
2/15/2019

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 3 due February 15th at 11:59PM
Midterm Exam 1: Wed, Feb 20 (8PM-10PM) @ EE 170
Final Exam: Mon 04/29 (08:00am - 10:00am) @ PHYS 223

Recap: Dynamic Programming

2

Key Idea: Express optimal solution in terms of solutions to smaller
sub problems

Example 1: Knapsack Problem
• Two Dimensional Solution OPT(j,w)
• OPT(j,w) = max{ vj + OPT(j-1,w-wj), OPT(j-1,w)}
• Case 1: Optimal solution includes item j with value vj

• Add item j and reduce remaining capacity to w-wj

• Case 2: Optimal solution does not include item j

Example 2: RNA Secondary Structure
• Goal: Maximize number of matched base pairs
• Constraints: No Sharp Turns, Watson-Crick Complements, No

Crossing Edges
• OPT(i, j) = maximum number of base pairs in a secondary structure of

the substring bibi+1bj

• OPT(i, j) = max{Opt(i,j-1), maxt {1+OPT(i,t-1) + OPT(t+1,j-1)} }
• bj unpaired bj paired with bt

6.6 Sequence Alignment

4

String Similarity

How similar are two strings?
 ocurrance

 occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

5

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
 Gap penalty ; mismatch penalty pq.
 Cost = sum of gap and mismatch penalties.

Applications.
 Basis for Unix diff.
 Speech recognition.
 Computational biology.

Edit Distance

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

6

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment



cost(M)   xi y j
(xi , y j)  M



mismatch
  

 
i : xi unmatched

  
j : y j unmatched



gap
  

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

2/15/2019

Copyright 2000, Kevin Wayne 2

7

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
 Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.
– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.
– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT (i, j) 














j if i  0

min

 xi y j
OPT (i1, j 1)

 OPT(i1, j)

 OPT(i, j 1)









otherwise

i if j 0

8

Sequence Alignment: Algorithm

Analysis. (mn) time and space.
English words or sentences: m, n  10.
Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {
for i = 0 to m

M[i, 0] = i
for j = 0 to n

M[0, j] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],
 + M[i-1, j],
 + M[i, j-1])

return M[m, n]
}

6.7 Sequence Alignment in Linear Space

10

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
 Compute OPT(i, •) from OPT(i-1, •).
 No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space
and O(mn) time.
 Clever combination of divide-and-conquer and dynamic

programming.
 Inspired by idea of Savitch from complexity theory.

11

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





 xi y j

12

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





ji yx

𝒙𝟐𝒙𝟏 𝒙𝟑

y1 y2 y3 y4 y5 y6

-x -----

9

2/15/2019

Copyright 2000, Kevin Wayne 3

13

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





 xi y j

9
𝒙𝟐𝒙𝟏 𝒙𝟑

y1 y2 y3 y4 y5 y6

x

14

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





 xi y j

𝒙𝟐𝒙𝟏 𝒙𝟑

y1 y2 y3 y4 y5 y6

x

--

7൅ 𝛼௫య,௬భ

15

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

16

Edit distance graph.
 Let g(i, j) be shortest path from (i, j) to (m, n).
 Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





 xi y j

17

Edit distance graph.
 Let g(i, j) be shortest path from (i, j) to (m, n).
 Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

18

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

2/15/2019

Copyright 2000, Kevin Wayne 4

19

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

20

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
 Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n

21

Theorem. Let T(m, n) = max running time of algorithm on
strings of length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are
of size (q, n/2) and (m - q, n/2). In next slide, we save log n
factor.

Sequence Alignment: Running Time Analysis Warmup

T (m, n)  2T (m, n /2)  O(mn)  T (m, n)  O(mn logn)

22

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
 O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
 T(q, n/2) + T(m - q, n/2) time for two recursive calls.
 Choose constant c so that:

 Base cases: m = 2 or n = 2.
 Inductive hypothesis: T(m, n)  2cmn.

