Midterm Exam Tomorrow Night: Wed, Feb 20 (8PM-10PM) @ EE 170
Office Hours this Week: Wed @ 10AM (note time change)
Course Recap: (Or, What Could be On the First Midterm?)

Gale-Shapley, Stable Matching Problem

Asymptotic Analysis (e.g., Big O notation)

Recurrence Relationships

Greedy Algorithms

Graph Algorithms

Divide-And-Conquer + Recurrence Relationships

Dynamic Programming

Basic Questions about Network Flow (today)
Midterm 1

Practice Midterm and Solutions Posted on Blackboard

- Solutions posted yesterday (Monday)

- No electronics (laptop, calculator, smart phone etc...)

- May prepare one 3x5 inch index card with any notes you want
 - No additional notes

- Exam is 2 hours (8PM to 10PM)
 - Practice exam is longer than the real midterm
 - Topics are reasonably representative of real midterm
Typo Correction (Master Theorem)

\[T(n) \leq \begin{cases} 1 & \text{if } n = 1 \\ a \times T\left(\frac{n}{b}\right) + n^c & \text{otherwise} \end{cases} \]

Case 1: \(\left(\frac{a}{b^c}\right) < 1 \) \(T(n) = \Theta(n^c) \)

Case 2: \(\left(\frac{a}{b^c}\right) = 1 \) \(T(n) = \Theta(n^c \log n) \)

Case 3: \(\left(\frac{a}{b^c}\right) > 1 \) \(T(n) = \Theta(n^{\log_b a}) \)
Chapter 7

Network Flow
Soviet Rail Network, 1955

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...
Flow network.

- Abstraction for material \textit{flowing} through the edges.
- \(G = (V, E) \) = directed graph, no parallel edges.
- Two distinguished nodes: \(s = \) source, \(t = \) sink.
- \(c(e) \) = capacity of edge \(e \).

![Minimum Cut Problem Diagram]
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Capacity = 10 + 5 + 15 = 30
Def. An \(s-t \) cut is a partition \((A, B)\) of \(V \) with \(s \in A \) and \(t \in B \).

Def. The capacity of a cut \((A, B)\) is:
\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

![Graph with nodes and edges labeled with weights]
Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

![Graph with labeled edges and capacities](image)

- **Edge Capacities:**
 - s to 3: 5
 - 3 to 4: 4
 - 4 to 7: 30
 - 3 to 2: 10
 - 2 to 9: 4
 - 5 to 6: 10
 - 6 to 10: 15
 - 6 to 7: 10

Capacity Calculation:

\[
\text{Capacity} = 10 + 8 + 10 = 28
\]
Def. An s-t flow is a function that satisfies:

- For each \(e \in E \):
 \[0 \leq f(e) \leq c(e) \]
 [capacity]

- For each \(v \in V - \{s, t\} \):
 \[\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e) \]
 [conservation]

Def. The value of a flow \(f \) is:

\[v(f) = \sum_{e \text{ out of } s} f(e) \]
Def. An \textit{s-t flow} is a function that satisfies:

- For each \(e \in E \):
 \[0 \leq f(e) \leq c(e) \]
 \text{[capacity]}

- For each \(v \in V - \{s, t\} \):
 \[\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e) \]
 \text{[conservation]}

Def. The value of a flow \(f \) is:
\[v(f) = \sum_{e \text{ out of } s} f(e) \]
Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Value = 28
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)
\]
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Value = 6 + 0 + 8 - 1 + 11 = 24
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Value = $10 - 4 + 8 - 0 + 10 = 24$
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf. \[v(f) = \sum_{e \text{ out of } s} f(e) + 0 \]

\[= \sum_{e \text{ out of } s} f(e) + 0 \sum_{v \in A \setminus \{s\}} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right) \]

by flow conservation, all terms except $v = s$ are 0
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e) + 0$$

$$= \sum_{e \text{ out of } s} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

Flow into s is 0
Flows and Cuts

Flow value lemma. Let \(f \) be any flow, and let \((A, B)\) be any s-t cut. Then

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).
\]

Pf. \(v(f) = \sum_{e \text{ out of } s} f(e) + 0 \)

\[
= \sum_{e \text{ out of } s} f(e) + \sum_{v \in A\{s\}} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)
\]

\[
= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)
\]

\[
= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]

If \(e=(u,v) \) with \(u \) and \(v \) in \(A \) then \(f(e) \) was added & subtracted in prior sum
Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

\[
\text{Cut capacity} = 30 \implies \text{Flow value} \leq 30
\]
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

Pf.

\[
\begin{align*}
v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
&\leq \sum_{e \text{ out of } A} f(e) \leq \sum_{e \text{ out of } A} c(e) \\
&= \text{cap}(A, B)
\end{align*}
\]
Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \implies Flow value \leq 28
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with \(f(e) = 0 \) for all edge \(e \in E \).
- Find an \(s-t \) path \(P \) where each edge has \(f(e) < c(e) \).
- Augment flow along path \(P \).
- Repeat until you get stuck.

Flow value = 0
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

\[\text{locally optimality} \not= \text{global optimality} \]
Residual Graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:

\[
c_f(e) = \begin{cases}
c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}
\]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\} \).
Augmenting Path Algorithm

Augment(f, c, P) {
 $b \leftarrow$ bottleneck(P)
 foreach $e \in P$
 if ($e \in E$) $f(e) \leftarrow f(e) + b$
 else $f(e^R) \leftarrow f(e^R) - b$
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach $e \in E$ $f(e) \leftarrow 0$
 $G_f \leftarrow$ residual graph

 while (there exists augmenting path P) {
 $f \leftarrow$ Augment(f, c, P)
 update G_f
 }
 return f
}
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

(i) There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let \(f \) be a flow with no augmenting paths.
- Let \(A \) be set of vertices reachable from \(s \) in residual graph.
- By definition of \(A \), \(s \in A \).
- By definition of \(f \), \(t \notin A \).

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]

Original network:

- Must be 0 since there is no edge from \(A \) to \(B \) in residual graph.
- Must be \(c(e) \) since there is no edge from \(A \) to \(B \) in residual graph.
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

Must be 0 since there is no Edge from A to B in residual graph

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

$$= \text{cap}(A, B)$$
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations.

Pf. Each augmentation increase value by at least 1. □

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. □
7.3 Choosing Good Augmenting Paths
Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is \(C \), then algorithm can take \(C \) iterations.

\[m, n, \text{ and } \log C \]
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don’t worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Graph G_f](image1)

![Graph $G_f(100)$](image2)
Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_f ← residual graph

 while (Δ ≥ 1) {
 G_f(Δ) ← Δ-residual graph
 while (there exists augmenting path P in G_f(Δ)) {
 f ← augment(f, c, P)
 update G_f(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}
Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.

- By integrality invariant, when $\Delta = 1$ $\Rightarrow G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. •
Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 each iteration. □

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. ← proof on next slide

Lemma 3. There are at most $2m$ augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- $L2 \Rightarrow v(f^*) \leq v(f) + m (2\Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. □

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. □
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

\[
v(f) = \sum_{\text{e out of } A} f(e) - \sum_{\text{e in to } A} f(e) \geq \sum_{\text{e out of } A} (c(e) - \Delta) - \sum_{\text{e in to } A} \Delta = \sum_{\text{e out of } A} c(e) - \sum_{\text{e out of } A} \Delta - \sum_{\text{e in to } A} \Delta \geq \text{cap}(A, B) - m\Delta
\]