, s ∈ A.
 By definition of f, t ∉ A.