Sequence Alignment: Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(







T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn  T(q, n /2)  T(m q, n /2)

6.8 Shortest Paths

24

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
-16

9

6

15 -8

30

20

44

16

11

6

19

6

allow negative weights

2/15/2019

Copyright 2000, Kevin Wayne 5

25

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

1

3

-6

s t

2

3

2

-3

3

5 5

66

0

26

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path; otherwise,
there exists one that is simple.

s t
W

c(W) < 0

-6

7

-4

27

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1: P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2: P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

OPT(i, v) 
 0 if i  0

 min OPT(i 1, v) ,
(v, w)  E

min OPT(i 1, w) cvw 








otherwise







28

Shortest Paths: Implementation

Analysis. (mn) time, (n2) space.

Finding the shortest paths. Maintain a "successor" for each
table entry.

Shortest-Path(G, t) {
foreach node v  V

M[0, v]  
M[0, t]  0

for i = 1 to n-1
foreach node v  V

M[i, v]  M[i-1, v]
foreach edge (v, w)  E

M[i, v]  min { M[i, v], M[i-1, w] + cvw }
}

29

Shortest Paths: Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t
path, and after i rounds of updates, the value M[v] is no larger
than the length of shortest v-t path using  i edges.

Overall impact.
 Memory: O(m + n).
 Running time: O(mn) worst case, but substantially faster in

practice.

30

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v  V {

M[v]  
successor[v]  

}

M[t] = 0
for i = 1 to n-1 {

foreach node w  V {
if (M[w] has been updated in previous iteration){

foreach node v such that (v, w)  E {
if (M[v] > M[w] + cvw) {

M[v]  M[w] + cvw
successor[v]  w

}
}

}
If no M[w] value changed in iteration i, stop.

}
}

2/15/2019

Copyright 2000, Kevin Wayne 6

6.9 Distance Vector Protocol

32

Distance Vector Protocol

Communication network.
 Node  router.
 Edge  direct communication link.
 Cost of edge  delay on link.

Dijkstra's algorithm. Requires global information of network.

Bellman-Ford. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep.
The order in which each foreach loop executes in not important.
Moreover, algorithm still converges even if updates are
asynchronous.

naturally nonnegative, but Bellman-Ford used anyway!

33

Distance Vector Protocol

Distance vector protocol.
 Each router maintains a vector of shortest path lengths to every

other node (distances) and the first hop on each path (directions).
 Algorithm: each router performs n separate computations, one for

each potential destination node.
 "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA
Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

tv 1s 1

1

deleted

"counting to infinity"
2 1

34

Path Vector Protocols

Link state routing.
 Each router also stores the entire path.
 Based on Dijkstra's algorithm.
 Avoids "counting-to-infinity" problem and related difficulties.
 Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

not just the distance and first hop

6.10 Negative Cycles in a Graph

36

Detecting Negative Cycles

Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
Pf. Bellman-Ford algorithm.

Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest
path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)
 Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 By pigeonhole principle, P must contain a directed cycle W.
 Deleting W yields a v-t path with < n edges  W has negative cost.

v t
W

c(W) < 0

2/15/2019

Copyright 2000, Kevin Wayne 7

37

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
 Add new node t and connect all nodes to t with 0-cost edge.
 Check if OPT(n, v) = OPT(n-1, v) for all nodes v.

– if yes, then no negative cycles
– if no, then extract cycle from shortest path from v to t

v

18

2

5
-23

-15
-11

6

t

0

0

0 0
0

38

Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

F$

£ ¥DM

1/7

3/102/3 2

170 56

3/504/3

8

IBM

1/10000

800

39

Detecting Negative Cycles: Summary

Bellman-Ford. O(mn) time, O(m + n) space.
 Run Bellman-Ford for n iterations (instead of n-1).
 Upon termination, Bellman-Ford successor variables trace a negative

cycle if one exists.
 See p. 304 for improved version and early termination rule.

