CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 3 due February 15t at 11:59PM
Midterm Exam: Wed, Feb 20 (8PM-10PM) @ EE 170

Recap: Dynamic Programming

Key Idea: Express optimal solution in terms of solutions to smaller
sub problems

Example 1: Weighted Interval Scheduling
Goal: Maximize weight of schedule with no overlapping jobs
OPT(j) = weight of optimal solution that only uses jobs 1,..j
OPT(j) = max{ w; + OPT(p(j)), OPT(j-1)}
Case 1: Optimal schedule includes job j with value w;
Add job j (reward w;) and eliminate incompatible jobs p(j)+1,....j
Case 2: Optimal solution does not include item |

Example 2: Segmented Least Squares (fit points to sequence of lines)
Goal: minimize E + cL (E - squared error, L = # lines)
OPT(j) = best solution only considering first j points
OPT(j) = min{c+e;; +OPT(i-1)}
Case i: Last line fits points p,...,p;
Cost for last line: squared error (e;) + adds one line (c)
Still need to fit points py,...p;.;+ Opt(i-1)

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

1 1 1
2 6 2
3 18)
W =
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

11

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

Ex: { 3,4} has value 40. i
1 1 1 1
W= 11 2 6 2 3
3 18 5 3.6
4 22 6 3.66. .
5 28 7 4

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Knapsack Problem (Greedy)

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

1 1 1
W 1-7

1
2
3
4

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Knapsack Problem (Greedy)

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

1 1 1
W 1-7

1
2 6 2 3
3
4

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Knapsack Problem (Greedy)

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

Ex: {3,4) has value 40. -

4-2

2 ----
-

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Knapsack Problem (Greedy)

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as o maximize total value.

Ex: { 3,4} has value 40. -

il
N

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

10

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have
to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT(i,w)=90PT(i—1,w) if w,>w
imax{ OPT(i—1,w), v;+ OPT(i—1,w—w;)} otherwise

1

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

12

13

Knapsack Algorithm

¢
¢
(1,2 [0 1

{1,2,63} 0 1
{(1,2,3,4} 0 1
{1,2,3,45} 0 1
weg
1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

1 1 1 1
6 7 7

6 7 7-
6 7 7

6 7 7 18
W= 11

OPT: {4, 3}

value = 22 + 18 = 40

W+1

ﬂ-----ﬂ-ﬂﬂ

1 1 1 1

7 7 7
19 24 25 25
22 24 28 29
22 28 29 34

1 1
7 7
25 25

29

o
35 0,

14

Knapsack Problem: Running Time

Running time. ©(n W).
- Not polynomial in input sizel
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value within
0.01% of optimum. [Section 11.8]

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b,b,...b, over alphabet { A, C, 6, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
C— A

/ N\
A A
N\ /
A---U 6—C
|| / \
C---6—U—A—A G
/ 1 | | I
G 1 | 1
U I A—U=—U A
VAN I N~
A C G C U
| I | | G
I I I I I yd
C G C G A G--¢C
N 7 | |
G
A--U
I
complementary base pairs: A-U, C-G G

16

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b, bj) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b;,b;) e S, theni<j-4.
- [Non-crossing.] If (b, b;) and (by, b)) are two pairs in S, then we
cannot have i< k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.

17

RNA Secondary Structure: Examples

Examples.
/e—e\ c
C U /7 \ 6— 6
\C e/ G G c/ \U
| \ /7 \ /
A---U €= ¢V
| - o<
-- A G
U A l l | |
\ U---A U---A
base pair
AUGUGGCTCAU AUGGGG CAU A GUUGGSC

ok sharp turn crossing

18

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bb,...b;.

match b, and b,

OPT(1+-1)

Difficulty. Results in two sub-problems. /
. Finding secondary structure in: b;b,...b, ;.
. Finding secondary structure in: b,,;b,,,...b, ;.

\

need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bb,,;...b;.
. Casel. Ifix>j-4.

- OPT(i, j) = O by no-sharp turns condition.

- Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(i, §-1)

. Case 3. Base b; pairs with b, for some i <1< j- 4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + max, { OPT(i, t-1) + OPT(++1, j-1) }
\

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free
grammars.

20

21

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

i) N IR VS I N

6 7 8 9

Running time. O(n3).

22

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood

Dynamic programming techniques. tradeoff between parsimony and accuracy
. Binary choice: weighted interval scheduling.
. Multi-way choice: segmented least squares.
. Adding a new variable: knapsack.
. Dynamic programming over intervals: RNA secondary
structure. ™

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different
infuitions.

6.6 Sequence Alignment

24

@]

o

- i - DREEE
- I - MG -

6 mismatches, 1 gap

c.urrﬂnce
CCUI’I’HI’]CG

1 mismatch, 1 gap

c.urr.anc
ccurre.nc

O mismatches, 3 gaps

String Similarity

How similar are two strings?
« OcCurrance

« OCcurrence

25

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty 5; mismatch penalty o,

. Cost = sum of gap and mismatch penalties.

cc T A c T
CC T A CT

Qe+ OgT+ Qagt 20cp

Applications.

. Basis for Unix diff.

. Speech recognition.

. Computational biology.

-CTGACCTACT
CCTGAC-TACT

20+ Oy

26

Sequence Alignment

Goal: Given two strings X = x; X, ... X,and Y =y;y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i', but j>j'.

costtM) = >, Uy, + > o+ D 0O
(Xj,yj)eM i :Xj unmatched j:y; unmatched

J o J

. Vv Vv
mismatch gap

X; X, X3 X4 Xg Xq
Ex: CTACCG vs. TACATG. c 7 A~ c BB ¢
Sol: M = X,-yy, X3-Y2, X4-Y3, X5-Y4, X6-Ye. - S Al

Yi Y2 Y3 Ya Y5 Ye

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of alighing strings x; X, ... x;and y;y, . ..
. Case 1: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings

X1 X ... X and Y1Yo ... YJ—I
. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; X, ... x;,;and y;y, ...

. Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of aligning x; X, ... x;and y; y, . ..

jo if i=0
Ty, +OPT(i—1, j-1)
OPT(, j)=y min y 0+0OPT(i—1, }) otherwise
o+O0PT(, j-1)
is if =0

28

Sequence Alignment:

Analysis. ®(mn) fime and space.

English words or sentences: m, n <10.

Computational biology: m = n =100,000.
10 billions ops OK, but 106B array?

Algorithm

6.7 Sequence Alignment in Linear Space

30

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, *).
. No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space
and O(mn) time.
. Clever combination of divide-and-conquer and dynamic
programming.
. Inspired by idea of Savitch from complexity theory.

31

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(i, j).

2 Y1 Y2 Y3 Ya Y5 Yo

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

2 Y1 Y2 Y3 Ya Y5 Ye

€ @——f > >

v
v
\ 4

X 95 —-—-q- *1 %2 X3
Yi Y2 Y3 Y4 Y5 Ye ---

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

€ Y1 Y2 Y3 Y4 Y5 Yo
. @
\ 4
X1
v
X2
v
X3 > >

X a = x
95
--- Yi Y2 Y3 Ya Y5 Ve

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

& Y1 Y2 Y3 Y4 Y5 Ye
- @
Xq '
X '
\
X3

x » = = [

70 + «
X3,Y1 !! Y Y2 Y3 Y4 Y5 Ye

35

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Can compute f (-, j) for any j in O(mn) time and O(m + n) space.

J

€ Y1 Y2 Y3 Ya Y5 Ye

36

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

2 Y1 Y2 Y3 Ya Y5 Yo

37

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(, j) for any j in O(mn) time and O(m + n) space.

J

€ Y1 Y2 Y3 Y4 Y5 Yo

AN

38

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
fi,)+ a(i,).

2 Y1 Y2 Y3 Ya Y5 Ye

39

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (O, 0) to (m, n) uses (g, n/2).

n/?2

€ Y1 Y2 Y3 Y4 Y5 Ye

40

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y, .

Conquer: recursively compute optimal alignment in each piece.
n/2

2 Y1 Y Y3 Ya Y5 Yo

: ® q

41

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on
strings of length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are
of size (g, n/2) and (m - q, n/2). In next slide, we save log n
factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

. O(mn) time to compute f(+, n/2) and g (*, n/2) and find index q.
. T(q,n/2)+ T(m - q, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m, 2) < cm
T(2, n) £ c¢n
T(m,n) < cmn+T(q, n/2)+T(m-q, n/2)

. Basecasesim=2o0orn=2.
. Inductive hypothesis: T(m, n) < 2cmn.

42

T(m,n) T(g,n/2)+T(m-q,n/2)+cmn
2cgn/2+2c(m—qg)n/2+cmn

cgn +cmn —cgn +cmn

<
<

2cmn

6.8 Shortest Paths

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights c,,,, find shortest path from node s to node t.

allow negative weights

Ex. Nodes represent agents in a financial setting and c,,, is cost of
transaction in which we buy from agent v and sell immediately to w.

44

45

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

46

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path; otherwise,
there exists one that is simple.

c(W)<0

47

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

. Case 1. P uses at most i-1 edges.
- OPT(i, v) = OPT(i-1, v)

. Case 2: P uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best
w-1 path using at most i-1 edges

J) if i=0
OPT(, V) = | min{OPT(i—l, V), min_{OPT(i-1, W)+CVW}} otherwise

(v,w) e E

Remark. By previous observation, if ho negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

48

Shortest Paths: Implementation

Analysis. ®(mn) time, ®(n?) space.

Finding the shortest paths. Maintain a "successor" for each
table entry.

Shortest Paths: Practical Improvements

Practical improvements.
. Maintain only one array M[v] = shortest v-t path that we have
found so far.
. No need to check edges of the form (v, w) unless M[w] changed
In previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t
path, and after i rounds of updates, the value M[v] is no larger
than the length of shortest v-t path using < i edges.

Overall impact.
- Memory: O(m + n).
. Running time: O(mn) worst case, but substantially faster in
practice.

49

50

Bellman-Ford: Efficient Implementation

6.9 Distance Vector Protocol

52

Distance Vector Protocol

Communication network.
- Node = router.
. Edge ~ direct communication link.
. Cost Of edge ~r delay on Imk «— naturally nonnegative, but Bellman-Ford used anyway!

Dijkstra's algorithm. Requires global information of network.
Bellman-Ford. Uses only local knowledge of neighboring nodes.
Synchronization. We don't expect routers to run in lockstep.
The order in which each foreach loop executes in not important.

Moreover, algorithm still converges even if updates are
asynchronous.

53

Distance Vector Protocol

Distance vector protocol.
. Each router maintains a vector of shortest path lengths to every
other node (distances) and the first hop on each path (directions).
. Algorithm: each router performs n separate computations, one for
each potential destination node.
. "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA
Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

Gﬂ 1 % ------ 1" >@ "counting to infinity"

deleted

54

Path Vector Protocols

Link state routing. - not just the distance and first hop
. Each router also stores the entire path.
. Based on Dijkstra's algorithm.
. Avoids "counting-to-infinity" problem and related difficulties.
. Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

6.10 Negative Cycles in a Graph

Detecting Negative Cycles

Lemma. If OPT(nyv)= OPT(n-1,v) for all v, then no negative cycles.
Pf. Bellman-Ford algorithm.

Lemma. If OPT(nyv)< OPT(n-1yv) for some node v, then (any) shortest
path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)
. Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
. By pigeonhole principle, P must contain a directed cycle W.
. Deleting W yields a v-t path with < n edges = W has negative cost.

c(W)<0

56

57

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
. Add new node t and connect all nodes to T with O-cost edge.
. Check if OPT(n, v) = OPT(n-1, v) for all nodes v.
- if yes, then no negative cycles
- if no, then extract cycle from shortest path from v to t

58

Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

$)< 1/7 F

800

3/10
4/3 2/3 2 3/50 @

1/10000

£ 170 ~(DM) 56 _>®/

59

Detecting Negative Cycles: Summary

Bellman-Ford. O(mn) time, O(m + n) space.
. Run Bellman-Ford for n iterations (instead of n-1).
. Upon termination, Bellman-Ford successor variables trace a negative
cycle if one exists.
. See p. 304 for improved version and early termination rule.

